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1. Introduction 

The problem of synthesis of robust signal processing algorithms arises in many 

areas of technology communication, navigation, radar systems and processing of 

biomedical and acoustic signals [1-4]. When these tasks are solved, known 

statistical models of probability distributions mixtures of signal and noise are used. 

In real conditions, the synthesized parametric algorithms for signals detection and 

estimation of their parameters do not retain their qualities (the probability of errors 

of the first and second kind, the accuracy of estimates) with a deviation of the actual 

distributions from those adopted at the synthesis stage [1]. In order to provide 

robustness of the signal processing algorithms, it is possible to use a not fully 

certain statistical model of signals and interference distribution.  

In the general case the aprioristic uncertainty can be described by the Tukey 

model of interference probability density distribution [2]. 

(1)   
0( ) (1 ) ( , ) ( ),nf x p f x ph x    

where ( , )nf x   is a known Probability Density Function (PDF) according to the 

minimax approach, )(xh  is, as a rule, an exponential or Laplace, p is the probability 
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of the interference action named “neighborhood pollution” or “Tukey 

neighborhood”,   is a vector of the parameters. In Fig. 1 one can see “Tukey 

neighborhood” of normal distribution with Laplace “pollution”.  

 

Fig. 1. Tukey model of interference probability density distribution with Laplace “pollution” 

We introduce the parameter b, which will characterize the signal/noise ratio. 

Signal and noise mixture, distributed similarly is 

(2)   
1( ) (1 ) ( , , ) ( ),sf x p f x b ph x    

where ( , , )sf x b   is the known PDF of the signal. 

Signal detection task statement. Let us have a sample 1( ,...,  )nX x x  

relatively to which two statistical hypotheses are checked. These hypotheses are: 

0H :  ),()( 0 XfXf   that means: the sample relates to an interference area. 

1H :  ),,()( 1 XfXf   that is, the sample relates to a signal area. 

The decision rule in this case is given according to Neyman-Pearson lemma by 

the likelihood ratio 
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where )(V is a threshold of decision making,  is the probability of false alarm.  

Taking into account (1) and (2), the likelihood ratio obtains the following form 
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We can transform this equation into 
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It takes large values for interference emissions. If xi belongs to noise, M takes 

a small value. 

In this paper we consider the synthesis of a robust harmonic signal detection 

algorithm in mixture of correlated noise and impulse interference. 

2. Detection of a harmonic signal on the background of correlated 

noise and pulse interference 

The task of a harmonic signal detection on the background of correlated 

interference is well known. This task is characteristic for radar detection of moving 

objects on the background of unwanted signals, reflected by the land or by 

meteorological objects.  

Let us consider a task of harmonic signal detection in mixture with a correlated 

noise and a pulse clatter. 

(5)    cos( ) , 1,..., ,i i i ix b t I i n         

where i  is a correlated noise sequence, iI  is the pulse clatter,   is a signal 

frequency,   is an initial phase, b is a signal amplitude.  

The wide class of random processes supposes approximation by an 

autoregressive process. The sequence of samples of this process can be presented by 

the following model 

1

,
k

i j i j i

j

a  



   

where  ,,...,1, kja j    are autoregressive coefficients, i  are independent samples 

of generating a normal random process. In this model the parameter vector is 

],,[ 1 kaa  . 

This model presents a process at the output of a linear system when at the 

input of this system a normal uncorrelated random process acts. This is the so-

called autoregressive k-order process or k-order Markov process. The multivariate 

PDF of such a process can be written as 

(6)    

min{ 1, }
2 2
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where 2  is variance  of the generating  sequence i . 

The analytical equation of a multivariate density function (6) allows carrying 

out the synthesis of optimal decision rules with a simple structure. Note that the 

sequence of the generating process , 1,...,i i n  , can be non-Gaussian. In this case 

the probability distribution of the autoregressive sequence is non-Gaussian too. It is 

possible to use this Markov model to solve the task of a moving target detection on 

the background of correlated clatters. 



 16 

The pulse clatter model is given like a sequence of random numbers with PDF 

(7)    ( ) (1 ) ( ) exp( )
2

I

g
f x p x p g x    , 

where p is the probability of the pulse clatter action, g is a scale parameter of 

Laplace distribution. The pulse clatter with this probability distribution is the most 

harmful.  

