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Abstract: In this paper, we propose a Detail-Preserving Sparse Model (DPSM) for 
de-noising of images that are usually interfered by noise on the Wireless 
Multimedia Sensor Network (WMSN). Specifically, based on the Structural 
SIMilarity (SSIM), the DPSM first incorporates a structural-preserving constraint, 
which enables the structure in the reconstructed image to be close to the ideal no-
noise image. In addition, the DPSM adopts a residual ratio as the stopping 
condition of the sparse solution algorithm (e.g., Orthogonal Matching Pursuit), 
which enables the structures to be reconstructed under high noise conditions. The 
experimental results on several WMSN images have demonstrated the superiority of 
the proposed DPSM method over several well-known de-noising approaches in 
terms of PSNR and SSIM. 

Keywords: Structural similarity, residual ratio, wireless multimedia sensor network, 
sparse representation, de-noising. 

1. Introduction 

A Wireless Multimedia Sensor Network (WMSN) is a distributed sensing 
monitoring network which is composed of new types of sensor nodes with video, 
audio and image perception sensing functions. It has broad applications, such as 
real-time traffic monitoring and industrial process control [1]. Due to the diversity 
of the objects it monitors also the complexity of the monitoring environments. A 
WMSN image usually contains abundant details. At the same time, WMSN images 
collected during bad weather usually contain high levels of noise, which seriously 
degrade the image quality [2]. Therefore, the de-noising of WMSN images is a hot 
topic [3, 4]. 

Transform domain based methods have been widely used for WMSN image 
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de-noising in the past [5-7]. It assumes that the noise in the image is mainly 
distributed in the high frequency component, while the image’s contents are 
distributed in the low frequency component. Therefore, the goal of de-noising can 
be achieved by restraining or removing the high frequency component [8, 9]. 
However, a large number of experiments on WMSN images collected under real-
world conditions show that available information related to the image content could 
be detected in the high frequency part of the spectrum, and that the noise 
components also existed in the low frequency component [10-13].This means that 
when using transform domain-based de-noising methods, there is a risk that some 
meaningful information located in the high frequency component might be filtered 
out as noise, while the noise in the low frequency component is not always 
efficiently removed [14, 15]. 

In recent years sparse representation has attracted increasing attention in the 
field of image de-noising [16-18]. Compared with transform domain-based image 
de-noising, the sparse representation theory assumes that the information available 
in the images has specific structural features, strongly correlated to the structure of 
the atoms of a dictionary, while the noise has not such a feature. Therefore, we can 
separate the signal from noise according to whether the data has a sparse 
representation in the dictionary or not [19, 20]. Recently, various approaches based 
on sparse representation have been proposed to address the problem of image de-
noising. Z h a n g  and  X i e [21] proposed a de-noising method based on DCT and 
sparse representation. In this method the image’s content could be efficiently 
represented by an over-complete dictionary learned from the noisy image itself. But 
the dictionary contains a large number of atoms that have nothing to do with the 
image structure, which are causing reduction in the efficiency of image sparse 
representation. In addition, Z h a n g  et al. [22] proposed a de-noising method based 
on adaptive sparse representation. In this method the K-SVD algorithm has been 
used to learn an over-complete dictionary from the test image itself. This method is 
sensitive to noise and therefore when the image contains large levels of noise, it can 
cause fluctuations in the reconstructed image. Z h o u  and  L u o [23] proposed a 
novel K-Least Mean Square (K-LMS) algorithm for learning the over-complete 
dictionary. Nevertheless, the fixed step length adopted in the decomposition process 
of LMS algorithm could cause a large level of steady-state errors. 

In most of the current sparse based de-noising methods, the reconstruction 
error between the images before and after de-noising is considered as a fidelity term 
and a hard threshold is adopted as iteration termination conditions. Due to the 
complex work environment, the WMSN images contain rich details and low signal-
to-noise ratio. If we continue using the above criteria, it would be difficult to set a 
threshold and the noise components introduced in the reconstructing process will 
have a larger impact on the image reconstruction accuracy. In this paper we propose 
a new sparsity based method for WMSN image de-noising. Motivated by the works 
in [17], our method has two improvements. The first one is to replace the 
reconstruction error with the Structural SIMilarity (SSIM) as a fidelity term. We 
propose this because the structure similarity can conform to the characteristics of a 
Human Visual System (HVS) and thus tend to produce better results that agree with 
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the HVS [24]. The second improvement is to adaptively tune the iteration number. 
Especially, instead of using a constant iteration number [17], the method proposed 
would determine the iteration number adaptively according to the residual ratio 
between the adjacent sparse decompositions. 

