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Abstract: The current research concerns the problem of video stabilization “in a 

point”, which aims to stabilize all video frames according to one chosen reference 

frame to produce a new video, as by a static camera. Similar task importance 

relates providing static background in the video sequence that can be usable for 

correct measurements in the frames when studying dynamic objects in the video. 

For this aim we propose an efficient combined approach, called “3×3OF9×9”. It 

fuses our the previous development for fast and rigid 2D video stabilization [2] with 

the well-known Optical Flow approach, applied by parts via Otsu segmentation, for 

eliminating the influence of moving objects in the video. The obtained results are 

compared with those, produced by the commercial software Warp Stabilizer of 

Adobe-After-Effects CS6. 

Keywords: Video stabilization, static camera, motion vectors, optical flow, object 

segmentation. 

1. Introduction 

Video stabilization aims at improving qualities of unstable recorded video (amateur 

or professional one) in a point or on a smooth trajectory. Stabilization in a point 

means that the stabilization of all video frames is done according to a single 

reference frame. As a result, a video recorder by a static camera is simulated in this 

case. The stabilization on a trajectory produces a video, where the camera follows 

the original operator’s movement, but in its smooth variant. 

1.1. Video stabilization on a smooth trajectory 

In scientific computer vision literature, a great number of software video 

stabilization methods, classified as 2D or 3D, are well-known. The two-dimensional 
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methods compute a 2D model of movement (rigid, affine, perspective) between the 

consecutive frames, after which the model parameters are smoothed in time, and at 

the end, the geometric transformation from original to smoothed movement is 

applied [4, 8, 9]. Three-dimensional approaches for а video stabilization use feature 

points tracking to recover 3D position and orientation of the camera, and then 

synthesize new frames, located on a smooth trajectory [5].  

Lately, the methods, which combine the qualities of 3D methods and speed, 

and the robustness of 2D methods, turn out quite perspective [3, 6, 12, 13, 14]. All 

of these methods stabilize on a smooth trajectory. We have presented a more 

detailed overview on this topic in [2]. 

1.2. Video stabilization in a point 

Video Stabilization in a point is mainly used when the static background is a 

fundamental requirement for correct measurements of characteristics and properties 

of studied dynamic objects and/or processes (such as distances, velocities, 

accelerations, direction and type of movement, elasticity, robustness, etc.), captured 

by a video camera. 

One possible application is to stabilize the video obtained from high-speed 

industrial cameras, where the necessity of stabilization arises during a handheld 

video recording or when the foundation for the camera tripod is unstable. The 

following situations are possible: (1) recording of fast processes in high vibrating 

(industrial) environment; (2) capturing of a controlled explosion (causing massive 

disturbances in proximity of the camera); (3) handheld video recording from a 

vehicle; (4) handheld recording “ad hoc” in “field conditions”, etc.  

1.3. Video stabilization for high-speed industrial cameras 

In the present research, we propose developing and testing of software algorithms 

for video stabilization of clips, recorded by the high-speed camera
1
 of IICT-BAS, 

bought via AComIn
2
 Project. The necessity of video stabilization at this type of 

cameras arises when the dynamics of environment is not possible to be overcome, 

i.e., the camera cannot be statically fixed.  

Due to the camera specification – a record speed from 50 up to 370 330 frames 

per 1 s (fps), the video stabilization is carried out in “off-line” mode, i.e., in 

principle, algorithmic fast response is not looked for here. The most important is the 

perfect stabilization, especially in the cases of so called “stabilization in a point”, 

i.e., to be accomplished the requirement for complete immobility of the scene in the 

stabilized video clip. 

The challenge here is to reduce the effect of a “sliding scene”, which is a 

typical problem even for the famous commercial algorithms for video stabilization, 

like Warp Stabilizer of Adobe-After-Effects CS6. But, a dominating requirement in 

similar algorithms is stabilizing on a smooth trajectory of the camera movement 

and/or scene objects, where the “sliding scene” effect is not perceived by the user.  

                                                 
1 http://www.nacinc.com/products/memrecam-high-speed-digital-cameras/hx-6/ 
2 http://www.iict.bas.bg/acomin/ 
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Here, in Section 2 we give the necessary background for the combined 

algorithm, that we propose in Section 3 to solve the highlighted problem. Besides, 

experimental results are reported in Section 4, before the final conclusion.  

