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Abstract: Despite the success of various clustering algorithms for Wireless Sensor 

Networks (WSNs), there are few works that consider the interference between 

clusters. Obviously, interference-free clustering makes the communication more 

efficient and achieves energy saving. In this paper we propose a new clustering 

method for large-scale sensor networks. With this method the network is partitioned 

into clusters. Intra-cluster communication in a cluster has no interference by its 

neighbor clusters. Moreover, the proposed clustering is based on a Genetic 

Algorithm (GA), which can achieve optimal performance in terms of the number of 

isolated nodes. This is demonstrated by the simulation analysis. 

Keywords: Clustering, genetic algorithm, interference-free, WSN. 

1. Introduction 

Research on Wireless Sensor Networks (WSNs) is one of the most rapidly growing 

scientific domains. This is because of the development of advanced sensor nodes 

with extremely low cost, and the potential applications of such sensor nodes are 

ever growing. As one of the efficient ways of network topology control, clustering-

based protocols are considered as the best choice for large-scale WSNs [1]. It has 

some benefits, such as energy saving and scalability [2]. 

A cluster includes at least a Cluster Head (CH) and some cluster members. 

The CH is responsible for coordinating the nodes within its cluster and it 

periodically transmits aggregated data to the sink node. Clustering of WSNs has 

attracted much attention. The early work on clustering is LEACH [3], in which CHs 

are selected based on a predetermined probability. Other nodes choose a cluster to 

join by estimating which of the selected CHs is the closest one. However, LEACH 

addresses only one-hop transmission between CHs and the sink. It is not applicable 
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for large-scale WSNs. HEED [4] is designed for multi-hop WSNs. It focuses on CH 

selection by considering both the residual energy and intra-communication cost. 

UCR [5] focuses on load balancing in order to address hot spot issues. This is done 

by designing smaller clusters as they approach the sink. As for the recent works, 

EDIT [6] selects CHs based not only on energy, but also on delay. In [7] the authors 

address load balancing by considering different hop distances for clusters. SEECH 

[8] proposes a relay selection scheme, where the relay function is separated from 

the CH node. 

These previous clustering works usually do not consider the communication 

interference between the clusters and let MAC layer handle the communication 

issues. To increase the communication efficiency, MAC layer often resorts to 

contention free protocols [9, 10]. In [9] the authors propose a TDMA-based MAC 

protocol for cluster-based networks, in order to reduce the energy consumptions on 

nodes with low data traffic and to decrease the transmission latency on nodes with 

heavy data traffic. After the cluster formation, each CH collects its members’ 

transmission information and allocates time slots according to the requests. E-BMA 

[10] also applies the TDMA-based MAC protocol within a cluster. The CH within a 

cluster allocates the time slots for its members according to the information 

collected via the contention period, also via the piggybacking information of the 

data packet. These works focus on TMDA scheduling within a cluster. It does not 

consider the interference between the adjacent clusters. Obviously, the interference 

from adjacent clusters makes the allocated time slots disable. To address this issue, 

combining of two medium access technologies is often applied. One solution is to 

combine TDMA and CDMA as done in LEACH [3]. That is, within a cluster the 

TDMA technology is used, while different clusters use different CDMA codes for 

inter-cluster interference avoidance. Another one is to combine FDMA and TDMA 

schemes [11]. That is, different frequencies are used for clusters, while TDMA is 

used within a cluster. Obviously, both solutions require a sensor node to support 

two medium access technologies, which is normally beyond the ability of the 

current sensor nodes. Besides, using two medium access technologies degrades the 

communication performance. 

The previous works also resort to inter-cluster cooperation to avoid the 

interference between the adjacent clusters. The main idea behind these works is that 

the interference can be avoided if each cluster allocates the time slots by 

considering its adjacent clusters’ time allocation. However, due to the complexity of 

inter-cluster cooperation management, it is often impractical for WSNs which are 

resource limited. In this paper we propose a clustering method with which a cluster 

can independently allocate the time slots to its members without the inter-cluster 

cooperation.  

In the large-scale WSNs, a sensor node only covers a small fraction of the 

whole sensor field. Hence, if the CHs are carefully selected, it is possible that the 

communication interference between clusters can be avoided. For example, if two 

CHs are three-hop away and only a CH’s direct neighbour nodes can join its cluster, 

it is guaranteed that these two clusters have no interference to each other. In this 

paper we try to partition the large-scale sensor network into clusters without 
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interference during the data collection period. In consequence, each CH can allocate 

time slots to its member independently, which not only facilitates time slot 

management, but improves the communication efficiency as well.   