The rest of the paper is organized as follows. The description of sparse 
representation theory is briefly presented in Section 2. The proposed method is 
described in Section 3. The experimental results and comparisons are given in 
Section 4. The conclusions are drawn in Section 5. 

2. Sparse representing de-noising model 

Research results have shown that the WMSN image contains a large number of 
detailed features, such as edges and mutation, while the local small image patch 
appears simple and has a consistent structure [25]. For this reason, we establish the 
de-noising model for local image blocks x  instead of the whole image. 

Let n∈ Rx  be a n n×  (n ا N) image patch extracted from an image (of size
N N× ) and let us define a redundant dictionary as n k×∈D R  ( n k< ), the image 

patch can be represented as  
(1)   = Dαx , 
where k∈ Rα  is a matrix of the sparse coefficient that can be obtained by solving 
the following optimization problem: 
(2)   2

0 2
ˆ arg min s. t. .ε− ≤Dα = α α x   

Here 
0

⋅  is the 0l  norm, 
0

α  is the number of the non-zero values, and ε  represents 
the error tolerance. Equation (2) can also be changed to the following regularization 
optimization problem:  
(3)   2

2 0
ˆ arg min ,r= +

α
α α α   

where r  is the regularization parameter. While solving (3) is an NP-hard problem, 
several strategies, such as basis pursuit [26] and OMP [27] are developed for 
approximating the solution of (3). The final de-noised model can be described as 
follows: 
(4)   

22

2 0 2, , ,

ˆˆ{ , } arg min ,
ij

ij ij ij ij ij
i j i j

rλ= − + + −∑ ∑
Y

Y Y X D R Y
α

α α α   

where X  is the noisy image, Y   is the ideal image, λ   is the Lagrange multiplier,  
ijr  is the regularization parameter, ijα  is the sparse coefficient of the image with size 

of n n×  in ( , )i j , and ijR  is a n N×  matrix to extract the image block in ( , )i j  
from the image of  N N× . The first item in the right side represents the overall 
similarity degree between the noised image and the ideal image, the second item is 
the sparse constraint, and the third one is the reconstruction error with the constraint 

2 2

2ij ij cσ− <D R Yα , where c  is the noise factor associated with the dimensions of 

the image block and σ  is the noise variance. 
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3. The detail-preserving sparse model for WMSN image de-noising 

In this section, we describe the proposed method. The core of our method is to 
replace the reconstruction error with the structure similarity and make it a new 
fidelity term. In addition, instead of the residual hard threshold, we utilize the 
residual ratio as a new iteration stopping condition. 

3.1. Structural similarity 

SSIM is a new kind of standard for image visual quality evaluation. It measures the 
quality of the image in three aspects, such as brightness, contrast and structure. 

The SSIM can be described as follows: 

(5)   1 2
2 2 2 2

1 2

(2 )(2 )
( , ) ,

( )( )
a b a b

a b a b

c c
S a b

c c
γ γ σ σ

γ γ σ σ
+ +

=
+ + + +

  

where aγ , bγ  are the means of the noised image and the ideal image, aσ , bσ  are the 
variances,  1c , 2c  and 3c  are the minimal positive constants related to the values of 
the pixel. SSIM measures the image quality for brightness, contrast and structure, 
which is more in line with the characteristics of the human visual system. It has a 
value between 0 and 1, the closer it is to 1, the more similar in structure are the 
noised and the de-noised images. 