The conditional probability distribution of mixture (5) with respect to (6) and 

(7) has the following form: 
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where cos( )i iS b t   , i=1, …, n, are signal values. The parameter vector is 

2

1[ ,..., , , , ]ka a g   . 

Using equations (3), (4) and (8), one can obtain a robust detection algorithm 
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where 

2

1 11

1

exp(( )( ) / 2 ) ( )
( | ,..., , , )

( , ) ,
1 ( )( | ,... , , 0)

k k

i j i j i j i j i

j ji i i k
i

ii i i k

x a x S a S M x
f x x x b

l x
M xf x x x b







 

  

 

  

 


 
 

 

2 2

1

2 exp( )
( ) .

2(1 )exp( ( ) / 2 )

i

i k

i j i j

j

pg g x
M x

p x a x










  

 

We consider the situation when the initial phase of the signal is unknown. 

Given that the type of the signal cos( )i iS b t   , i=1, …, n, ( , )il x   can be 

expressed as 
2exp((A( , )cos( ) C( , )sin( )) / 2 ) ( )

( , ) ,
1 ( )

i i i
i

i

x x M x
l x

M x

    


 



 

where  

1 1

( , ) ( )(cos( ) cos( )),
k k

i i j i j i j i j

j j

A x b x a x t a t   

 

     

1 1

( , ) ( )(sin( ) sin( )).
k k

i i j i j i j i j

j j

C x b x a x t a t   

 

     

This allows us to introduce ( , )il x   in the following form: 

2exp(( ( , )cos( ( , ) )) / 2 ) ( )
( , ) ,

1 ( )

i i i
i

i

R x G x M x
l x

M x

   


 



 



 17 

where 22 ),(),(),(  iii xCxAxR  ,  ),(/),(arctg),(  iii xAxCxG  . 

To obtain a phase invariant algorithm, we should integrate this statistics  

over  : 
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where 
0 ( )I z   is a modified Bessel function of zero order. 

Using the approximation of Bessel function in the area [0,10]z   
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we can transform the decision rule (9) into the following form 
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In Fig. 2 the dependency of the logarithm of one factor of the product (9) on 

both x and the scale parameter of a pulse clatter g is shown (the variance of noise 
2 1  ). 

 

Fig. 2. Dependency of the logarithm of one factor of the product (9) on both x and the scale parameter 

of the pulse clatter g. The variance of noise 2 1   

One can see that the small clatter scale characteristic is V-shaped. The increase 

of the pulse clatter scale parameter g transforms this characteristic in the area of big 

values. The high values are reduced. 

Efficiency analysis. The efficiency of the developed algorithms was 

investigated by Monte-Carlo methods. According to these methods samples of the 

signal and noise mixture are generated by the following algorithms: 

 correlated noise sequence  

1

1

, 1,..., ,
k

i j i j i

j

a i n   



    



 18 

,  1,..., ,ja j k  are autoregressive coefficients, ,  1,..., ,i i n   is a sequence of 

normal random numbers; 

 mixture of signal, noise and pulse interference 

cos( ) , 1,..., .i i i ix b t I i n        

In Fig. 2 one can see examples of a harmonic signal, correlated noise and pulse 

interference mixture, generated by modelling.  

The signal processing algorithm 
1( , , )nl x x  was modeled according to 

Equation (10). We repeated this experiment T times and calculated the probability 

of correct decisions like a ratio of the correct decisions to the number of 

experiments T. 

In Fig. 3 the detection characteristics of the robust algorithm (10) and the 

known MTI algorithm are shown. The correlation coefficient of noise r = 0.94. We 

consider four situations: p = 0; p = 0.03; p = 0.06; p = 0.09. 

 
(a) 

 
(b) 

Fig. 3. Mixture of the correlated noise and pulse interference (a) and a harmonic signal (b)  

(p = 0.04, b = 5, =1, a1 = 0.6) 

The MTI algorithm, investigated in this work is 

(11)   2

1 1

2

( ,..., ) ( ) ( ).
n

n i i d

i

l x x x x V 



     

One can see that both robust (the green line) and MTI (11) (the blue line) 

algorithms are equal, when the pulse interference is absent (p = 0). If the 

probability of the pulse increases (p = 0.03, p = 0.06 and p = 0.09), the robust 

algorithm (10) is more efficient. 