In summary, we intend to propose a clustering method which can satisfy two 

requirements: one is no interference between adjacent clusters for collision 

avoidance; the other is direct communication between a CH and its members for 

time slots allocation. However, to grant these two requirements, it is often 

impossible to let all sensor nodes join clusters. Those nodes that cannot join any 

cluster are called isolated nodes. Since the isolated node degrades the network 

performance, e.g. data collection ratio and energy efficiency, the number of isolated 

nodes should be minimized. For this purpose, our clustering method resorts to a 

Genetic Algorithm (GA) to minimize the isolated nodes number and we call it 

Genetic Algorithm Clustering (GAC). GA provides an optimization method that, by 

defining an appropriate fitness function, identifies the optimal or sub-optimal 

solutions to satisfy all constraints. In fact, GA for clustering optimization has 

gained some attention [12, 13]. In [12] the authors propose a GA-based method that 

optimizes heterogeneous sensor node clustering by considering multiple 

heterogeneity and clustering factors, such as remaining energy, network location 

and distance to the base-station. In [13] the proposed GA-based algorithm not only 

minimizes the energy consumption and maximizes the network revenue, but also 

produces clusters with uneven size to balance the energy consumption among the 

cluster heads. However, so far, there is no proposition using GA to optimize 

interference-free clustering. 

The contribution of this work is two-fold: First, an interference-free clustering 

method is proposed to facilitate TMDA management, since a CH only needs to 

allocate the time slots for its members without considering the allocation of its 

neighbour clusters, or without using other medium access protocols, e.g., FDMA. 

Second, a GA-based optimization method is developed that encodes the network 

clustering structure with integrity validation and employs a simple fitness function. 

In the rest of this paper, Section 2 describes our first work on interference-free 

clustering. In Section 3 our proposition of GAC is described in details. Section 4 

analyzes the performance through simulations, in which we can see that GA-based 

optimization significantly improves the performance. We conclude our work in 

Section 5. 

2. Interference free clustering 

As above described, the proposed clustering method should grant the two 

requirements for interference-free clustering. Granting the requirement of direct 

communication between a CH and its members is a trivial work. That is, only a 

CH’s direct neighbour nodes can join this CH. According to our analysis, the 

requirement of no interference between adjacent clusters can be interpreted as 

follows: as long as CHs have no common neighbour nodes, the interference 

between clusters can be avoided. This limits a member (node) to cover only one 

CH. Hence, during the data collection period, i.e., the communication from the 
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members to their CH, a node’s communication will never interfere CHs of other 

clusters, so the collision is avoided. The requirement can be further intercepted as: 

any CHs should be three or more hop away to each other; or CHs can be direct 

neighbour (one-hop away), but never be two-hop away. 

Based on this observation, our first interference-free clustering method is 

described as follows:  

 Each node randomly sets a timer for CH competition; 

 When a node’s timer fires, the node becomes a CH and its neighbours 

become its members. All two-hop neighbour nodes quit the competition.  

 Repeat the above steps until all nodes finish the competition. 

 
Fig. 1. Clusters without interference 

With this method, a network can be partitioned into clusters without 

interference. Fig. 1 shows the clustering result of 1000 nodes by using this method. 

Different colours represent different clusters and the communication for data 

collection within a cluster is exempt from interference of other clusters. However, 

we also observe that lots of the nodes (black cross nodes – in the figure they are 

denoted with ×) fail to join any clusters and these nodes become isolated nodes. To 

minimize the isolated nodes number, in the next section we propose GAC to 

minimize the isolated nodes number. 

3. Genetic algorithm based clustering 

3.1. Gene and chromosome 

In our GA-based clustering, a chromosome represents the selected CHs. That is, a 

gene value is the CH identity. Each chromosome has a fixed length size, which 

indicates the total CH number, i.e., the clusters number.  

For example, a network has 1000 nodes and is partitioned into 10 clusters. A 

chromosome can be described as [554 472 989 865 9 539 435 412 195 520], where 

each number represents a CH identity.  
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In our genetic algorithm, the number of clusters, i.e. chromosome length, is 

fixed. This can minimize the algorithm iterations, but it requires an optimal (or near 

to optimal) value of the clusters number to be calculated at the initiation step. 

