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Abstract: In this article, we are interested in the exploration part of model checking 

which consists in traversing all the possible states of a system. We propose two 

approaches to exploration, parallel and sequential. We present a comparison 

between our parallel approach and the parallel algorithm proposed in SPIN.  

Keywords: Model checking, state explosion problem, sequential exploration, parallel 

exploration. 

1. Introduction 

Model checking is a set of automatic verification techniques of temporal properties 

on reactive systems. It takes as input a system of transitions and a formula from some 

temporal logic, and  answers  if the  abstraction satisfies  or not the formula. 

Exploration is a computing process which determines a sequence of actions making 

it possible to achieve a desired goal. A good exploration means the achievement and 

the storage of a large number of states of a system without exceeding the available 

memory resources [1]. The state space can be described by an initial state and a set 

of transitions. A succession of states produced by actions forms a path within the state 

space [2, 3]. 

Model checking techniques suffer from a major problem known as the state 

explosion problem [4, 7, 16]. This problem  occurs when the state  space to be 

explored is large and cannot be explored by the algorithms for a lack of capacity 
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memory resources or an important time because the memory space needed to carry 

out exploration is higher than the memory space contained in the machine. 

In this article, we are interested in the time needed to carry out exploration 

(execution time), for that, we present a comparative study between two types of 

exploration: sequential and parallel, where the comparison is carried out over the 

execution time of each experimentation. The model used is a counter incremented 

from 1 to N and decremented to 0, with N a parameter fixed at the experimentations.  

This article is divided into eight sections: Section 2 is devoted to the model 

checking and to the state space exploration; Section 3 presents some works which 

offer solutions to the state explosion problem. Sections 4 and 5 are devoted to the 

definition of the sequential and parallel approaches proposed. Section 6 is devoted to 

the experiments performed for a comparison between sequential and parallel 

approaches. Section 7 presents the parallel algorithm for state exploration in SPIN.  

2. Model checking and the state space exploration 

Model checking is a verification technique based on the exhaustive state space 

exploration of systems in search of behaviors that do not verify its specification. A 

model checker can be seen as a black box which accepts as input a system as well as 

a property expressed  on this  system  and  returns an answer indicating if the  property 

is checked or not. The implemented algorithms include two phases, a construction of 

the state space then an exploration of this state space in searching of errors. The state 

space is represented as a graph which describes all the possible evolutions of the 

system. Nodes of the graph represent the states of the system and the arcs represent 

the transitions between these states [2, 3]. The advantage of using model checking is 

the accuracy of the answer obtained [12]. The exploration phase consists on visiting 

state by state, each state and all its successors are stored in memory. Exploration ends 

when all the states are visited. An exploration algorithm, with each step of its 

execution, can either visit a new node, or an explored node. 

3. Related work 

Many solutions have been proposed for the state explosion problem [7, 12]. In this 

section, we present three solutions. Each one of them is running on a different 

architecture (distributed, parallel, and sequential). These solutions are based on 

different methods and data structures. Each solution aims to improve the 

performances in execution time and memory capacity. The approach proposed in [14] 

allows a distribution in the exploration of states when checking a model by the model 

checker SPIN [6, 8]. The treatment is performed by exploiting a network of machines. 

Each node holds a set of states to be treated. The authors present an algorithm 

composed of three functions: (I) Start, (II) Visit, (III) DFV (Depth First visit). Each 

node holds a set V, containing the visited states and a queue U for the storage of the 

unexplored states. At the initialization step, each process executes the Start procedure 

in order to identify the number of the processor that will treat the initial state. With 
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each time a successor is generated, a checking is carried out on the index of the node. 

If the processor i treated the state e, i generates the successors of e and checks if it 

must visit them or not. That is performed by a partition function. Exploration finishes 

when all the queues of nodes are empty. The disadvantage of this method lies in the 

choice of the partition function which should enable achieving a uniform distribution 

of states in terms of memory space, tine execution and messages transferred across 

the network. 

The approach proposed in [15] is based on a sequential algorithm. Its objective 

is the storage of states in their compressed form, only the difference between the 

previous state and the following state is stored. The first generated state (initial state) 

is stored in an explicit way, the other states are stored in a compressed form in hash 

tables. The states are decompressed to verify if a state was already visited or not, for 

that, it is necessary to add the most  recent changes for each state until a state stored 

in explicit form is reached. The disadvantage of this method is the backtracking 

function which represents an overload because the execution time can increase 

quickly. 

