
 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 1

Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.1515/cait-2016-0001

Sequential and Parallel Algorithms for the State Space Exploration

Lamia Allal1, Ghalem Belalem1, Philippe Dhaussy2, Ciprian Teodorov2
1Dept. Computer Science, Faculty of Exact and Applied Sciences, University of Oran 1 Ahmed Ben

Bella, Oran, Algeria
2Lab-STICC UMR CNRS 6285 ENSTA Bretagne, Brest, France

Emails: allal.lamia@gmail.com ghalem1dz@gmail.com philippe.dhaussy@ensta-bretagne.fr

ciprian.teodorov@ensta-bretagne.fr

Abstract: In this article, we are interested in the exploration part of model checking

which consists in traversing all the possible states of a system. We propose two

approaches to exploration, parallel and sequential. We present a comparison

between our parallel approach and the parallel algorithm proposed in SPIN.

Keywords: Model checking, state explosion problem, sequential exploration, parallel

exploration.

1. Introduction

Model checking is a set of automatic verification techniques of temporal properties

on reactive systems. It takes as input a system of transitions and a formula from some

temporal logic, and answers if the abstraction satisfies or not the formula.

Exploration is a computing process which determines a sequence of actions making

it possible to achieve a desired goal. A good exploration means the achievement and

the storage of a large number of states of a system without exceeding the available

memory resources [1]. The state space can be described by an initial state and a set

of transitions. A succession of states produced by actions forms a path within the state

space [2, 3].

Model checking techniques suffer from a major problem known as the state

explosion problem [4, 7, 16]. This problem occurs when the state space to be

explored is large and cannot be explored by the algorithms for a lack of capacity

mailto:ghalem1dz@gmail.com
mailto:ciprian.teodorov@ensta-bretagne.fr

 4

memory resources or an important time because the memory space needed to carry

out exploration is higher than the memory space contained in the machine.

In this article, we are interested in the time needed to carry out exploration

(execution time), for that, we present a comparative study between two types of

exploration: sequential and parallel, where the comparison is carried out over the

execution time of each experimentation. The model used is a counter incremented

from 1 to N and decremented to 0, with N a parameter fixed at the experimentations.

This article is divided into eight sections: Section 2 is devoted to the model

checking and to the state space exploration; Section 3 presents some works which

offer solutions to the state explosion problem. Sections 4 and 5 are devoted to the

definition of the sequential and parallel approaches proposed. Section 6 is devoted to

the experiments performed for a comparison between sequential and parallel

approaches. Section 7 presents the parallel algorithm for state exploration in SPIN.

2. Model checking and the state space exploration

Model checking is a verification technique based on the exhaustive state space

exploration of systems in search of behaviors that do not verify its specification. A

model checker can be seen as a black box which accepts as input a system as well as

a property expressed on this system and returns an answer indicating if the property

is checked or not. The implemented algorithms include two phases, a construction of

the state space then an exploration of this state space in searching of errors. The state

space is represented as a graph which describes all the possible evolutions of the

system. Nodes of the graph represent the states of the system and the arcs represent

the transitions between these states [2, 3]. The advantage of using model checking is

the accuracy of the answer obtained [12]. The exploration phase consists on visiting

state by state, each state and all its successors are stored in memory. Exploration ends

when all the states are visited. An exploration algorithm, with each step of its

execution, can either visit a new node, or an explored node.

3. Related work

Many solutions have been proposed for the state explosion problem [7, 12]. In this

section, we present three solutions. Each one of them is running on a different

architecture (distributed, parallel, and sequential). These solutions are based on

different methods and data structures. Each solution aims to improve the

performances in execution time and memory capacity. The approach proposed in [14]

allows a distribution in the exploration of states when checking a model by the model

checker SPIN [6, 8]. The treatment is performed by exploiting a network of machines.