Intuitively, this value depends on CH’s coverage area. We use the following 

formula for this calculation: 

(1) , 

where l and w are the length and width of the network field respectively; r is the 

transmit radius of a sensor node.  is considered as an ideal value for the 

cluster number (  is a network area and is a cluster area),  so we add a 

coefficient  to revise it, i.e., the clusters number is a little smaller than the ideal 

value. In the performance analysis section, we will calculate  based on 

experiments. 

After obtaining this value, a population initiation process is carried out  

(a population is a collection of individual chromosomes). For each individual, it is 

initiated as: 

Step 1. Let all nodes be CH candidates. 

Step 2. Randomly choose a node from CH candidates and add it to CH group.  

Step 3. Delete this node and all its two-hop nodes from CH candidates. 

Step 4. Repeat Steps 2 and 3 until the number of CHs is equal to the obtained 

value. 

Then, repeat the above steps to choose N individuals for the initial population. 

In our simulation, N is set to 20. 

3.2. Population evaluation  

The goal of GA is to minimize the isolated nodes number, so the fitness function 

defined in our proposition is simple: 

(2) , 

where  is the number of isolated nodes.  

In our genetic algorithm, the elitist strategy was introduced into GA to 

preserve the best individuals, so m chromosomes with better fitness are kept for the 

next generation. Besides these m chromosomes, the method selects N m best 

individuals from the current generation. These N m individuals are selected in a 

way that is proportional to their fitness, e.g. roulette wheel selection based on the 

fitness function. The probability that a chromosome will be selected is 

(3) , 

where  is the fitness value of each individual  in the population, is the number 

of individuals in the population. It is worth to note that one and the same individual 

may be selected multiple times.  

With the selected N m chromosomes, the population is evaluated via a 

crossover and mutation process. 



 173 

3.2.1. Crossover 

Among the above selected chromosomes, GAC randomly selected two 

chromosomes that are called “parents”. The parents will generate two new 

chromosomes. However, the new pair of chromosomes may not meet the 

requirement that CHs should not have common neighbour nodes. Thus, a validation 

process should be performed for each new chromosome. If validated, the new 

chromosome is kept. Otherwise, it is just discarded. The validation process (Fig. 2) 

checks if any CH is a member of other CHs’s two-hop neighbors. If so, the 

validation fails. 

 

Fig. 2. Pseudo code of the validation process 

The crossover process is described as follows: 

Step 1. Randomly select two chromosomes. 

Step 2. Randomly select an integer i between 2 and lenchrom 1. 

Step 3. Cross the two chromosomes from i. 

Step 4. Validate the two generated chromosomes. The invalid chromosome is 

just discarded.  

Step 5. Repeat Step 1-4 until the number of validated chromosomes is N m. 

After the crossover process, the mutation process is executed.  

3.2.2. Mutation 

In the mutation operation, a gene is randomly selected and its value is changed to 

any other node except the nodes which already exist in this chromosome. The 

selection probability for a gene is fairly small. In our simulation, this probability is 

set to 1/lenchrom, so the expected number of genes that need to be changed is 1. 

Similarly, the new generated chromosome may be invalid, so the validation process 

is also executed for each new chromosome. If validated, the chromosome is kept for 
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the next generation. If not, it should be changed back to the previous form. The 

operation of mutation adds variation in the new generation. 

Then, the N m chromosomes are combined with m best chromosomes to form 

the new generation.  

The process is repeated until there is no change between two successive 

generations or a fixed number of generations is reached. Finally, an optimal CH 

distribution is found which can bring optimal clustering results. 

4. Performance analysis 

In this section we analyze GAC, using MATLAB simulation. We simulate such 

scenario: within the range of 500×500 m2, with randomly deployed 1000 nodes. 

The other parameters are listed in Table 1.  

Table 1. Simulation parameters 

Parameters Values 

Node number 1000 

Simulation area 500×500 m 

Node transit radius 60 m 

Size of population 20 

Number of remained elites 2 

Crossover probability 0.8 

Mutation probability 0.03 

Chromosome length 19 

First, we try to obtain the coefficient (r) of Equation (1) by experiments.  

