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Abstract: Most of the existing chaotic particle swarm optimization algorithms use 
logistic chaotic mapping. However, the chaotic sequence which is generated by the 
logistic chaotic mapping is not uniform enough. As a solution to this defect, this 
paper introduces the Anderson chaotic mapping to the chaotic particle swarm 
optimization, using it to initialize the position and velocity of the particle swarm. It 
self-adaptively controls the portion of particles to undergo chaos update through a 
change of the fitness variance. The numerical simulation results show that the 
convergence and global searching capability of the modified algorithm have been 
improved with the introduction of this mapping and it can efficiently avoid 
premature convergence. 
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1. Introduction 

The Particle Swarm Optimization (PSO) is an evolution algorithm based on swarm 
intelligence. K e n n e d y  and  E b e r h a r t [1], and C l e r c  and  K e n n e d y [2] 
have investigated PSO in 1995. Their study involved the simulation of the 
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migration and assembling behaviour of predatory birds while they are on the hunt. 
The PSO has many advantages, such as simple parameters, being easily realized, 
parallel processing capability, and robust characteristics. PSO can converge to the 
global optimal solution with a high degree of probability. Due to this most valuable 
advantage it is widely utilized. It has successfully been used in the field of image 
processing as investigated by C h a t t e r j e e  and  S i a r r y [3], the economic 
optimization problem as presented in V a i s a k h  et al. [4], the expert system as in 
B a b u  et al. [5], the industrial control and application as given in N i k n a m [6], 
L i n  et al. [7], P i a n c a s t e l l i  et al. [8], W a n g  [9]  and  W a n g  et al. [10], path 
planning as in K u n d r a and Sood [11]. Premature convergence occurs with PSO 
particularly in complex high-dimensional and multimodal search problems. Solving 
this problem requires a method which combines PSO with the chaotic system using 
the pseudo-randomness and ergodicity of the chaotic system to perturb the particle 
to advance the probability and velocity of the global convergence as investigated by 
L i u   and  L i n  [12]. 

The most widely applied PSO which combined chaos mapping used a logistic 
map to generate chaos sequence as investigated by L i u  and L i n  [12], Y a n g [13], 
and L u and L i u [14]. However, the random sequence generated by logistic chaotic 
mapping has poor uniformity, thus affecting the convergence of the algorithm. In 
order to judge whether or not premature convergence is present, L v  and H o u  
[15] have investigated, applying the rule, that the variance of the population’s 
fitness 2σ  is necessarily less than a threshold value c. The definition is described as 
follows: 
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where if  is the fitness of the i-th particle; avgf  −  the fitness average of the particle 

swarm; N  − the particle swarm size; f  − the normalizing factor. 
L i u  and L i n  [12] have investigated defining not one standard for the 

reasonable value of the threshold value c and assuming the possibility that 2σ  
approaches zero when the algorithm converges to the global optimal solution by a 
numerical experiment. According to further numerical experiments, the premature 
convergence and the variance of the population's fitness 2σ  are related to some 
extent. When the premature convergence occurs, 2σ  does not change much in 
several continuous iterations. If the difference among the variances of the 
population's fitness 2σ  is very small, a premature convergence is likely to occur. In 
such case, we need to give perturbations to the current particle swarm in order to 
avoid the local minimum point. 

Based on the above analysis, this paper uses the Anderson chaotic mapping to 
generate the random number, and uses the change of the variance of the 
population’s fitness to control the portion of particles that undergo the chaos update. 



 72

2. Chaos random number generator 

The behaviour of the chaotic motion is complex and analogous to a random motion, 
but it also has its inherent law, displaying properties, such as pseudo-randomness, 
ergodicity, regularity and so on. It is between some definite phenomena and a 
completely random phenomenon. The common logistic chaotic mapping is 
(3) 1 (1 )n n ncx cx xμ+ = × × − ,  
where μ is the control parameter, and 

00 1cx≤ ≤ ;  n = 0, 1, 2, … 
The above system is completely in a state of chaos and 0 1ncx≤ ≤  when
4,μ =  as investigated by L v, L u and C h e n [16]. 
A n d e r s o n [17] has investigated the recurrence formula of the random 

number generation raised by Anderson chaotic mapping which is shown as follows: 
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This recurrence formula can generate sequences in an infinite period. The 
limiting distribution of the empirical distribution is 
(5) ( ) (ln( 1/ 2) ln(2)) / ln(3)F y y= + + .  

