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Abstract: A nonconventional image algorithm, based on compressed sensing and  

l1-norm minimization in Synthetic Aperture Radar (SAR) application is discussed.  

A discrete model of the earth surface relief and mathematical modeling of SAR 

signal formation are analytically described. Sparse decomposition in Fourier basis 

to solve the SAR image reconstruction problem is discussed. In contrast to the 

classical one-dimensional definition of l1-norm minimization in SAR image 

reconstruction, applied to an image vector, the present work proposes a two-

dimensional definition of l1-norm minimization to the image. To verify the 

correctness of the algorithm, results of numerical experiments are presented.  

Keywords: SAR image reconstruction, compressed sensing, 2D l1-norm 

minimization. 

1. Introduction 

Synthetic Aperture Radar (SAR) is a powerful instrument for monitoring the relief 

of the earth surface, by illuminating electromagnetic pulses and coherent 

registration of the backscattered radiation [1-3]. The resulting images are registered 

in a two-dimensional coordinate system: slant range coordinate or coordinate of the 

time delay and azimuth or cross range coordinate. High resolution on the slant 

range direction is achieved by wide bandwidth emitted pulses, while high resolution 

on the cross range is achieved by coherent summation of the reflected signals 

during the aperture synthesis.  

Conventional nonparametric SAR imaging algorithms are correlation based on 

the theory of the matched filter. Their resolution properties are limited by the 

bandwidth of the transmitted signal and the synthetic aperture length, known as 

Nyquist constraints. To surmount these circumstances in case of sparse image 
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decomposition, a new computational technique, called Compressed Sensing (CS) is 

applied. It consists of minimizing an objective function which includes a square 

Euclidian term combined with a sparseness-inducing l1 regularization term [4].  

Much attention has been paid to l1-norm optimization based methods for 

sparse image reconstruction (e.g.,, basis pursuit denoising, wavelet-based 

deconvolution and compressed sensing) and feature selection (e.g., Least Absolute 

Shrinkage and Selection Operator (LASSO) algorithm in signal and image 

processing, statistics, and related fields. These problems can be considered as  

l1-regularized Least-Squares Programs (LSPs), which can be reformulated as 

convex quadratic programs [5], and then solved by several standard methods, such 

as interior-point methods [6]. Sparse image reconstruction by application of l1-norm 

minimization is used in the reconstruction of a finite-dimensional sparse vector, 

based on its linear measurements of a dimension, smaller than the size of the 

unknown sparse vector [7, 8]. 

A data acquisition system for wideband synthetic aperture imaging and 

reconstruction of the sparse signals from a small set of non-adaptive linear 

measurements, based on CS by exploiting the sparseness of point-like targets in the 

image space and by solving a convex l1-norm minimization problem, is presented in 

[9]. CS method for 3D buried point-like targets imaging for continuous-wave 

ground penetrating radar is discussed in [10, 11]. It is shown that the image of the 

sparse targets can be reconstructed by solving a constrained convex optimization 

problem based on l1-norm minimization with only a small number of the data from 

randomly selected frequency samples and antenna scan positions, which will reduce 

the data collecting time. A compressive noise radar imaging algorithm. using  

l1-norm based sparsity constraints and convex optimization is discussed in [12]. 

Based on the assumption that SAR imaging algorithms can reconstruct the 

target scene with a reduced number of collected samples by applying CS approach, 

a distributed compressed sensing method into a long-track interferometric SAR is 

introduced, achieving good performance for even fewer samples than that based on 

compressed sensing [13]. 

A random-frequency SAR imaging CS scheme is proposed in [14]. It is proved 

that if the targets are sparse or compressible, it is sufficient to transmit only a small 

number of random frequencies to reconstruct the image of the targets.  

A SAR high resolution CS imaging algorithm in range and azimuth directions 

is proposed in [15]. A 3D imaging CS algorithm for a linear array SAR and sparse 

observed surface of the dominating scatterers is developed in [16]. A high 

resolution CS imaging method, based on l1-norm minimization for SAR sparse 

targets reconstruction and compressed sensing l0 minimization 2D algorithm for 

passive ISAR with DVB-T signal are discussed in [17, 18]. In contrast to the 

aforementioned l1-norm minimization, CS algorithms, where the sparse image and 

signal are presented as a vector, in the present work the sparse image and SAR 

signal are presented as 2D matrices that require respective mathematical description 

of the l1-norm minimization CS imaging algorithm. 