Each node holds a set of states to be treated. The authors present an algorithm

composed of three functions: (I) Start, (II) Visit, (III) DFV (Depth First visit). Each

node holds a set V, containing the visited states and a queue U for the storage of the

unexplored states. At the initialization step, each process executes the Start procedure

in order to identify the number of the processor that will treat the initial state. With

 5

each time a successor is generated, a checking is carried out on the index of the node.

If the processor i treated the state e, i generates the successors of e and checks if it

must visit them or not. That is performed by a partition function. Exploration finishes

when all the queues of nodes are empty. The disadvantage of this method lies in the

choice of the partition function which should enable achieving a uniform distribution

of states in terms of memory space, tine execution and messages transferred across

the network.

The approach proposed in [15] is based on a sequential algorithm. Its objective

is the storage of states in their compressed form, only the difference between the

previous state and the following state is stored. The first generated state (initial state)

is stored in an explicit way, the other states are stored in a compressed form in hash

tables. The states are decompressed to verify if a state was already visited or not, for

that, it is necessary to add the most recent changes for each state until a state stored

in explicit form is reached. The disadvantage of this method is the backtracking

function which represents an overload because the execution time can increase

quickly.

The approach proposed in [17] is based on a parallel algorithm. The authors are

based on model checking on a shared memory multiprocessors architecture. The

solution is based on a bloom filter [17] to indicate if a state was visited or not. A

problem occurs when the bloom filter may return a false result, it can make a false

positive when the state has not been seen, causing collisions.

4. Sequential algorithm proposed

An algorithm corresponds to a succession of states, and transitions between these

states, the idea is that the states correspond to instantaneous descriptions of the

algorithm. An exploration algorithm is defined mainly by three parameters: a

condition stop of the exploration, a function of selection of next states to explore,

starting from a state or a set of states already explored and stored in memory, and a

function of actualization which defined the storage of new states in memory. The

execution of two sequences is known as sequential when one starts only when the

other one is finished. In a sequential approach, exploration is carried out by one thread

only, the time expressed compared to the number of states generated during

exploration can be huge if this number is very high.

In this section, we present an algorithm for a sequential exploration of state

space, we explore a model defined by a counter incremented from 1 up to N and

decremented to 0. We carried out an exploration of this model by considering all

possible states of the system while varying the number of counters as well as the

parameter N. In a sequential exploration, the states are visited one following the other

one, the first visited state is the initial state, thereafter, the successors of this state are

generated, then stored in memory. This process stops when all the states are treated.

The algorithm of sequential exploration is presented as

Algorithm 1. Sequential exploration algorithm

Step 1. S ← S0

Step 2. M ← S0

 6

Step 3. while ¬ (M.isEmpty ()) do

Step 4. X ← M.dequeue ()

Step 5. Successors = X.GetSuccessors ()

Step 6. for (State K: Successors) do

Step 7. if ¬ (S.Contains (K)) then

Step 8. S.Add (K)

Step 9. M.Add (K)

Step 10. end if

Step 11. end for

Step 12. end while
Here S0 represents the initial state, S defines the whole of the already explored

states and M the whole of the states whose successors were not observed yet. As long

as the set M is non-empty (Step 3 of Algorithm 1) the states are treated, Step 6

indicates that for each next state of the visited one, a checking is carried out on the

set S to know if the state is old or new. Fig. 1 presents the steps of a sequential

exploration. Only one process carries out the treatment since the initial state until the

end of exploration. This process is repetitive, it is composed of five principal actions

which are:

 Generation of the initial state (Step 1);

 Verification of all states to explore: if this set is not empty go to Step 2

(Fig. 1) else the exploration ends (Step 3);

 Generation of next states;

 Storage of new states in two sets (S and M);

 End of the exploration.

To better illustrate this approach, we have defined an example composed of two

counters incremented up to 3 and decrement to 0.