According to the expression 
(6) (ln( 1/ 2) ln(2)) / ln(3)i icx y= + + ,  
the sequence { }icx  can be considered as uniform distribution on (0, 1). 

The uniformity of the two kinds of chaotic mapping is compared as follows. 
Firstly we arbitrarily take an initial value 0 0.48721123cx =  and use (3) and (6) to 
iterate to arrive at 30 000 figures which are denoted by the sequence {cxi}. Then the 
interval [0, 1) is subdivided into 10 subintervals. Finally we consider the frequency 
of the sum of the number of figures which appears in each subinterval. The result is 
shown in Table 1. 

Table 1.  The comparison of the uniformity for the two kinds of chaotic mapping with 30 000 digits 

Subintervals  
The chaotic mapping in this paper Logistic mapping 

The number of 
the data 

The ratio of 
data (%) 

The number of the 
data 

The ratio of data 
(%) 

[0.0, 0.1)  2998 9.99 6126 20.42 
[0.1, 0.2)  3003 10.01 2725 9.08 
[0.2, 0.3) 2998 9.99 2185 7.28 
[0.3, 0.4) 3000 10.00 2058 6.86 
[0.4, 0.5) 3001 10.00 1873 6.24 
[0.5, 0.6) 2998 9.99 1959 6.53 
[0.6, 0.7) 3003 10.01 1974 6.58 
[0.7, 0.8) 2997 9.99 2996 8.99 
[0.8, 0.9) 3000 10.00 2696 8.99 
[0.9, 1.0) 3002 10.01 6157 20.52 
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We choose the initial point randomly and iterate Equations (3) and (6). Then it 
generates a sequence with length of 742. Finally we compare the uniformity. After 
many times of iteration and comparison, we can determine that the sequences 
generated by Anderson chaotic mapping show better uniformity. The comparison 
results of the two sequences which were chosen randomly are shown in Table 2. 

Table 2. The comparison of the uniformity for the two kinds of chaotic mapping with 742 digits 

Subintervals  

The chaotic mapping in this 
paper Logistic mapping 

The number of 
the data 

The ratio of 
data (%) 

The number of the 
data 

The ratio of 
data (%) 

[0.0, 0.1) 73 0.0984 135 0.1819 
[0.1, 0.2) 75 0.1011 63 0.0849 
[0.2, 0.3) 74 0.0997 64 0.0863 
[0.3, 0.4) 74 0.0997 55 0.0741 
[0.4, 0.5) 75 0.1011 43 0.0580 
[0.5, 0.6) 73 0.0984 39 0.0526 
[0.6, 0.7) 75 0.1011 62 0.0836 
[0.7, 0.8) 74 0.0997 53 0.0714 
[0.8, 0.9) 74 0.0997 75 0.1011 
[0.9, 1.0) 75 0.1011 153 0.2062 

It can be seen from Table 2 that although the length of the sequence is smaller, 
the one generated by Anderson chaotic mapping maintains a higher level of 
uniformity. 

When the optimal solution of the optimization problem is not located on the 
edge of the optimal space, Anderson chaotic mapping is superior to the logistic 
chaotic mapping. Since the distribution of the solution of the optimization problem 
cannot be known in advance for practical use, the initial particle swarm must be of 
uniform distribution as far as possible in the optimization space. Hence, the random 
number generated needs to have good uniformity. 

3. Standard PSO algorithm  

PSO algorithm adopts the concept of the particle swarm and evolution and 
evaluates the particle according to the fitness value. Each particle corresponds to 
one possible solution of the problem. It does not have any volume or mass, but has 
a position and velocity. The value of the objective function corresponding to the 
position of the particle is the fitness of the particle. The algorithm firstly generates a 
set of initial particles, then it iterates each particle, and finally it obtains one 
solution. For each iteration it realizes the particle update by tracking the personal 
best (pbest) and global extreme (gbest). 

