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Abstract: Image segmentation methods can be classified broadly into two classes: 

intensity-based and geometry-based. Edge detection is the base of many geometry-

based segmentation approaches. Scale space theory represents a systematic 

treatment of the issues of spatially uncorrelated noise with its main application being 

the detection of edges, using multiple resolution scales, which can be used for 

subsequent segmentation, classification or encoding. The present paper will give an 

overview of some recent applications of scale spaces into problems of microscopic 

image analysis. Particular overviews will be given to Gaussian and alpha-scale 

spaces. Some applications in the analysis of biomedical images will be presented. 

The implementation of filters will be demonstrated.   
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1. Introduction  

Image segmentation is a non-trivial problem. There are several classes of methods, 

which can be applied in different circumstances. They can be classified broadly into 

two classes: intensity-based, where the hypothesis is that only the difference in the 

image histogram could be sufficient for segmentation; and geometry-based, where 

the image is transformed, so that the geometric features of interest become enhanced. 

There are various geometry-based segmentation approaches, for example, using 
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edges, distances or texture statistics. In addition, there is a vast array of pre- and post-

processing techniques, such as smoothing, mathematical morphology operations (i.e., 

watershed), partial differential equation methods and shape methods. The present 

paper will focus on the geometry-based methods with a particular emphasis on the 

edge-detection techniques. Geometry-based approaches are invariant to changes in 

the illumination, which is an issue in natural images and some microscopic 

techniques. In contrast, geometry-based approaches are susceptible to structural or 

texture “noise”, so that extra care must be taken to address such issues.   

The edges are invariant geometric image features which can be used in various 

segmentation, classification or encoding algorithms. Most of the approaches for edge 

detection can be grouped into two categories, search-based and zero-crossing based. 

The search-based methods detect edges by first computing a measure of the edge 

strength, for example the gradient magnitude, and then searching for the local 

directional maxima of the gradient magnitude, using a computed estimate of the local 

orientation of the edge, usually the gradient direction. The zero-crossing based 

method estimates zeroes in second-order derivatives.  

2.  Linear scale spaces 

Scale space theory represents a systematic treatment of the issues of spatially 

uncorrelated noise. It is well known that differentiation is an ill-posed problem and 

calculation of finite differences quotients is numerically unstable and amplifies the 

high frequency noise.  

Scale spaces are derived from the physical principles of scale invariance. Since 

the images are finite physical signals, they are naturally related to the properties of 

the measurement apparatus. As idealization, these properties are described by a linear 

transfer function, so that the measurement process becomes a convolution. On the 

other hand, the measurement is always contaminated by an unwanted signal, which 

is denoted broadly as “noise”. The noise process corresponds to non-linearities of the 

measurement step and the studied physical process. In many occasions, because of 

its irregularity in time, it can be treated as a purely random process.  Since the 

physical measurement is a repeated process, the Gaussian noise comes as the simplest 

model by virtue of the Central Limit Theorem. Therefore, formally this reasoning can 

be described as  

𝐼(𝑡) = 𝑇(𝑡) ∗ 𝑓(𝑡) + Δ𝑊𝑡, 

where “*” denotes the convolution operation and the second term is the noise 

increment, which has “bad” (i.e., singular) behaviour and must be regularized. Since 

all digital samplings are discrete, they are also facing the additional challenge of 

estimating the continuous physical process from its samples.  

2.1. Gaussian scale spaces 

Gaussian kernels enjoy the property of separability. Therefore, the computation of 

convolutions can be simplified, if one-dimensional kernels are applied directionally 

in a sequence. In one spatial dimension the kernel can be expressed as 
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𝐺𝑠(𝑥) =  
1

√2𝜋 𝑠
   𝑒−𝑥

2/2𝑠. 

The shape of the increasing kernels is governed by the scale parameter s. The 

interactions of the Gaussian kernels with the image can be viewed as realizations of 

a diffusion process and can be described well by the diffusion equation:  

𝜕𝐿

𝜕𝑠
= 
1

2
 Δ 𝐿 

with an initial condition of the original image 𝐿 (𝑥, 𝑦, 0) = 𝐼(𝑥, 𝑦). This observation 

can be generalized by the concept of parametric scale spaces, generated by successive 

smoothing of the image with a Gaussian kernel. The special properties of the 

Gaussian kernel rely on the fact that it is a generic solution (i.e., a Green function) of 

the former diffusion equation. The diffusion in the image plane can therefore be 

expressed as a spatial convolution: 

𝐿(𝑥, 𝑦, 𝑠) = 𝐺𝑠(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦). 