The approach proposed in [17] is based on a parallel algorithm. The authors are 

based on model checking on a shared memory multiprocessors architecture. The 

solution is based on a bloom filter [17] to indicate if a state was visited or not. A 

problem occurs when the bloom filter may return a false result, it can make a false 

positive when the state has not been seen, causing collisions. 

4. Sequential algorithm proposed 

An algorithm corresponds to a succession of states, and transitions between these 

states, the idea is that the states correspond to instantaneous descriptions of the 

algorithm. An exploration algorithm is defined mainly by three parameters: a 

condition stop of the exploration, a function of selection of next states to explore, 

starting from a state or a set of states already explored and stored in memory, and a 

function of actualization which defined the storage of new states in memory. The 

execution of two sequences is known as sequential when one starts only when the 

other one is finished. In a sequential approach, exploration is carried out by one thread 

only, the time expressed compared to the number of states generated during 

exploration can be huge if this number is very high. 

In this section, we present an algorithm for a sequential exploration of state 

space, we explore a model defined by a counter incremented from 1 up to N and 

decremented to 0. We carried out an exploration of this model by considering all 

possible states of the system while varying the number of counters as well as the 

parameter N. In a sequential exploration, the states are visited one following the other 

one, the first visited state is the initial state, thereafter, the successors of this state are 

generated, then stored in memory. This process stops when all the states are treated. 

The algorithm of sequential exploration is presented as  

Algorithm 1. Sequential exploration algorithm 

Step 1.  S ← S0 

Step 2.  M ← S0 
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Step 3.  while ¬ (M.isEmpty ()) do 

Step 4.      X ← M.dequeue () 

Step 5.      Successors = X.GetSuccessors () 

Step 6.      for (State K: Successors) do 

Step 7.           if ¬ (S.Contains (K)) then 

Step 8.              S.Add (K) 

Step 9.              M.Add (K) 

Step 10.          end if 

Step 11.      end for 

Step 12.  end while 
Here S0 represents the initial state, S defines the whole of the already explored 

states and M the whole of the states whose successors were not observed yet. As long 

as the set M is non-empty (Step 3 of Algorithm 1) the states are treated, Step 6 

indicates that for each next state of the visited one, a checking is carried out on the 

set S to know if the state is old or new. Fig. 1 presents the steps of a sequential 

exploration. Only one process carries out the treatment since the initial state until the 

end of exploration. This process is repetitive, it is composed of five principal actions 

which are: 

 Generation of the initial state (Step 1); 

 Verification of all states to explore: if this set is not empty go to Step 2  

(Fig. 1) else the exploration ends (Step 3); 

 Generation of next states; 

 Storage  of new states  in two sets (S and M ); 

 End of the exploration. 

To better illustrate this approach, we have defined an example composed of two 

counters incremented up to 3 and decrement to 0.  

Fig. 2 shows the accessibility graph of this example made up of all possible 

states. At the beginning of the exploration, both counters are set to zero. All possible 

states are generated from each configuration (state). In this example, there are 16 

configurations. The exploration is carried out by a single thread. The configuration 

(0, 0) represents the initial state, it is stored in two data structures, a hash table S that 

contains all observed states and a queue M containing the states whose successors 

have not been processed yet. In the first step, both counters are initialized to zero. 

Thereafter, their next configurations are observed, the counters can be incremented, 

then we can have two possible states (0, 1) and (1, 0). Both states are new, they are 

stored into S and M. At each step, a state is taken from the queue M and its successors 

are visited. From the state (1, 0), we obtained three states – (2, 0), (1, 1) and (0, 0). 

The process is the same, a generated state is stored  in memory if and only if it is not 

contained in S. States (2, 0) and (1, 1) are new, they are added to S and M. This 

process is repeated until M is empty. In this example the exploration ends when the 

configuration (3, 3) has been observed. 
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Fig. 1. Sequential exploration steps 

 

 

 
Fig. 2. Reachability graph 
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5. Parallel algorithm proposed  

A parallel algorithm runs on a parallel computer to solve a given problem. 

Calculations of a sequential program are decomposed into tasks and each one is 

assigned to a process. The instructions are executed simultaneously which can lead 

to a considerable gain in execution time. An important task in a parallel approach is 

the assignment of work to processes to have a load balancing between threads so that 

all processors or cores has the same load or almost to treat. In our approach, we used 

the framework executor [5] where each process performs a function returning all 

visited states, the objective is to be able to easily choose which tasks will be executed 

(Fig. 3), in what order and how many tasks can be run in parallel.  