Fig. 3 shows the generated cluster number vs. node’s transmission radius. We 

simulate three scenarios. The blue curve (i.e., ideal curve) represents the number of 

clusters obtained by the function lw/ r2, which is considered the optimal cluster 

number as described in Section 3.1. The other two scenarios are based on the 

initiation process described in Section 3.1. But different to the process, here we 

repeat Steps 2 and 3 until it is impossible to select more CHs, in order to have the 

maximum clusters number as possible. For every transmission radius, the process is 

executed 20 times. The max curve represents the maximum CH number obtained 

among these 20 operations, while the average curve represents the average CH 

number obtained. 

According to Equation (1),  is written as 

(4)  

where  is the obtained clusters number by experiments. If we choose the 

maximum CH number to calculate , then the calculation of   

based on  can bring the maximum clusters number. This could minimize the 

number of isolated nodes: the greater the cluster number is, the less isolated nodes 

are left. But the tradeoff is that the population initiation process should be executed 

many times (expected 20 times) to have this maximum clusters number. Hence, in 

our solution we take the average clusters number for  calculation. 
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Fig. 3. Cluster number vs. transmission radius           Fig. 4. Coefficient vs. transmission radius 

Based on the average curve in Fig. 3, we have  for each transmission 

radius. Fig. 4 shows the relationship between  and the transmission radius. 

With the curve fitting method, we obtain the equation: 

(5) . 

For the parameters listed in the Table II, where the node’s transmission radius 

is set to 60, we have  0.82. According to Equation (1), the chromosome 

length is set to 18, i.e. the network should be partitioned into 18 clusters. 

In the following lines we analyze the convergence of our GAC algorithm.  

Fig. 5 shows the isolated node proportion (the number of isolated nodes/the total 

nodes number) when the chromosomes evolve (the iteration time increases). 

Clearly, when the chromosomes evolve, better results are obtained. That is, more 

nodes can find a cluster to join, which results in less isolated nodes. Two curves are 

shown in the figure. The one with a dotted line presents the average proportion 

value of all individual chromosomes. The other with a solid line presents the 

proportion value of the best individual. We can observe that about 42 iterations 

later, one of the chromosomes evolves with the optimal fitness function, i.e., 

achieves the best clustering. About 52 iterations later, most of the chromosomes 

evolve to the optimal chromosomes. Also, we observe that with GAC only 21% 

nodes become isolated nodes, which is much less than our first proposition (called 

competition clustering), in which, about 37% of the total nodes are isolated nodes. 

We analyze in details GAC by comparing it with the competition clustering. 

The comparison is done by varying the node’s transmission radius and nodes 

number. Fig. 6 shows the isolated node proportion by varying the node’s 

transmission radius. The curve of GAC is on an uptrend with the increase of the 

transmission radius, i.e., the number of isolated nodes increases with the 

transmission radius. This is because when the nodes’ coverage area increases, the 

number of clusters decreases according to Equation (1). In consequence, more 

nodes fail to join a cluster. By comparing the two curves, GAC outperforms the 

competition clustering in terms of the isolated nodes number. With the competition 

clustering, about 36-38% of the total nodes fail to join any clusters and become 
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isolated nodes, while only 22-24.5% of the total nodes are isolated nodes with 

GAC. 

 

            

    Fig. 5. Proportion of isolated nodes                 Fig. 6. Comparison by varying the transmission radius 

Fig. 6 shows the isolated node proposition by varying the nodes number. We 

observe that the number of isolated nodes increases with the increase of the nodes 

number. This is because, when the nodes number increases, the density also 

increases. To achieve interference free mode, more nodes should not join the 

clusters for communication competition. That is why the number of isolated nodes 

increases. Thus, the proportion of isolated nodes increases. Similarly, we observe 

that GAC is much better than the competition clustering. With GAC, only about  

21-25% of the total nodes fail to join any clusters, while about 35-39% of the total 

nodes become isolated nodes with the competition clustering. 

 

Fig. 7. Comparison  by varying the nodes number 
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5. Conclusion 

In this paper, we propose a GA-based clustering method for large-scale sensor 

networks. The clustering method partitions a network into interference-free clusters 

and minimizes the isolated nodes number. Based on this clustering, a CH manages 

the time slots easily without considering the inter-cluster cooperation. The 

simulation results show that our clustering algorithm has good performance and 

largely reduces the number of isolated nodes. In this paper, the interference-free 

clustering only takes into account the isolated nodes number. In our future works 

we will consider more factors, such as load balancing and communication 

efficiency, for performance improvement. 
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