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Abstract: Events about entities have been widely collected on Web, allowing us to 

analyze how peer entities interact and learn the relationships that exist among the 

entities. In this paper we investigate similar traces that have not been adequately 

studied so far. Intuitively, peer entities tend to have similar traces. The challenges 

in mining similar traces are: (1) the occurring time lags of traces are usually 

unknown and varying; (2) the existence of large-scale events of entities and 

complexity of the model representing all the events. In this paper we propose a 

simple, but practical method that addresses all these challenges. Firstly, sliding 

windows are adopted to filter out the significant events and then find the candidate 

topic sequences. Secondly, dynamic programming is employed to mine similar 

candidate topic sequences of entities. Finally, an efficient method is proposed to 

mine all the similar traces of entities. It is able to mine similar traces of peer 

entities with high accuracy. We conduct comprehensive experiments on synthetic 

datasets to demonstrate the efficiency of the method proposed. 

Keywords: Significant event, similar trace, candidate topic. 

1. Introduction 

An event is something that happens at a specific time. Nowadays, an increasing 

number of events are reported on web every day. However, these events are usually 

scattered and redundant, so that we cannot receive any relevant information. 

http://dict.baidu.com/s?wd=redundant
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Among all the problems considered by the people, the behaviour trajectories of 

the entities (an enterprise or a person), are given more attention. In this paper the 

behaviour trajectory of an entity is named a trace, which can be loosely defined as a 

topic sequence. Intuitively, peer entities tend to have similar traces. Similar traces 

can provide an insightful and concise explanation over the business strategies of 

peer entities and implicit relationships among them. At the same time, similar traces 

provide good references to other peer entities. 

Unfortunately, mining similar traces from long and noisy history data is not an 

easy task, due to the following challenges: 

Challenge 1. Considering so big scale of events and relatively complex 

relationships between them, it is difficult and complicated to design the right model 

representing the events. So a model in place, that is, a big graph is employed, which 

is named an event relationship graph. 

Challenge 2. A similar trace is represented as a sub-graph (topic) sequence. 

The issue of mining similar traces becomes more difficult, because the general 

methods of sub-graph mining are not fit for our problem. 

Challenge 3. Time gaps of similar traces are usually unknown and varying. 

For example, trace A is similar to trace B, just as Fig. 1 shows, topic z'1 is two 

weeks after topic z1; however, topic z'2 is only one week after topic z2. Behaviours 

of entities are usually affected by competitive environment or other factors. 

time
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Fig. 1. Two similar traces 

In this paper the problem of mining similar traces is solved in the following 

steps:  

Firstly, sliding windows are adopted to filter out the significant events and find 

the candidate topic sequences. Secondly, dynamic programming is applied to mine 

similar candidate topic sequences. Finally, an efficient method is proposed to mine 

all the similar traces of entities. 

In our paper we address a significant problem of mining similar traces. In the 

algorithm proposed  Similar Traces, high efficiency is achieved through filtering 

out the significant events and candidate topics. At the same time, by the second 

step, lots of redundant patterns’ production can be avoided, which can help in 

reducing the heavy cost of computation.  
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The rest of the paper is organized as follows. In Section 2 some related works 

are discussed. Section 3 gives the problem formulation. Sections 4, 5, 6 and 7 

provide an outline of our algorithm to mine similar traces. We report our 

experimental results in Section 8, and conclude the present study in Section 9. 

2. Related works 

At present some studies [3, 11] about how to organize the events and events 

relationships have been investigated. However, less studies aim to mine some 

meaningful information from the events data of entities [13]. 

Y a n g, S h i  and  W e i [4] introduce the concept of an event evolution graph, 

in which the events are organized according to the time order, which can help to 

efficiently browse the whole event evolution process. 

J i, G r i s h m a n  and  C h e n [5] propose to identify the “centroid entities” 

which are frequently involved in events and then link the events, involving the same 

centroid entity along a time line. However, no more studies are done based on this 

work. 