The main goal of this work is on the basis of the geometrical model of the 

earth surface and mathematical model of SAR signals to develop a SAR image 
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reconstruction algorithm based on 2D SAR signal decomposition and l1-norm 

minimization of the image sparse feature. The rest of the paper is organized as 

follows. In Section 2 SAR geometry and kinematics are described. In Section 3 a 

model of SAR signal, reflected from the observed surface is derived. In Section 4 a 

sparse decomposition approach to solve the image reconstruction problem is 

presented. In Section 5 an image reconstruction algorithm, based on sparse SAR 

signal decomposition and l1- norm minimization is discussed. In Section 6 the 

results of a numerical experiment are presented. In Section 7 some conclusions are 

made. 

2. SAR geometry and kinematics 

SAR geometry is defined in the coordinate system Oxyz (Fig. 1). The radar 

transceiver system is mounted on a spacecraft platform. The movement of SAR 

satellite is described by the following vector equation 

(1)   ,..)( 0 pTp pVRR   

where: V is the satellite velocity vector; pT  is the pulse repetition period; 

1,0  Np  is the index of the emitted pulse; N is the full number of emitted pulses 

during aperture synthesis; )(0 pRR   is the distance vector from the origin of the 

coordinate system to the satellite at moment p  0. 

The vector equation (1) is projected onto the coordinate axes Ox, Oy and Oz, 

i.e., 
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where: ),( px  )( py  and )( pz  are the current satellite coordinates at moment p; 

)0(0 xx  , )0(0 yy   and )0(0 zz   are the satellite coordinates at  moment p  0; 

 cosVVx ,  cosVV y  and  cosVVz  are coordinates of the velocity vector; 

 ,   and   are the guiding angles of the velocity vector. The surface of 

observation is depicted in a coordinate system Oxyz. The position of the ijk-th point 

scatterer on the surface is defined by a distance vector ijkR  with 

coordinates: ).( xixijk  , ).( yjyijk   and )..( zkzijk   The model of the surface 

can be analytically described as function ),( jikk  , i.e., 

(3)    

].)1(exp[
3

1

exp
5

10])1(exp[)1(3),(

22

2253222

ji

jiji
i

jiijikk













 

During the process of observation the distance vector )( pijkR  from SAR, 

located on the satellite with a distance vector )( pR  to the ijk-th point scatterer on 
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the surface, defined by the distance vector ijkR  can be expressed by the vector 

equation: 

(4)   .)()( ijkijk pp RRR   

The main geometrical characteristic of SAR signal is the module of the 

distance vector )( pRijk , defined by the expression 
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are the current coordinates of the ijk-th point scatterer with respect to the position of 

the SAR carrier (Fig. 1). 
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Fig. 1. SAR geometry and kinematics 

3. SAR  modeling  of  SAR  signal, reflected from the observed surface 

Assume that the SAR transmitter emits series of LFM electromagnetic pulses, 

analytically described by the expression 
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c
2  is the angular frequency; 1,0  Np  is the current number of the 

emitted LFM pulse; 
810.3c m/s is the speed of the light; 

kT

F
b


  is the LFM 

index; F  is the bandwidth of the emitted pulse that defines the range resolution; 

FcR  2/ , T is the time duration of LFM pulse. 
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The deterministic component of SAR signal, reflected from the ijk-th point 

scatterer for any particular p can be written as 

(8)      2)(exp..)( ijkijk
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where: 
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ijka  is the intensity of the ijk-th point scatterer; 
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)(   is the time delay 

of the signal reflected by the ijk-th point scatterer. 

The deterministic component of the SAR signal, reflected from the entire 

surface can be regarded as a geometrical sum of the signals reflected by all point 

scatterers on the surface of observation and can be expressed as follows: 
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Here Tkptt ijk  )1()(min  are the time parameter, measured on the range 

direction for each p; 1,0  Kk  is the range sample (fast time) index; T  is the 

timewidth of LFM sample; K  is the full number of range samples. 

