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Abstract: The multichannel modified covariance estimator of a single-tone signal 

frequency is synthesized by using the maximum likelihood method. It is shown that 

this estimator has an advantage over the estimator averaged by multiple 

conventional single-channel ones. The particular case of a complex signal is also 

considered.  

Keywords: Single-tone harmonic, autoregressive model, modified covariance, 

multichannel, complex signal, frequency, estimation, maximum likelihood. 

1. Introduction 

In many real situations the problem of signal processing is expanded over several 

data channels, usually from different sensors in the array. Such multichannel signals 

are typical for hydro acoustics, multistatic radars, seismic measurements, 

electroencephalography, power systems, etc., [1-6]. The main problem solved in the 

multichannel systems is data fusion that is usually divided into two adjoining 

problems of efficient noise removal [2, 4] and multichannel spectral estimation  

[1, 7]. We will focus on the last one. In the general case the task of the multichannel 

spectral estimation consists of estimation of the power spectral density matrix, 

which consists of elements related to auto-spectrums and cross-spectrums for each 

pair of channels. There are several multichannel implementations of conventional 

algorithms. In many real situations only a limited number of narrowband signals are 

presented in the recorded data and the most frequently used methods are 

AutoRegressive (AR) or all-pole signal model based ones [8, 9].  
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In the present work attention is paid to the specific case when only the single-

tone narrowband signal is presented in each channel and the Least Squares (LS) 

autoregressive single frequency estimation is considered. 

Let us assume that there is a source of the initial real signal 

   ),cos(expRe)( ssss   tjtjts  

where Re  means a real part, s2 f   is the angular frequency; sf  is a signal 

frequency, s  is an original signal amplitude, s  is an initial phase. It is measured 

by an array of M sensors (channels) with some measurement noises and amplitude-

phase transformations 

(1)    ,...,,,
T

21 Mhhhh  

where the coefficient for m-th channel is assumed to be constant in time, apriori 

unknown and it equals 

 mm exp jahm  , 

mm ,a  are the amplitude transformation coefficient and the respective phase shift 

due to signal propagation in a medium from the source to each channel. 

Such a system can be interpreted as a Single-Input Multiple-Output (SIMO) 

model [10] (Fig. 1) 

(2)       )(Re ttsht mmm   , Mm ...,,2,1 ,  

where the signal measured by the m-th channel    mscos   ttsh mm , has an 

amplitude msam   , )(tm  is an additive white Gaussian noise with zero mean 

and equal variance at each channel .22  m  Or, finally, in a matrix form 

(3)       )(Re ttst ηhζ  ,  

where )(tζ  is a column vector of the recorded impinging signal values in the 

moment of time t, )(tη  is a vector of independent values of noise. Therefore, we 

obtain a set of generally incoherent signals (3) with common frequency. 

 
Fig. 1. Scheme of the considered SIMO model of observations 

While recording, all channels are evenly sampled with a frequency ,1 F  

and 

(4)      

T

mm dtnttnx

0

)(  ,   Nn ,...,2,1 ,  ,...,,2,1 Mm   

where   is a sampling period, N is a sample size, Т is an observation time. 
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It is reasonable to modify the total phase of the sampled signal as 

(5)     msms )1(   nt ,  

where 

ωτ,Ff  /π2 s  

is a normalized frequency that meets Nyquist-criterion π0   . Taking into 

account (2), we can represent (4) as 

(6)  )()(~)( nnxnx mmm  ,  

where  msmm )1(cos)(~   nnx  is a signal value without noise.  

All samples (6) form M input sequences 

  ,)(...,),2(),1(
T

Nxxx mmmm x  

which are joined into a NM  matrix X  

   )(...,),2(),1(...,,,
T

21 NM xxxxxxX  , 

where the vector  T21 )(...,),(),()( nxnxnxn Mx  joins the values in all channels 

at the moment  n. 

A clear single sinewave signal at each channel can be written as the next 

autoregressive model 

)2(~)1(~)(~  nxnxnx mmm  ,   Nn ,...,4,3 . 