The velocity and the position of a standard PSO are: 

(7) 1 2( 1) ( ) rand1 (pbest ( )) rand2 (gbest ( )),v t w v t c x t c x t+ = × + × × − + × × −   

(8) ( 1) ( ) ( 1).x t x t v t+ = + +   
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In the above equations, ( )v t  and ( )x t  are the particle velocity and particle position 
in the t-th step, respectively, rand1 and rand2 are independent random numbers 
within the interval [0, 1]; 1c  and 2c  are learning factors with a value 2; w  is the 
inertia weight with a value between 0.1 and 0.9 [15]. S h i  and E b e r h a r t  [18] 
have determined that if w decreases linearly along with an increase in the iterations, 
the convergence of the algorithm would be dramatically improve. That is 
(9)   max max min( ) / MaxDT,w w t w w= − × −   

where maxw  and minw  are the maximum and minimum of the weight, respectively. 
MaxDT  is the maximum number of iterations and t  is the current number of 
iterations. 

In order to reduce the possibility that the particle leaves the optimization 
space, the range of the velocity value and position value must be restricted. 
Generally, if we take maxx x≤ , then we can take max maxv k x= ⋅  with 0.1 1.0k≤ ≤ . 

4. The modified PSO  

Consider the following global optimization model: 

(10) 1 2min ( ) ( , , , ).nf x f x x x= L   

where n  is the dimension of the variable x . This paper uses real coding. 

4.1.  The initial population generated by chaotic mapping 

An n-dimensional vector 1cx  was randomly generated with a value of each element 
ranging between 0 and 1. For each element of 1cx , Anderson chaotic mapping is 
used with N−1 iterations to generate N−1 n-dimensional points which are 
respectively denoted by 2 3, , , Ncx cx cxL . The n-dimensional vectors 

1 2 3, , , , Ncx cx cx cxL  were firstly converted in an order with respect to the 
optimization space by using (12). Then the fitness was calculated by using (10). 
Finally M points were selected to be the initial population. 

The variable x, the value of which is not between 0 and 1, can be converted by 
(11) and (12) while assuming ( , )x a b∈ . 

4.2.  The modified iteration update 

This paper uses 2σ  behavior between the iterations in order to determine whether 
premature convergence occurs. If the difference of 2σ  between iterations is less 
than a given value, for instance  eps = 10–6, it can be assumed that the current 
particle swarm needs to be disturbed. Firstly the number of particles is determined 
which need to be replaced, as s. This paper takes s as 61.8% of the total number of 
particles. Starting with the particle’s position which is generated randomly, the 
positions of 1s −  particles are generated by Anderson chaotic mapping. The 
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positions of s particles are used to replace the positions of s particles which have the 
worst fitness in the current particle swarm and the PSO iteration process continues. 

4.3.  The termination condition of the iterations 

For the sake of simplicity, this paper takes the given maximum number of iterations 
as the termination condition. When the standard function is used to test the 
efficiency of the algorithm, the rule can also apply that the fitness value is up to the 
standard to be the convergence criterion. 

4.4.  The detailed flow of the modified PSO 

Step 1. Initialize the inertia weight w0, the learning factors c1 and c2, the population 
size N, the maximum number of iterations MaxDT, the number of dimensions D, 
the precision eps = 10–6, the given optimization space min max[ , ]x x , and the velocity 
limit vmax. 

Step 2. Firstly generate a D -dimension space particle, then use (4) and (6) to 
get 1N −  particles. Finally use (12) to get N  D-dimension particles in the 
optimization space which are denoted by ix , where 1, 2, ,i N= L . Analogously 
initialize the flight velocity letting the number of iterations equal to 0. 

Step 3. Firstly ix  is substituted into the objective function to calculate the 
fitness if , then determine the global optimal position of the particle swarm (gbest) 
and the optimal position (pbesti) that the particle goes through in itself, where 

1, 2, ,i N= L . 
Step 4. w  decreases according to (9). The particle position and velocity are 

updated according to (7) and (8), respectively. The iterations increase by one. 
Update (gbest) and (pbest). Calculate the difference between the fitness variance of 
the current particle swarm and that of the previous iteration. If the absolute value of 
the difference is less than eps, go to Step 5. Otherwise go to Step 6. 

Step 5. Calculate s. Being analogous to the operation which generates the 
position of the initial particles, generate s new particles to replace s particles which 
have the worst fitness. Go to Step 4. 

Step 6. If the number of the iterations is less than MaxDT, go to Step 4. 
Otherwise, go to Step 7. 

Step 7. Output the final results (gbest)  and (pbest). 