Two-dimensional Taylor expansion of    )()( pttbptt ijkijk   in the vicinity 

of the unknown discrete coordinates p̂  and k̂  of the ijk-th point scatterers yields 
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where: )ˆ,ˆ( kpa  is the 2D image function; ),( kp  is the phase term of higher order;  

1ˆ,0ˆ  Np ; 1ˆ,0ˆ  Kk ; N̂  and K̂  denote the full number of image points 

coordinates on the cross range (azimuth) and range directions, respectively. 

Assume that 0),(  kp , then (11) can be rewritten in a matrix form 

(12)   ,.. T
KAPS   

where: )( KN S  is the complex signal matrix; 
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the Discrete Fourier Transform (DFT) matrix (cross-range matrix-dictionary); 
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exp)ˆ(K  is the DFT matrix (range matrix-dictionary); 

)ˆˆ( KN A  is the image matrix. In SAR application the dimension of the 

reconstructed image is equal to the dimension of the registered signal, i.e., NN ˆ  

and KK ˆ . 
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4. Sparse decomposition approach to solve the image reconstruction problem 

Expression (12) denotes 2D discrete Fourier decomposition of the signal in a matrix 

form. It means that the two-dimensional signal KNRS  is a linear combination 

of the columns of matrices P and K. In case NN ˆ (complete measurement), the 

decomposition (12) is unique, it means that there exists a unique sparsest solution 

for A. Defining the compressed sensing measured matrix,  
''T.. KN

kp
 RWΦSΦX  or 

''TT .... KN
kp

 RWΦKAPΦX  

over the redundant Fourier dictionaries NN
p

ˆ'.ˆ  RPΦP  and ,ˆ ˆ' KK
k

 RKΦK .  

where )'( NNp Φ  and )'( KKk Φ  are pseudo identity sensing matrices, W is the 

white Gaussian noise matrix. In the over-complete case NN ˆ' and KK ˆ' , matrix 

X  does not have unique decomposition. The reconstruction of the image matrix A 

can be implemented by solving a convex optimization constrained problem [18] 
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  is the 1l -norm of the matrix A. 

The l1-norm of the image matrix 
1

A  can be expressed as a maximum absolute 

column sum of point scatterers intensities, i.e.,  
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small constants, 
2
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KAPX   denotes the square of the Frobenius norm that can 

be presented as  
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where 'Kl  and 'Nl  are vectors of 'K  and 'N ones, respectively. 

Summarizing (13) and (14) the image matrix A can be extracted by the 

following unconstrained optimization scalar object function 
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where   is the nonnegative weighing parameter. 

Disclose the square of the Frobenius norm and l1-norm in a matrix form, then 
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where mcs denotes maximum column sum.  

As the measured matrix X consists of constant entries, the matrix 

multiplication XX
T

 does not influence on the unconstrained optimization problem 

and can be removed, then 
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The final expression of the optimization objective function obtains the form 
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In order to create a reconstruction algorithm the first derivative of the scalar 

objective function has to be extracted, it means to find out first order derivative of 

the scalar )(AF  in respect of elements of the image matrix A. The result is known 

as a gradient matrix 

(21) 
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E
 
denotes the elementary matrix of order )ˆˆ( KN  . The elementary matrix 

has all zero entries except for the kp ˆ,ˆ entry, which is one. 

5. Image Reconstruction Algorithm Based on Sparse Decomposition 

Calculate the initial estimate of the image matrix 
0

AA   based on the expression 
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TT

0XKAP   i.e., 
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1',0  Kk . 

Minimization l1-norm algorithm 

Step 1. On each iteration step define a gradient matrix )ˆˆ( KN G  with 

elements equal to elements of )( kF A  and define as ))(( kF AGG  if 0k
A , 

or 0)(  kF A , otherwise )(( kF AG   equal to 0 matrix [4]. 
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Let .0k  

Step 2. Define iteratively an initial value of the Hessian parameter 0  as an 

argument minimizing the objective function 

(23)    )))((.(minarg 000
AA FGF 



. 