Here the autoregressive parameter depends on the signal frequency as 

(7)  )(cos2   .  

Note that here unknown amplitudes and phases of signals in each channel are 

eliminated from the equation. In other words, such a model is invariant to 

amplitudes and phases in channels. The only one important parameter, explicitly 

joined with the signal frequency, is considered. Unfortunately, in real situation, the 

signal is always corrupted by a noise. Therefore, we consider estimation of the 

autoregressive parameter   as a linear prediction problem, when the prediction 

error (residual) )(nrm between current )(nxm  and predicted )(ˆ nxm  values is 

obtained as 

)2()1()()(ˆ)()(  nxnxnxnxnxnr mmmmmm  , Nn ,...,4,3 . 

For m-th channel with N samples we can write a vector of  N  2 residual 

values 

    ,)(...,),4(),3(,
T

Nrrr mmmmm xr  

and for all the channels joining them into )2(  NM  matrix   

   T21 ...,,,, MrrrXR  . 

In this case the problem is transferred, as it will be later shown, to 

minimization of the prediction error variance 

(8)    },{
22

p  XRE .  

The objective of this work is obtaining of the autoregressive parameter   

estimation for the considered general multichannel case using Maximum Likelihood 

(ML) approach, It will be shown that the ML approach with some assumptions is 

equivalent to the Least Squares (LS) one. 
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2. ML-estimator synthesis 

Analytical synthesis of ML-estimator is done on the basis of apriori known 

Likelihood Function (LF) L(.) by the next general optimization criterion 

(9)    


,|maxargˆ XL .  

In practice, the estimation by ML-estimator is performed by iterative search 

due to nonlinearity of the LF.  

Let us assume that at high SNR 

(10)  1)2(/SNR 22   .  

the residuals distribution equals the noise distribution – a white Gaussian with zero 

mean and variance   2var mr .  

Taking into account the previously described signal and noise model and 

independence of all NM  noise samples, the likelihood function for m-th channel 

can be written as  

  .)]([
2

1
exp

2

1
,|

3

2

212/2 












 




N

n

mNNmm nrL


x  

Then the joined multichannel LF can be written as  

        .)]([
2

1
exp

2

1
,|,|

1 3

2

22/22
1














 

 




M

m

N

n

mNMNM

M

m

mm nrLL


 xR  

The logarithm of the LF is 

        


 |
2

1
2ln2,|ln

2
RR  NML , 

where only the sufficient statistics is important for   estimation  

  
 


M

m

N

n

m nr
1 3

2)]([|R . 

That is equivalent to the equation (8) with a proportional multiplier. 

Accordingly to criterion (9), the optimal estimator is received from solution of 

the next likelihood equation 

 
0)]2()1()()[1(2

|

1 3






 

M

m

N

n

mmmm nxnxnxnx 


R
. 

This after elementary mathematical operations is transformed to 


  


M

m

N

n

m

M

m

N

n

mmm nxnxnxnx
1 3

2

1 3

)]1([)]2()()[1(  . 

The optimal estimator can be written as 

(11)  





 

 






M

m

N

n

m

M

m

N

n

mmm

nx

nxnxnx

α

1 3

2

1 3

)]1([

)]2()()[1(

ˆ .  

It is similar (and equal, when M = 1) to a single-channel modified covariance 
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estimator [11, 12], but it calculates joined statistics over all channels. 

If we set the next matrices 

 )2(...,),2(),1(1  NxxxX ,  )1(...,),3(),2(2  NxxxX , 

 )(...,),4(),3(3 NxxxX  , 

then the estimator can be rewritten in the next matrix form 

)(tr

))((tr
ˆ

T
22

T
132

XX

XXX




 . 

In a real situation it can be more reasonable to calculate two traces of two 

products and then add them, if we use only the main diagonal elements without 

calculation of all elements of the product matrices. 