Let us consider the situation with aprioristic uncertain autoregressive 

coefficients of a correlated noise model.  

In this case we can use the empirical Bayesian approach, according to which it 

is necessary to obtain the estimation of these coefficients and substitute them in the 

likelihood ratio (10). 



 19 

 
Fig. 4. Detection characteristics of MTI and robust algorithms. Sample size N = 16, probability of false 

alarm = 0.005, noise correlation coefficient r = 0.94. The probabilities of the pulse interference:  

p = 0; p = 0.03; p = 0.06; p = 0.09 

To obtain the maximum likelihood estimations of the autoregressive 

coefficients, we should organize a training sample 1,...., my y  that contains mixture 

of correlated noise and interference without a signal.  

The likelihood function has the following form: 

(12)
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The likelihood equations can be written as 
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After some analytical transformations, we obtain the following: 

(13) 
 

 min 1,

2

min 1,
1

2
1 1

( )
2

/ 1 exp 0,  
1 2

1,..., .

i k

i j i ji kn
j

i j i j i l i

i j

y a y
pg

y a y y g y
p

l k

 








 

 

   
   
                    

   




   



 20 

Solution of equations (13) can be obtained by Newton-Raphson numerical 

method and it gives us the robust estimations of the autoregressive coefficients 
* * *

1( ,..., )ka a   that are used for detection of the signal by the algorithm (10). 

We analyzed the efficiency of the algorithms for the first order autoregressive 

process ( 1 )a r  correlation coefficient estimation. Two algorithms were used – 

robust and non robust. 

In Fig. 5 are shown characteristics of the robust estimator of the correlation 

coefficient obtained according to (13) and characteristics of the non robust 

algorithm 

(14)   
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(a)                                                                                 (b) 

   
(c)                                                                                      (d) 

Fig. 5. Efficiency characteristics of robust and non robust algorithms of  noise correlation coefficient 

estimation in mixture with the pulse interference: (a) p = 0.01; (b) p = 0.03; (c) p = 0.05; (d) p = 0.1 

Every figure contains dependencies of both error modulus and root mean square vs 

a sample correlation coefficient. 
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For every algorithm two characteristics are calculated: modulus of the 

estimation error vs a correlation coefficient and root mean square vs a correlation 

coefficient. These characteristics are obtained by Monte-Carlo method for size of 

the training sample n = 128 and for different values of the pulse interference 

probability (p = 0.01, 0.03, 0.05, 0.1). If the probability of the pulse interference 

action is more than 0.01 and the correlation coefficient of noise is more than 0.15, 

the robust estimator substantially prevails the non robust one. The advantage 

increases if the correlation coefficient tends to one. 

To estimate the losses of the adaptive to noise correlation coefficient detector, 

two detection characteristics were calculated (Fig. 6). 

One of them belongs to the adaptive detection algorithm used in the estimation 

of the noise correlation coefficient, solving Equation (13). The sample size n is 

equal to 16. The second algorithm uses an apriori known correlation coefficient  

(r = 0.9), variance of the correlated noise 2 1  , the period of the signal T being 

equal to 2 samples. 

 
Fig. 6. Detection characteristics. Adaptive robust detector (the red curve) and non adaptive robust 

detector (the blue curve) for p = 0.03 (the two upper curves) and p = 0.1 (the two lower curves). The 

losses in the threshold signal at 0.9 are from 1 up to 2.5 dB 

These plots show that the losses due to adaptation are small and the adaptive 

algorithm that uses robust estimations of the correlation characteristics of noise is 

very efficient. 

3. Conclusion 

The pulse interference influences the characteristics of the classical algorithm of 

detecting moving targets (11), named MTI. The robust algorithm suggested in the 

paper is efficient under condition of pulse interference action. The gain is about  

5 dB. The proposed approach allows synthesis of new robust adaptive algorithms 

for signal detection in a difficult interference situation under the influence of 

correlated non-Gaussian impulsive noise. The results are important for numerous 

radar applications including a moving target detection on the sea background. 
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