2. Description of the proposed separate video stabilization methods 

2.1. Dividing the video frames of 3×3 regions 

Like in [2], each video frame here is divided in 3×3 uniform regions, which define 

(equal to 9) the number of the searched motion vectors                   

between the centers of the 9 sub-images in the current and previous frame (Fig. 1a). 

 

Fig. 1. A base scheme for motion vectors determination: 3×3 frame division (a); horizontal and 

vertical integral projections (b) 

2.1.1. Motion vectors determination 

 Horizontal (by columns) and vertical (by rows) integral projections      
  and 

     
 , for each of the 9th regions with a center     for the current (k-th) video frame 

and the previous one, are determined (Fig. 1b). Here,                are original 

frame sizes, and                are the sizes of the work area     from the current 

frame:                     and                    , where    and    are 

admissible limits for the maximal x and y components of the searched motion 

vectors     .  

 The corresponding motion vectors           
   

      
   

  for the current frame 

are found as the minimum of the Sum of Absolute Difference (SAD) approach: 

(1)       
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(1a)       
   

              
       

        
            

            
       

       

          

              

 Our improvement of the upper estimation consists in normalizing the 

integral projections by “floating” average values,       
  and       

 . For example, the 

normalization by horizontals is as follows: 
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2.1.2. Determination of the motion parameters (translation and rotation) 

In the proposed basic geometric model, each motion vector      found by SAD 

between two frames is decomposed of a sum of two vectors: a translation vector       

and a rotation vector     , i.e.,                 (Fig. 2a). The rotation vectors      are 

expressed via the reference vector of rotation                    . In this way, a 

linear system of 18 components (by Ox and Oy) equations is composed (Fig. 2b), 

where the unknown parameters are                  

 
Fig. 2. A basic geometric model, concerning translation and rotation between two consecutive  

frames (a); a linear system of 18 component equations for centres        (b) 

For solving this overdetermined linear system (see Fig. 2b), we use the idea for 

isolating the unknown parameters by writing the system as a matrix equation, 

whose decision by the Least Squares Method (LSM) looks like:  

(3)                           
  

    . 

 (i, j) 𝑂        𝑂        

(1,1)      + 𝑘  =   11     𝑘     =   11  

(1,2)             + 𝑘  =   12     𝑘           =   12  

(1,3)   +   + 𝑘  =   13     𝑘  +   =   13  

(2,1)                  =   21                  =   21  

(2,2)                        =   22                         =   22  

(2,3)   +               =   23               +   =   23  

(3,1)       𝑘  =   31    + 𝑘     =   31  

(3,2)              𝑘  =   32    + 𝑘            =   32  

(3,3)   +    𝑘  =   33    + 𝑘  +   =   33  

(a) (b) 
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That equation represents another formulation of the solution [2] (cf. also the similar 

Equation (8) in next Section 2.3), i.e., 

 
where: 

(3a)    
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The rotation angle   is determined by the components of the rotation vector    
as                   . 

2.2. Dividing the video frames of 9×9 regions 

By analogy of 3×3 vector model (see Subsection 2.1.2), a system with 162 

component equations (by Ox and Oy) is composed for the method with 9×9 

division, where the unknown parameters are the same as before:              . 

The equations are composed according to the relation                , where      are 

known (estimated by the SAD method) motion vectors between the centers (    ,  

         , for each couple of consecutive frames. Similarly,          , where 

            is the unknown translation vector, while the rotation vectors      are 

calculated through  the unknown reference vector                   , considering 

the simple geometric relations, shown in Fig. 3.  
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Fig. 3. Frame division of 9×9 regions with the corresponding centre       

 

Thus the unknown               can be discovered applying LSM on a new 

overdetermined linear system, similar to this of Equation 3. The obtained solution 

             
       

  
   , is appropriate for real-time implementations: 
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and similarly, for the rotation angle  , we have                  . 

2.3. The famous optical flow approach 

The goal of the Optical Flow method consists in estimating a 2D vector field of the 

motion of every pixel between a pair of frames via space-temporal brightness 

variations (Fig. 4). For determination of the displacement vector (u, v) for every 

pixel from the frames, the following key considerations must be taken into account:  
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 for constant brightness: the projection of a 3D point must look one and the 

same in all the frames; 

 for temporal consistency: the movement must be smooth with small 

displacements between the frames; 

 for spatial coherency: the movement of a given point must be the same as 

its neighbours.  