Fig. 2 shows the accessibility graph of this example made up of all possible

states. At the beginning of the exploration, both counters are set to zero. All possible

states are generated from each configuration (state). In this example, there are 16

configurations. The exploration is carried out by a single thread. The configuration

(0, 0) represents the initial state, it is stored in two data structures, a hash table S that

contains all observed states and a queue M containing the states whose successors

have not been processed yet. In the first step, both counters are initialized to zero.

Thereafter, their next configurations are observed, the counters can be incremented,

then we can have two possible states (0, 1) and (1, 0). Both states are new, they are

stored into S and M. At each step, a state is taken from the queue M and its successors

are visited. From the state (1, 0), we obtained three states – (2, 0), (1, 1) and (0, 0).

The process is the same, a generated state is stored in memory if and only if it is not

contained in S. States (2, 0) and (1, 1) are new, they are added to S and M. This

process is repeated until M is empty. In this example the exploration ends when the

configuration (3, 3) has been observed.

 7

Fig. 1. Sequential exploration steps

Fig. 2. Reachability graph

 8

5. Parallel algorithm proposed

A parallel algorithm runs on a parallel computer to solve a given problem.

Calculations of a sequential program are decomposed into tasks and each one is

assigned to a process. The instructions are executed simultaneously which can lead

to a considerable gain in execution time. An important task in a parallel approach is

the assignment of work to processes to have a load balancing between threads so that

all processors or cores has the same load or almost to treat. In our approach, we used

the framework executor [5] where each process performs a function returning all

visited states, the objective is to be able to easily choose which tasks will be executed

(Fig. 3), in what order and how many tasks can be run in parallel.

Fig. 3. Main components of the framework executor

Fig. 4 shows the execution steps of the parallel approach proposed. The

treatment begins with the initial state generation, it is stored in the HashSet S

containing all visited states and in the queue M that contains the states whose

successors have not been observed yet. Subsequently, the initial state is removed from

the queue and all its next states are generated, then for each one, a process is launched

and this state is assigned, this means that the accessibility graph of this configuration

is created by the thread. Each process simultaneously processes a set of

configurations according to the state assigned initially. Each thread will execute the

sequential code produced by a single process. The HashSet S is protected, the

processes are synchronized. At the end of the exploration, each process returns the

set of observed states, which means that S is built by all threads. The algorithm of

parallel exploration is presented in Fig. 4.

 9

Fig. 4. Parallel exploration steps

In the parallel approach, each thread executes the sequential code described in

the previous section. At the beginning of exploration, the initial state is generated,

then its next states are observed. At this time, for each new configuration, a process

is started (Step 6 of Algorithm 2). The latter is active until all states have been treated.

Each thread executes a function for the state space exploration, therefore, data used

are local, except for the HashSet S whose access is shared.

Taking the same example as above composed of two counters which are

incremented up to 3 and decrements to 0, the initial state is generated first and stored

in the sets S and M , thereafter its successors (1, 0) and (0, 1) are visited and stored in

their turn in both sets, after that, two threads are started and each one will execute the

exploration code using a queue M containing local states whose successors have not

been observed.

The exploration stops when both local queues reserved for the generated threads

are empty. Fig. 5 shows the reachability graph generated by the parallel algorithm.

From this figure, we notice that both processes generate the state (1, 1), this state is

treated by a single process that will explore all its successor states.

 10

Fig. 5. Reachability graph

Algorithm 2. Parallel exploration algorithm

Step 1. S ← S0

Step 2. M ← S0

Step 3. X ← M.dequeue ()

Step 4. for allNextStates do

Step 5. Tasks.add (work)

Step 6. Executor.Submit (Tasks)

Step 7. end for

Step 8. while ¬ (M.isEmpty ()) do

Step 9. X ← M.dequeue ()

Step 10. Successors ← X.GetSuccessors ()

Step 11. for (State K: Successors) do

Step 12. if ¬ (S.Contains (K)) then

Step 13. S.add (K)

Step 14. M.add (K)

Step 15. end if

Step 16. end for

Step 17. end while

 11

6. Experimental study

In this article, we proposed two approaches for sequential and parallel exploration.