On the final step in accordance to (5) and (7), the frequency estimate is 

obtained as 

(12)     τf π2/2/ˆarccosˆ  .  

3. Complex signal case 

3.1. Asymptotical estimator 

So far, we have synthesized the algorithm for estimation of a single common 

frequency in multiple channels that is invariant to signal amplitudes and phases in 

these channels. Now let us consider a particular case of a complex signal. The 

conventional complex signal can be interpreted as a system with two channels that 

have the same amplitude   (apriori unknown) and are shifted in phase by 2/ . If 

we assume in (1)  T)2/πexp(,1h ], then the signal model (3) is written as 

 
  .

)(sin

)(cos
)(

s

s














tt

tt
t

y

x




ζ  

That actually is a complex signal   )()(exp)( s ttjt    with noise 

)()()( tjtt
yx

 . 

After sampling we sign the real and imaginary parts of   as 

    )()1(cosRe s nn x  x  

    )()1(sinIm s nn y  y  

We can rewrite (11) with M = 2 for this case 

(13) 
 

 

 

 
.

)1()1(

)()1()2()1()()1()2()1()1()()1()(2

)1()1(

)]2()()[1()]2()()[1(

ˆ

3

22

3

3

22

3































N

n

N

n

N

n

N

n

nynx

NxNxxxNyNyyynynynxnx

nynx

nynynynxnxnx


 

Now let us check the asymptotical properties of this frequency estimator for a 
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complex signal. Even if synthesis was done rigorously enough and the calculation 

equations are easy to use, let us approximate the Equation (13) for a complex signal 

with some asymptotic assumptions. Firstly, we consider that the sample size N  is 

big enough, that leads to 

(14)   ).()1()2()1()()1()2()1()1()()1()(2
3

NxNxxxNyNyyynynynxnx
N

n




 

Hence, the numerator in (13) can be simplified to the term with a sum. 

With the assumption about high SNR (10) the distribution of the absolute 

values      nynxnA 22   of samples approaches to Gaussian with a low 

variation coefficient, and   nA . It allows to modify the denominator in (13) in 

the following manner 

(15)           2

3

2

3

22 2111  


NnAnynx

N

n

N

n

.  

On the basis of assumptions (14) and (15) the estimator for a complex signal 

(13) can be written as asymptotical one: 

(16)  
       











 








N

n

nynynxnx

N
3

11

2

2


 .  

Here the fractions can be substituted by the corresponding trigonometric 

functions, which are the set of estimated instantaneous phases  n :  

    nn nynx  sin/,cos/  , 

From equation (16), considering (7), we obtain 

(17)    


 






N

n

n

N

n

nnnn
NN 33

11 cos
2

1
sinsincoscos

2

1
ˆcos  ,  

where 1 nnn   is a phase difference between adjacent samples.  

After adding the term with an index n = 2, the resulting asymptotical 

frequency estimator is written in the next form: 

(18)   
















 



N

n

n
N

2

С cos
1

1
arccos̂ .  

It illustrates the connection between two synthesis principles – ML, that is 

implemented in this paper, and a differential phases one, that became widely used 

[13] (and references herein) after the fundamental paper of  K a y  [14]. 

3.2.  Lank’s estimator 

It is reasonable to assume that for a complex (quadrature) signal the frequency 

estimator can be obtained similarly to (18) as 

(19)   










 



N

n

n
N

2

S sin
1

1
arcsin̂ .  

Combining two statistics from (18) and (19) one can synthesize yet another 

frequency estimator 
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(20)     













 



N

n

n

N

n

n

22

T cossinarctan̂ .  

This estimator is equal to the estimator heuristically proposed by L a n k, 

R e e d  and  P o l l o n [15]. It was written with using complex numbers as 

(21)  ,argˆ
1

*
1

2

L 





















n

n

n

n
N

n
z

z

z

z






   

where there are used typical descriptions: *
nz  is a complex conjugate,    ,arg  are 

an argument and the absolute value of a complex number.  