L i, W u and C r o f o o t [10] investigate the relationship among moving objects 

and proposes a simple, but practical method to mine the relationship from 

movement data of the objects. 

Z h i j u n  Y i n  et al. [1] study the problem of latent periodic topic analysis 

from time stamped documents and proposes a model, called LPTA (Latent Periodic 

Topic Analysis) that exploits the periodicity of terms, as well as term co-

occurrences. 

G i a n n o t t i  et al. [7] propose to find the trajectory patterns from the location 

traces of the moving objects and study their movement behaviors. 

However, given the overwhelming scale of events, limited efforts have been 

focused on the problem in these studies. 

L i u et al. [2] propose a “temporal skeletonization” approach to actively 

reduce the representation of sequences to uncover significant, hidden temporal 

structures. However, their temporal structures are relatively coarse grained, while 

our similar traces are sub-graph sequences which can accurately reflect the entities 

behaviors. 

Because the scale of events is very big and similar traces are sub-graph 

sequences, methods of pure sub-graph mining [12, 14] will lead to poor efficiency 

and they are not fit for this issue.  

So we propose an efficient method, fit for the problem. Firstly, sliding 

windows are adopted to filter out the significant events and find the candidate topic 

sequences. Secondly, dynamic programming is adopted to mine similar candidate 

topic sequences. Finally, an efficient method is proposed to mine all similar traces 

of entities. 

In our algorithm, high efficiency is achieved through filtering out the 

significant events and candidate topics. At the same time, through the step of 

mining similar candidate topic sequences, the production of lots of redundant 

patterns can be avoided. 
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3. Problem formulation 

The work presented is based on the assumption that all the event relationship graphs 

of entities have been established already. Our goal is to mine all similar traces from 

all event relationship graphs.  

We formally define the notion related with mining of similar traces as follows: 

Definition 3.1. Event. An event is something that happens at some specific 

time, and often at some specific place [11]. In our paper an event of an entity is 

defined as a model E with six attributes, represented as follows: 

E subject, activity, {object}, time, {location}, frequency . 

Among the six attributes, subject, activity and time elements are required. The 

frequency points to the occurrence frequency of the event, which comes from 

original pages. 

Definition 3.2. Event relationship. An event relationship points to the 

dependent relationship from one event to another. Only three kinds of relationships 

are considered in our former work [11], which are causal relationship, part-of 

relationship and following relationship. 

Definition 3.3. Event relationship graph. An event relationship graph  

G = (V, E) is to link all the events V of an entity according to the relationships E 

between them. A fragment of an event relationship graph is shown in Fig. 2, in 

which Rc represents a causal relationship, Rf represents a following relationship and 

Rp represents a part-of relationship. 

Definition 3.4. Topic. A topic means an event plus directly related events [6]. 

In this paper, a topic is denoted as a directed graph G* = (V*, E*), in which all the 

events V* are related according to their relationship E*. 

Definition 3.5. Trace. A trace is denoted as a topic sequence, which presents 

the behaviour trajectory of the entity. For example, a trace TC (G1, G2, G3) means 

that this trace includes topic G1, topic G2 and topic G3. 

Definition 3.6. Similar trace. A similar trace is also denoted as a topic 

sequence TC*(G1*, G2*, G3*), the occurrence frequency in all the event relationship 

graphs being beyond σ (σ is the minimum support that we set). 

In this paper the problem of mining periodic traces is to mine all similar traces 

from all event relationship graphs of the entities. We will solve the problem in the 

following sections: 

4. Find all the event classes 

A fragment of an event relationship graph is shown in Fig. 2 [11], in which each 

event is represented by its activity. In this section a clustering method is employed 

and all the events with similar activity are clustered into a group and get an identical 

label, such as A, B, etc. A group is named an event class. 