We carried out three experimental studies, the objective is to make a comparison

between sequential and parallel approaches and the proposed algorithm for a parallel

exploration in SPIN. This comparison is based on the execution time. The

experiments are performed by varying the number of configurations. We study the

behavior of these approaches by experiments. The experiments were performed on

an i7 machine with 8 cores, it operates at a frequency of 2 MHz, with 16 GB of

physical memory. We have implemented both algorithms (sequential and parallel).

6.1. Sequential approach vs parallel approach

To study the performance of both approaches (sequential and parallel) in execution

time, we varied two parameters: the number of counters and the maximum value of

the counter, called V. The metric considered is the running time representing the time

elapsed to perform the exploration.

Fig. 6 shows the results of an experiment using five counters and varying the

parameter V from 2 up to 20. To interpret these results, we divided this experience in

two parts.

Fig. 6. Execution time (sequential vs parallel) by varying the number of configurations

Fig. 7 shows the results of exploration using a reduced number of

configurations. The sequential algorithm produced better results than the parallel

algorithm when V is equal to 2, because for a small number of configurations,

multiple threads are created. The process generation takes a lot of time which explains

the result shown in Fig. 7. The parallel approach shows better results from 3125

configurations. The average gain of the parallel approach in the experiment 1 against

the sequential approach is 10%. This gain increases by changing the parameter V.

According to Fig. 8, where V is high, the number of configurations increases. In this

 12

experiment, the average gain of the parallel approach is 17%. We can conclude that

the sequential approach doesn’t scale and is blocking for a high number of

configurations. The execution time is expressed in nanoseconds.

Fig. 7. Experience 1

Fig. 8. Experience 2

Fig. 9 shows the average execution time for both approaches by varying the

number of counters. This number varies from 2 up to 6. Five experiments were

performed by setting the number of counters (from 2 up to 6) and by varying the

parameter V from 2 up to 20. This experience shows the average execution time

returned for each exploration. This figure shows that the parallel approach gives

better performance compared to the sequential approach. This gain is fixed at 10%.

For a large number of configurations, sharing tasks between processes is necessary

to save time.

A parallel program is divided into several sequential tasks running

simultaneously. When tasks are big, the use of parallelism is the best solution.

 13

Fig. 9. Execution time (sequential vs parallel) by varying the number of counters

6.2. Parallel approach vs SPIN

We have made a parallel comparison between our approach and the parallel algorithm

developed for SPIN model checker [9]. The algorithm (Algorithm 3) proposed in [9]

is based on the use of a three dimensional queue Q[t][i][j] for the storage of states

whose successors have not been observed yet. The parameter i is varied from 0 up to

1, it allows states to pass from current to future states. At each step of exploration, all

states from Q[t][i][j] are processed and their successors are stored in Q[1−t][i][j],

corresponding to the configuration that will be observed at the next step. The

algorithm was designed to avoid locks when accessing in mutual exclusion. The set

S in which visited states are stored is protected to prevent simultaneous access. A

lockless hachtable [10] was used in order to avoid waits between different threads.

An important task in the algorithm proposed in [9] is to determine when all states

have been explored to stop exploration.

In the algorithm, the parameters i and j vary from 1 up to N, where N is the

number of threads. The size of this queue is unlimited. Each time a state is generated,

a check is made on a set S: if the state is new, it is stored in S and added to the queue

Q by randomly choosing a thread that will handle it.

Algorithm 3. Parallel exploration algorithm in SPIN

Step 1. done ← false

Step 2. t ← 0

Step 3. Search (i: 1..N)

Step 4. for (j=1; j<=N; j++) do

Step 5. Delete s from Q[t][i][j]

Step 6. for (Each next configuration c of s) do

Step 7. if ¬ (Contains(c)) then

Step 8. S.add(c)

Step 9. k ← Choose Random from 1… N

Step 10. add state to Q [1–t] [k] [i]

Step 11. end if

 14

Step 12. end for

Step 13. end for
Step 14. Wait ()

Step 15. if (i==1) then

Step 16. wait until all threads are idle

Step 17. if (all Q [1–t] [i] [j] == NULL) then

Step 18. done ← true

Step 19. else
Step 20. Notify all threads

Step 21. t ← 1–t

Step 22. end if

Step 23. end if
The current states to be visited are treated from Q[t][i][j] and next states are

stored in

Q[1−t][k][i] with k, a randomly selected process from N .