 

 
Fig. 3. Main components of the framework executor 

 

Fig. 4 shows the execution steps of the parallel approach proposed. The 

treatment begins with the initial state generation, it is stored in the HashSet S 

containing all visited states and in the queue M that contains the states whose 

successors have not been observed yet. Subsequently, the initial state is removed from 

the queue and all its next states are generated, then for each one, a process is launched 

and this state is assigned, this means that the accessibility graph of this configuration 

is created by the thread. Each process simultaneously processes a set of 

configurations according to the state assigned initially. Each thread will execute the 

sequential code produced by a single process. The HashSet S is protected, the 

processes are synchronized. At the end of the exploration, each process returns the 

set of observed states, which means that S is built by all threads. The algorithm of 

parallel exploration is presented in Fig. 4. 
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Fig. 4. Parallel exploration steps 

In the parallel approach, each thread executes the sequential code described in 

the previous section. At the beginning of exploration, the initial state is generated, 

then its next states are observed. At this time, for each new configuration, a process 

is started (Step 6 of Algorithm 2). The latter is active until all states have been treated. 

Each thread executes a function for the state space exploration, therefore, data used 

are local, except for the HashSet S whose access is shared. 

Taking the same example as above composed of two counters which are 

incremented up to 3 and decrements to 0, the initial state is generated first and stored 

in the sets S and M , thereafter its successors (1, 0) and (0, 1) are visited and stored in 

their turn in both sets, after that, two threads are started and each one will execute the 

exploration code using a queue M containing local states whose successors have not 

been observed.  

The exploration stops when both local queues reserved for the generated threads 

are empty. Fig. 5 shows the reachability graph generated by the parallel algorithm. 

From this figure, we notice that both processes generate the state (1, 1), this state is 

treated by a single process that will explore all its successor states. 
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Fig. 5. Reachability graph 

Algorithm 2. Parallel exploration algorithm 

Step 1.  S ← S0 

Step 2.  M ← S0 

Step 3.  X ← M.dequeue () 

Step 4. for allNextStates do 

Step 5.      Tasks.add (work) 

Step 6.      Executor.Submit (Tasks) 

Step 7. end for 

Step 8.  while ¬ (M.isEmpty ()) do 

Step 9.      X ← M.dequeue () 

Step 10.      Successors ← X.GetSuccessors () 

Step 11.      for (State K: Successors) do 

Step 12.          if ¬ (S.Contains (K)) then 

Step 13.              S.add (K) 

Step 14.              M.add (K) 

Step 15.          end if 

Step 16.      end for 

Step 17.  end while 



 11 

6. Experimental study 

In this article, we proposed two approaches for sequential and parallel exploration. 

We carried out three experimental studies, the objective is to make a comparison 

between sequential and parallel approaches and the proposed algorithm for a parallel 

exploration in SPIN. This comparison is based on the execution time. The 

experiments are performed by varying the number of configurations. We study the 

behavior of these approaches by experiments. The experiments were performed on 

an i7 machine with 8 cores, it operates at a frequency of 2 MHz, with 16 GB of 

physical memory. We have implemented both algorithms (sequential and parallel). 

6.1. Sequential approach vs parallel approach 

To study the performance of both approaches (sequential and parallel) in execution 

time, we varied two parameters: the number of counters and the maximum value of 

the counter, called V. The metric considered is the running time representing the time 

elapsed to perform the exploration. 

Fig. 6 shows the results of an experiment using five counters and varying the 

parameter V from 2 up to 20. To interpret these results, we divided this experience in 

two parts.   

 

 

Fig. 6. Execution time (sequential vs parallel) by varying the number of configurations 

 
Fig. 7 shows the results of exploration using a reduced number of 

configurations. The sequential algorithm produced better results than the parallel 

algorithm when V is equal to 2, because for a small number of configurations, 

multiple threads are created. The process generation takes a lot of time which explains 

the result shown in Fig. 7. The parallel approach shows better results from 3125 

configurations. The average gain of the parallel approach in the experiment 1 against 

the sequential approach is 10%. This gain increases by changing the parameter V. 

According to Fig. 8, where V is high, the number of configurations increases. In this 
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experiment, the average gain of the parallel approach is 17%. We can conclude that 

the sequential approach doesn’t scale and is blocking for a high number of 

configurations. The execution time is expressed in nanoseconds.  