In this section our main goal is to find all the event classes EC = {ec1, ec2....., 

ecD}, eci is an event class represented as eci ={e2, e6, ej, ..., en}, where all the events 

in eci have similar activity. 
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Finally, the event relationship graph is turned into a labelled directed graph, in 

which three kinds of edges lie, labelled 1, 2, 3, etc. 
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Fig. 2. A fragment of an event relationship graph 

5. Significant events identification 

In this paper a significant event is the event which has more frequencies than both 

the events before it and after it in a time window. Taking into account that a vast 

number of events is generated each second, it becomes a crucial task to identify the 

significant events. Because there is no explicit knowledge about the current or 

future events, we propose to handle the vast number of events [16] only by means 

of finding the significant events first and then increase it according to the topic.  

Our approach is to exploit sliding windows [8] to identify the significant 

events from events with timestamp information. Next we describe the identification 

of significant events by statistical analysis of the events frequency. Once a 

significant event has been detected, we keep track of the co-occurring events with 

the significant event, which mainly describe the topic.  

We describe next the process of significant events identification. The first step 

is to partition all the events data of an entity E= (e1, e2, e3, ...) into fixed sized 

windows (w1, w2, w3, ...). For each extracted event, we get its frequency as an IDF 

[8] value (idf(e)). In addition, we calculate the percentage of the shift of the IDF 

value (sidf(e)) from one event to the next one in a window. For further evaluation, 

we also calculate the average IDF value (avg(idf(e))) for all events in the window. If 

the IDF value (idf(e)) of an event is lower than the average value (avg(idf(e))), the 

event is filtered out. To find the most significant event ei is to find the event with a 

local max IDF value. In this way, both faster and slower increasing events can be 

identified. In addition, to gain the ultimate goal of mining the topic sequences, we 

also find the second most significant events ei' and ei" with the second and the third 

largest frequency, as Fig. 3 shows.   
Then every one of the most significant events and the second most significant 

events are organized as a whole, which is regarded as a topic candidate. For 

example, all the significant events are organized as (e1', e1, e1"), (e2', e2, e2"),  
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(e3', e3, e3"). Then a clustering method is employed. These topic candidates with a 

similar event at least are clustered into a group and get an identical topic label, such 

as A', B', etc. In addition, add the edges to each candidate topic if the events in it are 

related according to the corresponding event relationship graph.  
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Fig. 3.  Finding significant events and topic sequences 

These candidate topic sequences, such as B'D'F'A'C', are passed on to the 

phase of mining similar topic sequences, which is described in Section 6. 

6. Mining the similar candidate topic sequences 

To mine the similar candidate topic sequences, a straightforward solution could be 

mapping the problem onto a Local Sequence Alignment (LSA) problem. The classic 

LSA problem aims to identify similar subsequences in two symbolic sequences, and 

can be efficiently solved, using a well known dynamic programming algorithm 

called Smith-Waterman algorithm [9, 10]. Now we introduce the algorithm of 

mining the similar candidate topic sequences. 

Given two candidate topic sequences S1 = a0a1...am–1 and S2 = b0b1...bn–1, over 

the alphabet ∑ (all the topic labels), we define the matching score between any pair 

(ai, bj), where ai, bj ∑, as follows.  

We use dynamic programming to compute the optimal alignment scores of all 

subsequences S'1=a0a2...ai ,  (0  i  m–1), and  S'2=b1b2...bj, 0  j  n–1, and store 

the scores in a matrix H, as given  

(1)   

,and0,if])1,[],,1[max(

,and0,if]1,1[

,0or0if0

],[

ji

ji

bajijiHjiH

bajijiH

ji

jiH  

where H[i, j] is the length of the longest common subsequence A and B. 