In the context of image processing, these properties have been used to construct 

the mathematical apparatus of scale space theory independently by Ijima [3] and his 

disciples in Japan, and Witkin [9] in Europe. The mathematical theory of the scale 

spaces is described in [8]. 

2.2. Fractional scale spaces 

P a u w e l s  et al. [7], and later D u i t s  et al. [1] have investigated the use of the 

fractional powers of Laplacian operator in connection with the scale invariant 

smoothing and scale space theory. The approach leads to formulation and solving of 

a fractional heat problem: 

𝜕𝐿

𝜕𝑠
= − 

1

2
(−Δ)

𝛼

2  𝐿 , 0 < 𝛼 ≤ 2. 

It can be shown that the fractional heat kernel arises in problems with α-stable 

Levy noise. In the time/space domain the solution is given by a Levy α-stable density 

[2, 4]:  

𝐺𝑠(𝑥) =  
1

(𝑠/2)2/𝛼
   𝑆1−𝛼 (

𝑥

(𝑠/2)1/𝛼
) 𝑆1−𝛼 (

𝑦

(𝑠/2)1/𝛼
)  ,      𝛼 ≤ 1,  

where the function 𝑆1−𝛼(𝑥) is given by the infinite series: 

𝑆1−𝛼(𝑥) = {

1

𝜋
∑(−1)𝑛+1

Γ(1 + 𝑛 𝛼)

𝑥𝛼𝑛+1 𝑛!

∞

𝑛=1

sin 𝑛𝛼𝜋 ,              𝑥 > 0,

0,                                                                              0 ≤ 𝑥,

 

and 
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𝐺𝑠(𝑥) =  
1

(𝑠/2)2/𝛼
   𝑆2−𝛼 (

𝑥

(𝑠/2)1/𝛼
) 𝑆2−𝛼 (

𝑦

(𝑠/2)1/𝛼
)  ,   1 ≤ 𝛼 ≤ 2,  

where the function 𝑆2−𝛼(𝑥) is given by the infinite series: 

𝑆2−𝛼(𝑥) =

{
 
 

 
 1

𝜋
∑(−1)𝑛+1|𝑥|𝑛−1

Γ (1 +
𝑛
𝛼)

 𝑛!

∞

𝑛=1

sin
𝑛𝜋

𝛼
 ,              𝑥 ≠ 0,

1

𝜋𝛼
Γ (
1

𝛼
) sin

𝜋

𝛼
,                                                         0 = 𝑥,

 

where Γ(𝑥) denotes Euler’s Gamma function.  
 

 
Fig. 1. Levy α-stable distributions for three different values of the fractional order 

The symmetrical stable density can be expressed in elementary or transcendent 

functions only for some choices of α exponents. Such cases are: α = 2, leading to 

Gaussian distribution; α = 1, leading to Cauchy distribution; and α = 
2

1
, leading to 

Levy-Smirnow distribution. These functions, on the other hand, can be conveniently 

represented in the Fourier domain as: 

log 𝑆(𝛼, 𝑥) = {
− 𝜎𝛼 |𝑥|𝛼(1 + 𝑖 𝛽 sign(𝑥) tan πα/2((𝜎|𝑥|) 1−α  −  1)) + 𝑖 𝜇 𝑥,   𝛼 ≠ 1,

2

𝜋
𝜎|𝑥| (1 +  𝑖𝛽sign(𝑡) 2/π log(𝜎|𝑡|)) + 𝑖 𝜇 𝑥,                                 𝛼 = 1,

 

in the asymmetrical case or  

log 𝑆(𝛼, 𝑥) =  {
− 𝜎𝛼 |𝑥|𝛼 + 𝑖 𝜇 𝑥,      𝛼 ≠ 1,
2

𝜋
𝜎|𝑥|+ 𝑖 𝜇 𝑥,              𝛼 = 1,
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for the completely symmetrical case. Note that the first formula corresponds to the 

latter case. This parametrization is a variant of Zolotariov’s parametrization, jointly 

continuous in all parameters. 

2.3. Powers of Laplacian (PoL) operators 

Detection of the image features, such as extrema and edges, which depend of 

derivatives operations, is stabilized by pre-smoothing. Replacing the ordinary spatial 

derivatives by derivatives of blurred images has a strong regularizing effect in the 

sense of non-enhancement of the local extrema, when successive filters are applied, 

i.e., the image landscape becomes more and more flattened. In the English literature 

this approach was pioneered by [6], who introduced a pre-processing Gaussian 

convolution step. On theoretical grounds Iijima demonstrated that this makes a robust 

step in differentiation. Differentiation can be combined with smoothing in one step. 