 

 

Fig. 7. Experience 1 

 
 

 
Fig. 8. Experience 2 

 

Fig. 9 shows the average execution time for both approaches by varying the 

number of counters. This number varies from 2 up to 6. Five experiments were 

performed by setting the number of counters (from 2 up to 6) and by varying the 

parameter V from 2 up to 20. This experience shows the average execution time 

returned for each exploration. This figure shows that the parallel approach gives 

better performance compared to the sequential approach. This gain is fixed at 10%. 

For a large number of configurations, sharing tasks between processes is necessary 

to save time. 

A parallel program is divided into several sequential tasks running 

simultaneously. When tasks are big, the use of parallelism is the best solution. 



 13 

 

Fig. 9. Execution time (sequential vs parallel) by varying the number of counters 

6.2. Parallel approach vs SPIN 

We have made a parallel comparison between our approach and the parallel algorithm 

developed for SPIN model checker [9]. The algorithm (Algorithm 3) proposed in [9] 

is based on the use of a three dimensional queue Q[t][i][j] for the storage of states 

whose successors have not been observed yet. The parameter i is varied from 0 up to 

1, it allows states to pass from current to future states. At each step of exploration, all 

states from Q[t][i][j] are processed and their successors are stored in Q[1−t][i][j], 

corresponding to the configuration that will be observed at the next step. The 

algorithm was designed to avoid locks when accessing in mutual exclusion. The set 

S in which visited states are stored is protected to prevent simultaneous access. A 

lockless hachtable [10] was used in order to avoid waits between different threads. 

An important task in the algorithm proposed in [9] is to determine when all states 

have been explored to stop exploration. 

In the algorithm, the parameters i and j vary from 1 up to N, where N is the 

number of threads. The size of this queue is unlimited. Each time a state is generated, 

a check is made on a set S: if the state is new, it is stored in S and added to the queue 

Q by randomly choosing a thread that will handle it.  

Algorithm 3. Parallel exploration algorithm in SPIN 

Step 1.  done ← false 

Step 2.  t ← 0 

Step 3.  Search (i: 1..N) 

Step 4.  for (j=1; j<=N; j++) do 

Step 5.      Delete s from Q[t][i][j] 

Step 6.      for (Each next configuration c of s) do 

Step 7.          if ¬ (Contains(c)) then 

Step 8.              S.add(c) 

Step 9.              k ← Choose Random from 1… N 

Step 10.              add state to Q [1–t] [k] [i] 

Step 11.          end if 
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Step 12.      end for 

Step 13.  end for 
Step 14.  Wait () 

Step 15.  if (i==1) then 

Step 16.      wait until all threads are idle 

Step 17.      if (all Q [1–t] [i] [j] == NULL) then 

Step 18.          done ← true 

Step 19.      else 
Step 20.          Notify all threads 

Step 21.          t ← 1–t 

Step 22.      end if 

Step 23.  end if 
The current states to be visited are treated from Q[t][i][j] and next states  are 

stored in  

Q[1−t][k][i] with k, a randomly  selected process from N . 

We compared our parallel algorithm with the parallel algorithm developed for 

SPIN model checker [9] using the same example as before. We conducted 

experiments on the same machine. We used six counters, the parameter V varies from 

2 up to 20 (Fig. 10). To interpret these results, we calculated the gain (in percentage) 

obtained from each experience, this gain is presented in Fig. 11. We note that the 

proposed parallel algorithm shows better performance than the parallel algorithm 

proposed for SPIN for a number of configurations varying from 729 up to  

85 766 121. The average gain in response time obtained by our parallel approach is 

about 1.5% compared to the parallel approach proposed for SPIN. So compared to 

the  sequential  approach where the number of configurations influenced on the final 

result,  the proposed parallel algorithm follows the same pace as the proposed 

algorithm for SPIN an improvement in execution time at each experience. In the 

algorithm presented in [9], whenever a thread finishes processing its tasks, it waits 

for other processes, therefore, this algorithm is based on the processing of states step 

by step. 

 

Fig. 10. Execution time (both parallel approaches) by varying the number of configurations 
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Fig. 11. Gain obtained between both approaches (parallel and SPIN) 

6.3. Sequential approach vs parallel approach vs SPIN 

We carried out a comparison between both proposed approaches and parallel 

algorithm presented in [9]. The comparison was made on the running time. We used 

6 counters incremented from 0 up to 20. We divided the result on two figures  

(Figs 12 and 13). Fig. 12 shows that the proposed parallel approach is better than the 

other ones compared to the result shown in Fig. 10 where the sequential algorithm 

was better when the number of configurations was small, therefore, the number of 

counters influences on the execution time. With regard to Experiment 2 shown in  

Fig. 13, the proposed parallel approach gives better results even by increasing the 

parameter V. Both parallel approaches show significant results when the number of 

configurations is high with a gain provided by the proposed parallel algorithm. 