After obtaining the matrix H, we can get the optimally aligned subsequences 

between S1 and S2. Finally, H[m 1, n 1] is the cell with the highest value in matrix 

H. By tracing back the values of matrix H, we can identify the longest aligned 

subsequence TC, as Algorithm 1 shows. 
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Algorithm 1. Mining the similar candidate topic sequences algorithm 

Input: Two candidate topic sequences S1 = a0a1...am–1 and S2 = b0b1...bn–1, 

matrix H 

Output: A similar topic sequence TC 

Step 1. Initialize TC ←Φ 

Step 2.  i←m–1, j←n–1, k←H[m–1, n–1] 

Step 3.  Build(k, i, j)  /*build the longest aligned subsequences*/   

Step 4.     if (i=0 or j=0)    

Step 5.          return 

Step 6.      endif    

Step 7.     if (H[i][j]=H[i–1][j] )       

Step 8.          Build(k, i–1, j)        

Step 9.     elseif (H[i][j]=H[i][j–1])    

Step 10.         Build(k, i, j–1)     

Step 11.   else  

Step 12.         TCi= ai–1 

Step 13.         Build(k–1, i–1, j–1) 

Step 14.    endif  

Step 15.  end    

Step 16.  Return TC 

For all entities, Smith-Waterman algorithm is adopted by pairs. Finally, the 

longest aligned subsequences are mined. 

7. Mining the similar traces 

In this section we will describe the algorithm of mining similar traces, 

SimilarTraces, which could mine all the similar traces from the similar candidate 

topic sequences gained from Section 6. 

A similar candidate topic sequence gained from Section 6 is represented as TC 

(A', B', D', E'), for example. Each label tci, such as A', B', etc., in the similar 

candidate topic sequence, represents a graph with a support beyond the threshold σ. 

Each graph that the label presents, is to be mined separately [15]. Then the work of 

mining similar traces is completed.  

For example, tci labeled A' with its embedding and patterns, is given in Fig. 4. 
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Fig. 4.  tci labeled A' with its embeddings and patterns 
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The main algorithm of mining similar traces is shown in Algorithm 1. 

Algorithm 2. The similar traces mining algorithm 
Input: a similar topic sequence TC = {tc1, tc2, …, tcd}, event relationship 

graphs G1...Gm of entities, all the labels L{L1, L2, L3,…, Li,… , Lf} 

appear in G1...Gm, support threshold σ 

Output: similar traces S 

Step 1.  Initialize S ←Φ 

Step 2.  For i = 1 to d 

Step 3.       T ← Embed(tci)  /*find all the embeddings of tci*/  

Step 4.       P ← Pattern(tci)  /*find all the patterns of tci*/ 

Step 5.       L ← Label(T)    /*find all the labels of T*/ 

Step 6.       Do 

Step 7.           la ← Max(L)     /*find the label with max frequency */        

Step 8.          E ←Event(la)   /*find all the events in T which label equals L'[i] 
*/    

Step 9.             n ← Count(E, la')   
                   /*to find all the frequent labels that the events in E are related to */ 

Step 10.           if (n >=σ) 

Step 11.                    Merge(P, la')  /*add the frequent label la' to P*/ 

Step 12.                    L=L  la'    /*add the label la' to L*/ 

Step 13.                   Update(T)   /*add the events to T that label la' represents*/  

Step 14.             endif 

Step 15.       end 

Step 16.       p ←Biggest(P)   /*find the biggest pattern in P*/ 

Step 18.     Check(P, σ)   /*Trim off these vertices and edges with frequency 

less than σ in P*/   

Step 19.       S=S, p; 

Step 20.  end 

Step 21.  Return S 

In Algorithm 2 tci represents a label of a topic candidate. Embed(tci) (Step 3) 

is to find find all the embeddings of tci. Pattern(tci)(Step 4) is to find all the patterns 

of tci. Label(T)(Step 5) is to find all the labels of T. Max(L)(Step 7) is to find the 

label with max frequency. Event(la)(Step 8) is to find all the events in T the labels 

of which are equal to L'[i]. 