We compared our parallel algorithm with the parallel algorithm developed for

SPIN model checker [9] using the same example as before. We conducted

experiments on the same machine. We used six counters, the parameter V varies from

2 up to 20 (Fig. 10). To interpret these results, we calculated the gain (in percentage)

obtained from each experience, this gain is presented in Fig. 11. We note that the

proposed parallel algorithm shows better performance than the parallel algorithm

proposed for SPIN for a number of configurations varying from 729 up to

85 766 121. The average gain in response time obtained by our parallel approach is

about 1.5% compared to the parallel approach proposed for SPIN. So compared to

the sequential approach where the number of configurations influenced on the final

result, the proposed parallel algorithm follows the same pace as the proposed

algorithm for SPIN an improvement in execution time at each experience. In the

algorithm presented in [9], whenever a thread finishes processing its tasks, it waits

for other processes, therefore, this algorithm is based on the processing of states step

by step.

Fig. 10. Execution time (both parallel approaches) by varying the number of configurations

 15

Fig. 11. Gain obtained between both approaches (parallel and SPIN)

6.3. Sequential approach vs parallel approach vs SPIN

We carried out a comparison between both proposed approaches and parallel

algorithm presented in [9]. The comparison was made on the running time. We used

6 counters incremented from 0 up to 20. We divided the result on two figures

(Figs 12 and 13). Fig. 12 shows that the proposed parallel approach is better than the

other ones compared to the result shown in Fig. 10 where the sequential algorithm

was better when the number of configurations was small, therefore, the number of

counters influences on the execution time. With regard to Experiment 2 shown in

Fig. 13, the proposed parallel approach gives better results even by increasing the

parameter V. Both parallel approaches show significant results when the number of

configurations is high with a gain provided by the proposed parallel algorithm.

Fig. 12. Experience 1

 16

Fig. 13. Experience 2

7. Positioning our parallel approach and discussion

To position our parallel algorithm with the integrated parallel algorithm in SPIN,

which is often used in the explorations of states using model checking techniques, we

studied two aspects: linear regression [13] and complexity [11].

7.1. Study of regression

We realized that experience to predict execution time in the future with information

from the past and therefore have knowledge about the future behavior of our

algorithm compared to the algorithm proposed in [9]. For this, we created a regression

line for the generated point (the scatter plot) by the simulation results. The line is

obtained using the results of Fig. 10. The equation of the regression line is in the form

Y = aX + b. In this example, for the proposed parallel approach, it is given by

YPar=2896.9X−1.9189×109. For SPIN, it is represented by YSPIN = 3409.2X−2.3×109.

To perform these calculations, we used the median-median method [18]. To represent

the estimated errors in execution time, we determined the confidence interval of the

regression slope that can define an error bounds between approximate and real

results.

The confidence interval is calculated by

Ic = (− tα
𝑠

√𝑛
; + tα

𝑠

√𝑛
),

where is the sample mean, s is the standard deviation and n is the number of

configurations. For YPar, the confidence interval Ic = [1935.02; 5196.82]. For YSPIN,

the confidence interval Ic = [2229.93; 5448.87]. After estimation obtained by both

straight lines of the linear regression, we can predict the execution time for a number

of states greater than 85 million. For example, for 200 million states, using the

regression line YPar, we can estimate a response time (taking into account an error

bounds determined by Ic) by 5.775×1011 ms. Using YSPIN, execution time is estimated

by 6.795×1011 ms. Based on these results, we can conclude that our approach gives

better performance in time and allows scalability. SPIN technique becomes

impractical when the number of states is very important like in critical applications.