5. Numerical simulation 

In order to test the performance of the modified algorithm, five nonlinear standard 
functions are chosen as shown in Table 3. 1f  and 2f  are unimodal high-
dimensional functions. 3f  and 4f  are multimodal low-dimensional functions. 
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Table 3. The standard test functions 

Function Dimension Domain Convergence  
criteria 

Optimal  
value 

2
1 1

n
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2 2 2
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The theoretical optimal solution is difficult to be obtained, so this paper 
proposes a new convergence criterion. 

The algorithm presented in this paper is compared with the standard PSO. We 
set 1 2 2c c= = , and set the population size of high-dimensional functions as 40 and 
that of low-dimensional functions as 10. The variable dimension, domain and 
convergence criteria are shown in Table 1. The inertia weight w linearly decreases 
from 0.9 up to 0.2. The proportion of the particles which are generated by chaotic 
mapping is 61.8% and set eps = 10–6. The algorithm in this paper relies on the chaos 
to jump off the local minimum. So the more iterations there are, the better the 
obtained results will be. We set the maximum iterations MaxDT = 10 000, and run 
randomly 100 times. In order to compare the search efficiency of the algorithm, we 
adopt the following criterion.  

1. With a successful search, take the average value of the optimal values and 
denote it as mB. 

2. Denote the ratio of the successful search as Ir. 
The results are shown in Table 4. 

Table 4. The results of function search 

Functions 

mB of the standard 
PSO/ convergence 

criteria/optimal 
value 

lr of the 
standard PSO 

mB of this paper/ 
convergence criteria/ 

optimal value 

lr of the 
algorithm 

presented in this 
paper 

1f  /10–6/ 0 0 3.5651×10–15/ 10–6/0 1.0 

2f  /100/ 0 0 32.555/ 100/ 0 0.97 

3f  86.4181/ 100/ 0 0.32 35.0623/ 100/ 0 1.0 

4f  /10–6/ 0 0 5.6199×10–14/ 10–6/ 0 0.25 

5f  0/ 0/ 0 0.18 0/ 0/ 0 0.58  
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“+” is used to denote the optimal point and the arrows are used to highlight it, as 
shown in Fig. 2. 

   

   
Fig. 2. The graphs of the functions 1f , 2f , 3f  and 4f  near the optimal points 

In Fig. 2 the optimal point of function 1f  is the point of tangency between a 
sphere and a plane. The optimal point of function 2f  is located in the flat area 
which changes more slowly in X2 direction than in X1 direction. The function 3f  is a 
multimodal function. Although the dimension is 30 when it is optimized, the 
successful convergence rate of the algorithm reaches 100% because of the small 
optimization range. The function 4f  has 25 local optimal points in the domain  
[–1, 1]×[–1, 1]. Table 3 shows that the successful convergence rate of the algorithm 
for the function 4f  is 0.25. The reason is that the optimization domain [–600, 600]30 
is too large and the dimension of the function is too high. When the optimization 
domain of the function 4f  is reduced to [–5.12, 5.12]30, the successful convergence 
rate of the algorithm increases to 100%. 

The state of successful convergence was chosen, and the convergence rate was 
compared between the algorithm and the standard particle swarm optimization. The 
results are shown in Fig. 3. 

From Fig. 3 it can be seen that the the standard PSO has faster convergence 
rate, but it is apt to get entrapped in premature convergence and cannot search the 
optimal value. The algorithm presented in this paper introduces the Anderson 
chaotic mapping to perform perturbation, and it can improve the optimization 
capability of the algorithm by increasing the iterations. 
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Fig. 3. Comparison of the convergence between the two algorithms for different test functions 

6. Conclusion 

The test results of the above standard functions show that the algorithm which 
initializes the particles by Anderson chaotic mapping and uses the change of fitness 
variance to control the update of a portion of particles has a beneficial convergence 
effect. 

The convergence speed of PSO is not very stable because of the characteristics 
of the standard functions and the inherent characteristic of the PSO algorithm. 
Additionally, random factors exist in the initialization and update process of the 
particles. But the optimization capability of the algorithm presented in this paper 
will increase along with the increase of the iterations. 

We will further analyze the effect of the parameters on the algorithm’s 
performance, such as the size of the particle swarm, the proportion of the particles 
which undergo chaos mapping update while performing perturbations and 
iterations. 
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