 

 
Fig. 12. Experience 1 
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Fig. 13. Experience 2 

7. Positioning our parallel approach and discussion 

To position our parallel algorithm with the integrated parallel algorithm in SPIN, 

which is often used in the explorations of states using model checking techniques, we 

studied two aspects: linear regression [13] and complexity [11].  

7.1. Study of regression  

We realized that experience to predict execution time in the future with information 

from the past and therefore have knowledge about the future behavior of our 

algorithm compared to the algorithm proposed in [9]. For this, we created a regression 

line for the generated point (the scatter plot) by the simulation results. The line is 

obtained using the results of Fig. 10. The equation of the regression line is in the form 

Y = aX + b. In this example, for the proposed parallel approach, it is given by 

YPar=2896.9X−1.9189×109. For SPIN, it is represented by YSPIN = 3409.2X−2.3×109. 

To perform these calculations, we used the median-median method [18]. To represent 

the estimated errors in execution time, we determined the confidence interval of the 

regression slope that can define an error bounds between approximate and real 

results.  

The confidence interval is calculated by  

Ic = (  − tα 
𝑠

√𝑛
;  + tα 

𝑠

√𝑛
), 

where  is the sample mean, s is the standard deviation and n is the number of 

configurations. For YPar, the confidence interval Ic = [1935.02; 5196.82]. For YSPIN, 

the confidence interval Ic = [2229.93; 5448.87]. After estimation obtained by both 

straight lines of the linear regression, we can predict the execution time for a number 

of states greater than 85 million. For example, for 200 million states, using the 

regression line YPar, we can estimate a response time (taking into account an error 

bounds determined by Ic) by 5.775×1011 ms. Using YSPIN, execution time is estimated 

by 6.795×1011 ms. Based on these results, we can conclude that our approach gives 

better performance in time and allows scalability. SPIN technique becomes 

impractical when the number of states is very important like in critical applications. 
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7.2. Study of the algorithmic complexity  

An algorithm is a sequence of actions performed from an initial state to a final state 

in a finite time. We study the complexity to predict the execution time of an algorithm 

and to compare two algorithms performing the same treatments. The complexity of 

an algorithm is determined through a description of the behavior of algorithms. The 

complexity of an algorithm can be evaluated in time (speed) and in space. In this 

article, we focus on the study of the execution time. We conducted a study of the 

complexity for both parallel algorithms: Our proposed algorithm and the algorithm 

integrated in SPIN, for this we have defined execution time for each type of 

instruction: 

ae: state assignment 

ce: comparison of states 

s: number of next states per state 

q: maximum number of states in Q or M 

p: number of processes 

w: waiting time per process 

 Complexity of the proposed parallel algorithm. Complexity of the 

proposed algorithm CApp is estimated by: 

(1)    CApp = 3.ae + q(ce + ae + s.ae + s (ce + 2.ae)) = O(q). 

 Complexity of the parallel algorithm proposed in [9]. Complexity CSPIN is 

estimated by: 

(2)    CSPIN = 2.ae + q (ae + s.p (ce + 2.ae)) + w (p − 1) + q.ce.ae = O(q2). 

According to these complexities obtained by equations (1) and (2) we can notice 

that our algorithm has order of O(q) time complexity, the complexity of the algorithm 

proposed in [9] is around the square estimated to O(q2). In conclusion, we can say 

and confirm  that our proposed algorithm for the exploration of states can be used to 

explore a large number of states in a linear time. 

8. Conclusion 

Model checking is a technique based on three concepts: a model system to check, a 

specification in the form of a system property and algorithms to check whether the 

model meets its specification. This technique suffers from the state explosion 

problem where systems become too large. We have proposed two approaches, 

sequential and parallel to the state space exploration. For our first experiment, we 

measured the performance of both algorithms then we compared the results. We 

showed that the sequential approach gives better results when the number of 

configurations is reduced and that beyond a certain number of states, the parallel 

algorithm gives better performance then. For our second experiment, we measured 

the execution time obtained by the proposed parallel algorithm and parallel algorithm 

proposed in [9], we calculated the gain provided by the experience and noticed that 

our approach gives better results. Currently, we are studying exploration on real 

models to perform comparisons between these algorithms. We plan in the near future 

to implement our algorithms in a distributed architecture composed of a set of nodes. 
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