 17

7.2. Study of the algorithmic complexity

An algorithm is a sequence of actions performed from an initial state to a final state

in a finite time. We study the complexity to predict the execution time of an algorithm

and to compare two algorithms performing the same treatments. The complexity of

an algorithm is determined through a description of the behavior of algorithms. The

complexity of an algorithm can be evaluated in time (speed) and in space. In this

article, we focus on the study of the execution time. We conducted a study of the

complexity for both parallel algorithms: Our proposed algorithm and the algorithm

integrated in SPIN, for this we have defined execution time for each type of

instruction:

ae: state assignment

ce: comparison of states

s: number of next states per state

q: maximum number of states in Q or M

p: number of processes

w: waiting time per process

 Complexity of the proposed parallel algorithm. Complexity of the

proposed algorithm CApp is estimated by:

(1) CApp = 3.ae + q(ce + ae + s.ae + s (ce + 2.ae)) = O(q).

 Complexity of the parallel algorithm proposed in [9]. Complexity CSPIN is

estimated by:

(2) CSPIN = 2.ae + q (ae + s.p (ce + 2.ae)) + w (p − 1) + q.ce.ae = O(q2).

According to these complexities obtained by equations (1) and (2) we can notice

that our algorithm has order of O(q) time complexity, the complexity of the algorithm

proposed in [9] is around the square estimated to O(q2). In conclusion, we can say

and confirm that our proposed algorithm for the exploration of states can be used to

explore a large number of states in a linear time.

8. Conclusion

Model checking is a technique based on three concepts: a model system to check, a

specification in the form of a system property and algorithms to check whether the

model meets its specification. This technique suffers from the state explosion

problem where systems become too large. We have proposed two approaches,

sequential and parallel to the state space exploration. For our first experiment, we

measured the performance of both algorithms then we compared the results. We

showed that the sequential approach gives better results when the number of

configurations is reduced and that beyond a certain number of states, the parallel

algorithm gives better performance then. For our second experiment, we measured

the execution time obtained by the proposed parallel algorithm and parallel algorithm

proposed in [9], we calculated the gain provided by the experience and noticed that

our approach gives better results. Currently, we are studying exploration on real

models to perform comparisons between these algorithms. We plan in the near future

to implement our algorithms in a distributed architecture composed of a set of nodes.

 18

R e f e r e n c e s

1. A b e d, N., S. T r i p a k i s, J.-M. V i n c e n t. Resource-Aware Verification Using Randomized

Exploration of Large State Spaces. − In: Proc. of 15th International SPIN Workshop, Model

Checking Software, Los Angeles, CA, USA, August 10-12 2008, pp. 214-231.

2. B o u k a l a, M. C., L. P e t r u c c i. Towards Distributed Verification of Petri Nets Properties. –

In: Proc. of First International Conference on Verification and Evaluation of Computer and

Communication Systems, VECoS’07, May 2007, pp. 13-24.

3. C h r i s t e n s e n, S., L. M. K r i s t e n s e n, T. M a i l u n d. A Sweep-Line Method for State Space

Exploration. – In: Proc. of 7th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS’2001, April 2001, pp. 450-464.

4. C l a r k e, E. M., W. K l i e b e r, M. N o v á £ e k, P. Z u l i a n i. Model Checking and the State

Explosion Problem. – In: Proc. of 8th Laser Summer School on Software Engineering,

Vol. 7682, September 2011, pp. 1-30.

5. D a u g h e r t y, J. Java Concurrency Framework. CSCI 5448, Spring 2011, May 2011.

6. D h a u s s y, P., J. C. R o g e r, F. B o n i o l. Reducing State Explosion with Context Modeling for

Model-Checking. – In: Proc. of 13th International Symposium on High Assurance Systems

Engineering, HASE, November 2011, pp. 130-137.