The resulting kernel is also known as Mexican hat filter or Laplacian of Gaussian 

(LoG). The approach is mathematically equivalent to multiscale wavelet techniques, 

since LoG fulfils the wavelet admissibility condition [5]. Different powers of the 

Laplacian operators have an especially simple representation in the Fourier domain. 

It can be derived, based on the Gaussian derivative in the Fourier domain and the 

binomial theorem.  

The Fourier transform of the Gaussian derivatives is given by 

𝐺𝑛 ̃ (𝑓) = (2 𝜋 𝑖 𝑓𝑠)𝑛𝑒
−2 𝜋2𝑓2𝑠

, 

where the order n is integer. 

Integer-order powers:  
The power of the Laplacian operator can be expressed therefore as 

𝐿𝑛  ̃(𝑘) = (−2)
𝑛( 𝜋 𝑘𝑠)2𝑛𝑒−2 𝜋

2𝑘2𝑠 

for a radial wave number .22  k  

Fractional-order powers:  
In the Fourier domain, the fractional heat kernel is expressed as 

𝐺𝑛 ̃ (𝜔, 𝜂, 𝑠) =  𝑒−
𝑠(|2 𝜋 𝜔| 𝛼+|2 𝜋 𝜂| 𝛼 )

2 . 

Therefore, in the fractional domain the operator will be expressed as direct 

generalization: 

𝐿𝑛,𝛼  ̃(𝑘) = (−2)
𝑛(𝜋𝑘𝑠)2𝑛𝑒−2

𝛼−1𝜋 𝛼|𝑘|𝛼𝑠. 

Therefore, the kernel bandwidth can be controlled by the fractional power α. 

3. Anisotropic decomposition of the Laplacian operator 

In another line of development, the LoG operator can be decomposed into orthogonal 

and tangential components [4]: 
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ΔG=Δ
||
G+Δ⊥G, 

where the components are given by 

 GrGrrGr
rr

G yyyxyyxxxx

yx





22

22
2.

1
, 

and  

 GrGrrLr
rr

G yyyxyyxxxx

yx




 22

22|| 2.
1

. 

The weighting of the components is according to the direction of the gradient 

(rx=xG, ry=yG). This operator is introduced in order to differentialy respond to 

blob-like or tubular structures. A result, demonstrating the properties of the operator 

is presented in Fig. 2C.  
 

(A) (B) (C) 

   

Fig. 2. LoG Anisotropic decomposition of a fluorescent microscopic image: Fluorescent microscopic 

image of cells (A); orthogonal LoG components (B); tangential LoG component (C), scale σ = 8.0. 

The intensity is represented as a heat map. Note the enhancement of the round shapes in the 

orthogonal component 

The enhancement of the blob-like structures in an image can be used to improve 

the segmentation and allows the extraction of cell nuclei with inhomogeneous 

coloration distribution (Fig. 3C), which is not achievable using only histogram-based 

segmentation techniques.   
 

(A) (B) (C) 

   

Fig. 3. Application of LoG anisotropic decomposition: Light microscopic image of a Giemsa-stained 

neutrophil cell touching on erythrocytes (A); median projection of LoG scale space across scales  

σ = 3.50-16.17 (B); zero-crossings of the orthogonal component of LoG at σ = 6.83 (C). Note the 

segmentation of the nuclear contour indicated by the color of the ROIs 
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Fig. 4. Scale space ROI manager plugin  

4. Scale space regions of interest 

Gaussian-based filters are implemented in the public domain image analysis software 

ImageJ Zero-crossings of the Laplacean operator and its anisotropic decomposition 

can be assembled into 2D and 3D Regions Of Interest (ROIs)  

(Figs 2-4). 

5. Implementation 

The set of filters described in the present paper is implemented in ImageJ as a set of 

plugins. ImageJ is a public domain image processing program, written in Java. Since 

its inception in 1997, ImageJ has evolved to become a standard analytical tool in life 

sciences. It has an open architecture, providing extensibility via 3rd party Java 

modules (called plugins) and scripting macros. It is developed by Wayne Raspband 

in 1997, and expanded via a contributed software code by an international group of 

contributors. Plugins are distributed together with their source code under various 

licences determined by the plugin authors.   

We have used two implementation strategies: the integer order fliters are 

implemented in the spatial domain, while the fractional order filters are implemented 

in the Fourrier domain.  
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