 
Fig. 4. The optical flow method’s idea  

 

The first consideration leads to the equality: 

(5)                          . 

At small displacements, the function   can be linearly approximated in a small 

neighbourhood of         via Taylor expansion: 

(6)                          
  

  
          

  

  
          

  

  
         

Replacing (6) in (5), the basic Optical Flow equation is obtained: 

(7)                                                       

                
where           are the spatial derivatives at time t;    is the time derivative at 

       , i.e.,                       ;            is the gradient vector 

in the point        . 
For exact solving of the basic equation, at least two linear independent 

equations are necessary. Thus, based on the temporal consistency constraint, 

L u k a s  and K a n a d e  [7] offer consideration of a neighbourhood of 5×5 pixels 

around each point: 

(8)   
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Thus, the solution of the over determined system       can be found in a 

LSM sense via solving the matrix equation                       
  

     
This matrix equation has been offered for first time by Lukas and Kanade, 

which solution is possible when: (1)     is an invertible matrix; (2) the eigenvalues 

    and    of     should not be too small, i.e.,                  
The Lukas and Kanade’s method in this form is applicable only for small 

displacements between the frames (up to 1 pixel). For overcoming this limitation, 

the iterative approach for estimating the optical flow in a Gaussian pyramid of 

images is used [1]. 
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3. Description of the proposed combined approach “3×3OF9×9”  

for video stabilization 

For solving the task of video stabilization in a point, the methods described in 

Section 2 could not cope alone with satisfactory precision. Their shortcomings can 

be marked as follows: 

 The 3×3 approach is more sensitive to errors, because of the small number 

used for motion vectors, via which the searched translation and rotation are 

determined; 

 The 9×9 approach is comparatively steady to wrong estimated motion 

vectors via SAD correlation, because of the bigger number of region centres, which 

are uniformly distributed in each frame. But, like the 3×3 method, it suffers from 

the integer value of the motion vectors (at pure translation) via SAD, which leads to 

shaking within the limits of one pixel (this is especially noticeable at stabilization in 

a point, but not on a smooth trajectory). 

 The Optical Flow method in its most lightweight (i.e., fast and enough 

imprecise) version [11] works well only for comparatively small displacements 

between the frames. It is sensitive to uneven changes of illumination in the images 

(e.g., at presence of shadows), as well as to sharp changes in the border of objects 

of different depth.  

For getting over the shortcomings of the above three approaches, when 

consider them separately, an original combined approach “3×3OF9×9” for video 

stabilization in a point is presented hereinafter. It consists of two consecutive stages 

of stabilization. 

3.1. First stage of stabilization 

1) A coarse stabilization according to a chosen reference frame is 

accomplished via our previous method with 3×3-division of frames [2]. Thus, the 

bigger displacements between the frames can be compensated fast and efficiently; 

2) In this way the stabilized frames, the known method of Optical Flow [1] is 

used for determination the motion vectors with sub-pixel accuracy for every pixel in 

the compared pair of respective sub-frames; 

3) A 9×9-extension of our 3×3-method is applied to the corresponding 9×9 

centres in the Optical Flow vector field for improving the coarse stabilization of the 

3×3 method. 

Using only the first stage of stabilization in a point leads to the typical effect of 

a “sliding scene”. This effect is due to accumulating a sub-pixel error in the global 

trajectory (from displacements between consecutive pair of frames) according to the 

chosen reference frame. Additionally, the existence of a massive dynamic object, as 

well as objects of different depths, also leads to big errors in estimated 

displacements. 

In this way, this first stage of stabilization can be used independently for 

precise 2D rigid stabilization (translation + rotation) on a smooth trajectory. For 

precise extra stabilization “in a point”, the next stage will be necessary. 
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3.2. Second stage of stabilization 

For reduction of the accumulated error in the global reference trajectory that often 

leads to the effect of a “sliding scene”, the following strategy is applied: 
1) On the frames coarsely stabilized at the first stage, a binary mask for 

isolating the influence of the dynamic objects is applied (Fig. 5). 

2) Motion vectors between enough distant frames (e.g., about a 100 frames 

interval) are calculated, so that the error from the accumulated trajectory to be 

distributed among the intermediate frames in the interval. Thus, the accumulated 

global trajectory error is corrected every time in the chosen interval of frames.  