7. E v e r, E., O. G e m i k o n a k l i, A. K o ç y i g i t, E . G e m i k o n a k l i. A Hybrid Approach to

Minimize State Space Explosion Problem for the Solution of Two Stage Tandem Queues. −

J. Network and Computer Applications, Vol. 36, 2013, No 2, pp. 908-926.

8. G u a n, N., Z. G u, W. Y i, G. Y u. Improving Scalability of Model-Checking for Minimizing Buffer

Requirements of Synchronous Dataflow Graphs. – In: Proc. of 14th Asia and South Pacific

Design Automation Conference, ASP-DAC’09, January 2009, pp. 715-720.

9. H o l z m a n n, G. J. The Model Checker SPIN. − IEEE Transactions on Software Engineering,

Vol. 23, May 1997, No 5, pp. 279-295.

10. H o l z m a n n, G. J. Parallelizing the Spin Model Checker. – In: Proc. of 19th International

Conference on Model Checking Software, SPIN’12, Berlin, Heidelberg, 2012. Springer-

Verlag, pp. 155-171.

11. I n g g s, C. P., H. B a r r i n g e r. Effective State Exploration for Model Checking on a Shared

Memory Architecture. − Electr. Notes Theor. Comput. Sci., Vol. 68, 2002, No 4, pp. 605-620.

12. K a m k i n, A. S. Projecting Transition Systems: Overcoming State Explosion in Concurrent System

Verification. − Program. Comput. Softw., Vol. 41, November 2015, No 6, pp. 311-324.

13. K o s t e r, A. M.C.A., M. T i e v e s. Network Design with Compression: Complexity and

Algorithms. – In: Proc. of INFORMS Computing Society Conference (INFORMS ICS), 2015.

14. K w i a t k o w s k a, M., G. N o r m a n, D. P a r k e r. Prism: Probabilistic Model Checking for

Performance and Reliability Analysis. – ACM SIGMETRICS Performance Evaluation

Review, Vol. 36, 2009, No 4, pp. 40-45.

15. L e g g e t t e r, C. J., P. C. W o o d l a n d. Maximum Likelihood Linear Regression for Speaker

Adaptation of Continuous Density Hidden Markov Models. – Computer Speech and Language,

Vol. 9, 1995, No 1, pp. 171-185.

16. L e r d a, F., R. S i s t o. Distributed-Memory Model-Checking with Spin. – In: Proc. of 5th and 6th

International SPIN Workshops on Theoretical and Practical Aspects of SPIN Model Checking,

Vol. 1680, July 1999, pp. 22-39.

17. M u k h e r j e e, A., Z. T a r i, P. B e r t o k. Memory Efficient State-Space Analysis in Software

Model-Checking. – In: Proc. of Thirty-Third Australasian Conference on Computer Science

ACSC‘10, Vol. 102, January 2010, pp. 23-32.

18. P e l á n e k, R. Fighting State Space Explosion: Review and Evaluation. – In: Proc. of 13th

Conference on Formal Methods for Industrial Critical Systems FMICS’08, Vol. 5596,

September 2008, pp. 37-52.

19. S a a d, R. T., S. D. Z i l i o, B. B e r t h o m i e u. A General Lock Free Algorithm for Parallel State

Space Construction. – In: Proc. of 9th International Workshop on Parallel and Distributed

Methods in Verification, PDMC-HIBI’10, October 2010, pp. 8-16.

20. W a l t e r s, E. J., C. H. M o r r e l l, R. E. A u e r. An Investigation of the Median-Median Method

of Linear Regression. – Journal of Statistics Education, Vol. 14, 2006, No 2.

http://dblp.uni-trier.de/pers/hc/e/Ever:Enver
http://dblp.uni-trier.de/pers/hc/g/Gemikonakli:Orhan
http://dblp.uni-trier.de/pers/hc/g/Gemikonakli:Eser
http://dblp.uni-trier.de/db/journals/jnca/jnca36.html#EverGKG13