Start search procedure with an arbitrary value , for example   1, and then 

increase  with 0.2. If the scalar )))((.( 00
AA FGF   decreases then continue 

with increasing  with 0.1 until global minimum of scalar objective function. If the 

scalar )))((.( 00
AA FGF   increases then decrease  with 0.1 until global 

minimum of )))((.( 00
AA FGF  . 

Step 3. Define the decreasing matrix   00000 ))((. AAGAΔ  F , 

where  ...  denotes a positive-part operator, for example  
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Step 4. Define iteratively a new image matrix: 0001 .ΔAA   by 

minimizing the scalar object function ).( 000
ΔA F  for  1,00  . 
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Step 5. Define a scalar Hessian parameter of proportionality  
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Step 6. Define the decreasing matrix   kkkkk F AAGAΔ  ))((. . 

Step 7. Define iteratively a new image matrix: kkkk
ΔAA .1   by 

minimizing the objective function: ).( kkkF ΔA   for  1,0k
. 

Step 8. Terminate the calculation in case the object function )( 1kF A  falls 

into a global minimum otherwise go to point 5. 

Parameter  is defined by applying the approach, suggested in [19], i.e., 

(24) 
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which is the first guest of the image matrix 
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A  (22), i.e.,  
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6. Numerical experiment 

Consider SAR scenario with the following parameters. Initial coordinates of the 

SAR carrier 4
0 10x  m, 4

0 10y  m, 5
0 10.8z  m; vector velocity 310V  m/s; 

guiding angles 4\  , 4\  , 0 . SAR parameters: carrier frequency 

1010f  Hz; frequency bandwidth 710.5.2F  Hz; pulse repetition period 

310.5.2 
 s; LFM pulse width 

610.5.2 
 s; number of emitted pulses ;512pN  

number of range samples 512K . The geometry of the surface is calculated by the 

Expression (3) with indices 64,1i , 64,1j  and displacement between the point 

scatterers: x = y = z = 4 m. 

The SAR complex signal matrix S, calculated by (10) is presented in Fig. 2a 

(amplitude) and Fig. 2b (phase).  The image of the surface extracted from the full 

size complex signal matrix S is presented in Fig. 2c.  

    
(a)                                            (b)                                         (c) 

Fig. 2. Full size complex signal matrix S: Amplitude (a) and phase (b); the image of the surface 

extracted from matrix S (c) 

The compressed sensing measured complex matrix X, obtained by 

multiplication of the original matrix S with the pseudo identity sensing matrices 

)512128( pΦ  and )512128( kΦ , is presented in Fig. 3a (amplitude) and Fig. 3b 

(phase). The final image is extracted from the compressed sensing matrix X by 

applying l1-norm minimization algorithm over the image matrix A0 (Fig. 3c). The 

algorithm converges into a global minimum after 12-15 steps, depending on the size 

of the step in calculation of the Hessian parameter 0  and determination of a new 

image matrix by minimizing the object function. It is interesting to note that despite 

the surface matrix in the plane Oxy has dimensions 6464, the SAR image in the 

plane of observation ),( kp  has dimensions 512512. 
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(a)                                      (b)                                    (c) 

Fig. 3. Compressed sensing measured matrix X: Amplitude (a) and phase (b); the image of the surface 

calculated by a compressed sensing matrix X (c) 

7. Conclusion 

In this paper a nonconventional image reconstruction algorithm, based on 

compressed sensing and l1-norm minimization in SAR application has been 

developed. A discrete model of the earth surface relief and the mathematical 

modelling of SAR signal formation have been analytically described. A sparse 

decomposition in Fourier basis to solve SAR image reconstruction problem has 

been discussed. In contrast to the classical one-dimensional definition of l1-norm 

minimization in SAR image reconstruction, applied to an image vector, the present 

work proposes two-dimensional definition of l1-norm minimization to an image 

matrix. A numerical experiment has been carried out to prove the capabilities and 

correctness of the image reconstruction algorithm. The analytical and experimental 

results show that the efficiency of the proposed algorithm, based on 2D l1-norm 

minimization depends on the sparsity of the observed surface. A small number of 

the dominated point scatterers from the surface guarantees better resolution in its 

final image. 
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