 
Fig. 5. Elimination of the moving objects influence: first control frame (a); second control frame (b); 

map of magnitudes of optical flow vectors (c); Otsu binarization [10], applied to the extended 9×9 

motion vectors to improve the precision of the static background stabilization (d) 

4. Experimental results 

The experiments of stabilization for a static camera are held on two types of videos: 

 A video clip, downloaded from the producer’s webpage of the high-speed 

camera NAC Memrecam HX-6, containing a record of the controlled explosion, 

where a large dynamic object is present. The video has 1280×720 resolution and a 

service speed of 25 fps. 

 Clips recorded by hand with simulated shaking, containing a record of 

water/drops in result from pouring in a cup (Fig. 7). The clips have 640×480 

resolution and speed of 50, 100, and 500 fps. 

4.1. Experiment with a controlled explosion 

The presence of a large moving object in the scene causes the algorithms (of fixed 

division scheme, 3×3 and/or 9×9) to follow the object’s movement. This effect is 

expressed in the characteristic ‘sliding of the scene’, i.e., the scene background 

“moves” in the object opposite direction (Fig. 6b). For this reason, we use 

stabilization on the trajectory of the predominant object (Fig. 6c), thus, ignoring the 

sliding effect and achieving the desirable static background. 

 
Fig. 6. Stabilization of a video clip with controlled explosion: first frame (a); last frame after 

stabilization in a point (BAD) (b); last frame after stabilization on a smooth trajectory (OK) (c) 

(a) (b) (c) 

(a) (b) (c) (d) 
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4.2. Experiment with pouring of water 

At this experiment, for the three video clips with water pouring, which are with 

different speed and amplitudes of shaking, the “sliding scene” effect is also present 

(Fig. 7), but in much smaller limits than the effect at controlled explosion. This 

allows for applying our strategy for reducing the sliding error (Fig. 8) via isolating 

(segmenting) the moving objects (Section 3.2). 

 

Fig. 7. “Stabilized frames” in a point of the 1st stage of stabilization: 50 fps (a); 100 fps (b);  

500 fps (c) 
 

The errors from the 1st stage of stabilization are greatly reduced at the 2nd 

stage (Fig. 8), as now they are less than 1% from the frames size (Table 1). 

 
Fig. 8. Stabilized frames in a point of the second stage of stabilization: 50 fps (a); 100 fps (b);  

500 fps (c) 

In Table 1 the maximal error on Ox and Oy directions for the corresponding 

speed of water video clips at both stages of stabilization are given. 

Table 1. Errors from stabilization in a static background after the 1st and the 2nd stage of stabilization 

Resolution 

640×480 

Video 1 (50 fps) Video 2 (100 fps) Video 3 (500 fps) 

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage 

max X error 3.44% 0.16% 1.09% 0.47% 1.09% 0.16% 

max Y error 5.00% 1.04% 3.75% 0.63% 4.17% 0.42% 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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4.3. Comparison with Adobe-After-Effects (AAE) CS6 

In Fig. 9 a visual comparison (our stabilization results vs. AAE CS6) for 

stabilization in a point for the water video clip with 500 fps speed is done. In this 

experiment the effect of slowly floating scene is evident at AAE’s result, although 

they claim to have an option for stabilizing in a static background. 

 
Fig. 9. Our result for stabilization in a static background vs. the result from Adobe-After-Affects CS6: 

original video frames (a); our stabilized result via 3×3OF9×9 method (b); AAE stabilized result (c) 

5. Conclusion 

A combined approach (called “3×3OF9×9”) for video stabilization with detection 

and elimination of moving objects of reasonable size in the scene is proposed. The 

method is distinguished by speed and precision of the stabilization. It is intended for 

video experiments (e.g., with a high-speed camera), where the static background is 

usually required. The obtained experimental results can be evaluated as quite good, 

according to the requirement for a static background of the scene or for a static 

predominant object in the scene, which allows correct measurements in video 

frames. The specific effect of the “sliding scene” has been reduced less than 1% for 

a frame size of 640×480 pixels, and the pure execution time of the algorithm 

remains about 30 fps. The future efforts will be directed to more efficient 

segmentation of big moving objects in the proposed method context. 
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