Taking into account the equalities 

 n

n

n j
z

z
 exp

*


,   1

1

1 exp 



  n

n

n j
z

z




, 

the Equation (21) is transformed to the view of (20). 

In practice the next modified Lank’s estimator also can be used 

(22)                   













 



N

n

N

n

nynxnxnyjnynynxnx

22

M 1111arg̂ . 

It is obtained by transformations (17) and 

 
       




11
sincoscossinsin 11





 

nynxnxny
nnnnn

. 

Therefore, we can say that equations (20)-(22) represent a frequency estimator 

of a complex signal in tree equivalent trigonometric, exponential and algebraic 

forms respectively. 

4. Simulation results 

4.1. Multichannel data 

Computer simulations have been carried out to evaluate the performance of the 

synthesized method. The mean bias, the standard deviation are used as performance 

indicators. The synthesized estimator (called “optimal”) is compared to the 

estimator obtained as an average of the multiple single-channel modified covariance 

estimates [9] (called “averaged”) that can be written as 





































M

m
N

n

m

N

n

mmm

nx

nxnxnx

Mτ
f

ˆ

1

3

2

3

)]1([2

)]2()()[1(

arccos
ˆπ2

1ˆ , 

where M̂  is a number of terms under arccos that are less than 1. 

Statistical simulation by the Monte-Carlo approach was done under the next 

conditions: signal sample size in the single channel N = 9, number of channels  

M = 7, amplitudes at each channel are the same, initial phases are randomized, 

number of simulations for each plot is 1000. 
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Fig. 2 shows mean bias, standard deviation of both methods for different 

normalized frequencies for SNR=20 dB and Fig. 3 shows the same values for 

different SNR for frequency 1  rad. 

The plots in Fig. 2 are symmetrically relative to point 2/ , but the mean bias 

has the opposite sign. One can see that both methods have similar precision in the 

middle frequency range, but the optimal methods become much better at low 

frequencies. If we look at Fig. 3, we can see that both methods have similar 

precision with minor advantage of the optimal one at low SNR. It should be noted 

that the difference between both methods become bigger when the number of 

samples in each channel approaches to the minimum N=3, and vanishes when N is 

big enough. 

  
(a)     (b) 

Fig. 2. Plots of mean bias and STD for different frequencies: 

Mean bias (a); STD (b); 

  
(a)     (b) 

Fig. 3. Plots of mean bias and STD for different SNR:  

Mean bias (a); STD (b) 

4.2. Complex signal 

In the complex signal case all methods mentioned  (12), (18), (19), (21) have been 

compared in the similar way. Fig. 4 shows the mean bias and standard deviation for 

different normalized frequencies for SNR=10 dB and Fig. 5 shows the same values 

for different SNR for frequency 1  rad. Additionally the plot of Cramer-Rao 

Bound (CRB) [16] is shown in Figs 4b and 5b. 
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(a)     (b) 

Fig. 4. Plots of mean bias and STD for different frequencies:  

Mean bias (a); STD (b) 

  
(a)     (b) 

Fig. 5. Plots of mean bias and STD for different SNR:  

Mean bias (a); STD (b) 

One can see that the optimal estimator (12) is close to (18), the estimator (19) 

is the worst and the Lank’s estimator (21) is the best one almost in all cases except 

at low SNR. 

It should be noted that Lank’s estimator is usually better for frequency 

estimation of a complex signal but it is impossible to use it for multichannel 

systems or even for a two-channel system with incoherent signals. 

5. Conclusion 

Using of the autoregressive model of the multichannel input process allows the 

synthesis by maximum likelihood method of the modified covariance estimator of 

frequency in the explicit form. The synthesized estimator provides better precision 

of estimation in comparison to averaging by single channels at low SNR and 

normalized frequency values less than 0.4 rad. It is shown, that the asymptotical 

modified covariance estimator has properties of the class of differential phases 

estimators. In the particular case of a quadrature signal it is reasonable to use 

Lank’s frequency estimator. 
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