The function Count(E, la') (Step 9) is employed to find all the frequent labels 

that the events in E are related to. The function Merge(P, la') (Step 9) is employed 

to add the frequent label la' to P.  Update(T)(Step 13) is to add the events to T that 

label la' represents. Check(P, σ)(Step 18) is to trim off these vertices and edges with 

frequency less than σ in P. 

According to the problem of mining the similar traces, our algorithm is 

effective and efficient due to the following reasons:  

1. Significant events help to greatly reduce the heavy cost to deal with so many 

events. 

We only filter out the events with higher frequency than the events around 

them, which helps to greatly reduce the heavy cost of dealing with so many events. 
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2. Candidate topic sequences help to simplify the complexity of mining similar 

traces. 

Through mining candidate topic sequences, we can gain the original similar 

traces deviating from the existing pattern-growth way, which greatly simplifies the 

mining of similar traces and improves the efficiency. 

8. Experiments 

In this section we have performed extensive experiments to evaluate the 

performance of our algorithm SimilarTraces on synthetic graphs. All experiments 

were done on a 2.8 GHz Intel Pentium IV PC with 1 GB main memory, in 

Windows 7 operating system. Our algorithm is implemented in Python 2.7.  

SimilarTraces is experimented on synthetic graphs which are generated by  

Erdős-Rényi random network model. Erdős-Rényi model is a well-known model to 

generate random graphs. The graphs are constructed by function G(n, p). However, 

the graphs generated by Erdős-Rényi model are undirected graphs, which are 

different from our event relationship graphs that are directed graphs. So probability 

of 0.5 is added to Erdős-Rényi model to decide the direction of the edge. Besides, 

the labels of vertices and the labels of edges are randomly distributed under the 

condition that any two adjacent vertices’ labels cannot be identical. 

In the experiment, in order to calculate the recall and precision ratio, a set of 

similar traces is injected into the graphs, which is to inject a set of subgraph 

sequences into graphs. Nowadays, despite lots of studies in graphs mining, few 

algorithms are capable of sub-graphs mining in big graphs because the number of 

frequent sub-graphs grows exponentially. In fact, lots of the patterns mined have no 

value. So our goal is to find some meaningful pattern sequences from graphs, that is 

to find similar frequent sub-graph sequences from graphs. 
 

Data |V| lV le d n |VS| Es 

1 800 130 3 4 5 8 1 

2 800 130 3 4 5 15 1 

3 1600 350 3 4 10 15 1 

4 1600 350 4 4 15 15 1 

Fig. 5.  Data sets 

In the experiment five peer entities are considered. We generated four different 

data sets (labelled Data 1 and 4) with varied parameter settings, referring to [7]. The 

description of the data sets is given in Fig. 5, which is for each graph. The details of 

the parameters are given as follows. |V| is the number of vertices of graphs; lV is the 

number of vertices’ labels and le is the number of edges’ labels; d is the average 

degree. |VS| is the number of vertices of each injected pattern; n is the number of 

patterns injected; eS is the number of instances of each pattern injected into each 

graph.  

Figs 6-9 show the efficiency of our algorithm for four data sets in Fig. 5. The 

minimum support threshold is set to 2. 
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In Figs 5-9 we can see that our algorithm  SimilarTraces could mine most 

similar traces injected into graphs. From Data 1 up to Data 4, with a bigger graph, 

more and bigger patterns, SimilarTraces works well. 

Fig. 10 shows that with a bigger graph, the runtime of SimilarTraces does not 

grow sharply. 

9. Conclusion 

In this paper we address a significant and difficult problem: mining similar traces of 

peer entities. We propose a novel and efficient framework to solve the 

aforementioned problem. High efficiency is achieved through filtering out the 

significant events and candidate topics. At the same time, through the steps of 
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Fig. 10. Similar traces runtime  
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mining similar candidate topic sequences, the production of many redundant 

patterns can be avoided, which can help in reducing the heavy cost of computation.  

In addition, our algorithm could mine similar traces with high accuracy. The 

experiments demonstrate efficiency, as well as scalability of our algorithm. 
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