3.2. Residual ratio 

In general, sparse coding is proceeded iteratively, so that the stop rule is important 
to keep useful information and de-noising. Recently, researchers mostly use the 
following two methods to determine the stop rules of OMP iteration. The first one is 
using a hard threshold, in which the maximum number of the iterations is chosen 
empirically and the residual is filtered as noise [28, 29]. It is hard to set the 
iterations number exactly. The smaller the process is, the more information is lost, 
otherwise it would add noise. The other method is based on the residual signal 
energy. The iterations would be stopped when the radius of the residual energy is 
below a certain threshold [16, 17, 30]. In [17] the threshold was set to 2cσ , where c 
is the noise factor, and σ is the noise variance. However, when the signal dimension 
and the noise levels increase, the energy radius can enlarge quickly, the iteration 
will be prematurely terminated that might cause loss of some information. 
Considering that the above two methods cannot be appropriate for WMSN images, 
which are collected under condition of high intensity noise, we propose a new 
termination condition based on the residual ratio.  

Assume that jX  is the j -th column of image X, it can be expressed as follows 
when the decomposition is processed for m -th time: 

(6)   ( ),j j m jR= +X X X   

where jX  represents the useful information of the image, ( )m jR X  represents the 
residual of the m -th decomposition. 
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The residual ratio κ  can be described as follows: 

(7)   
2

1 2
2

2

,m j m j

m j

R R

R

β
κ

β

+ −
=

X X

X
  

where β   is the normalization coefficient with the constraint  
2 2

1( ) / ( )m j m jE R E Rβ += X X  and E represents the solution of the expectation value. 
It is clear from the foregoing, that the atoms which maximize 

2

1 2m j m jR Rβ+ −X X  would be selected during the m -th iteration, i.e., the atoms 

which make the residual ratio approach to the greatest value would be selected. 
With the useful signal gradual extraction, the residual ratio of the maximum 
amplitude is gradually reduced. When the residual ratio reaches a minimum value, 
the residual signal would no longer contain any useful information and the OMP 
must be stopped in time. 

3.3. The method proposed 

On the basis of the above analysis, the Detailed-Preserving Sparse Model can be 
expressed as follows: 
(8)   2

2 0, , ,

ˆˆ{ , } arg min (1 ( , )),
ij

ij ij ij ij ij
i j i j

r Sλ= − + + −∑ ∑
Y

Y Y X D R Y
α

α α α   

where ˆ ijα  is the coefficient of the sparse representation, the third item in the right 
side is the new fidelity term, ( , )S ⋅ ⋅  shows the calculation of the SSIM. The first 
term on the right side measures the overall proximity between Y  and X , the 
second part as a regular term reflects the sparse constraint, and the third one is the 
fidelity term which replaces the reconstruction error of K-SVD measuring the 
consistency between the reconstructed image and the ideal image. Here we have 
employed SSIM as a fidelity term.  

From the above analysis, the specific process of our method is summarized in 
four stages. 

(1) The initial stage 
The over-completed DCT dictionary is adopted as an initial dictionary, 

satisfying Y = X . 
(2) The stage of sparse coding 
According to the proposed model, the structural similarity is incorporated into 

the OMP algorithm and each image patch is sparsely decomposed. The modified 
method which incorporates SSIM into the procedure is defined as follows: 
(9)   

0
ˆ arg min (1 ( , )).

ij
ij ij ij ij ijr S= + − D R Y

α
α α α   

It can be seen that the role of 2

2ij ij−D R Yα  is replaced by 1 ( , )ij ijS− D R Yα . We 

solve the optimization problem by using the OMP, gathering one atom at a time, 
and stopping when ( , )ij ijS D R Yα  goes above T  which is given as follows: 

(10)   1 ,T κ= −   
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where κ  is the residual ratio. Subsequently the sparse coefficients vectors ˆ ijα  can 
be obtained. 

(3) The stage of updating a dictionary 
Given all ˆ ijα , we can now fix them and turn to updating the initial dictionary 

column by a column using K-SVD. Assuming that D  is known similarly, jd  is the 
j th column to be updated in the dictionary. Corresponding to jd , T

jα  is the j th 
row in the sparse coefficient matrix. For each column j = 1, 2, …, k in D, it is 
updated by the following model: 
(11)   

T

T T

,
min(1 ( , , )) s.t. .

j j
j j j i

j k
S ω

≠

− ⊆∑
d

Y d
α

α α    

After the above procedure, a new dictionary D̂  will be formed, and along with 
this update, the representation coefficients change as well. 

(4) The stage of outputting results 
After getting the new dictionary D̂ , we can get the approximate solution of the 

ideal image through Equation (12): 
(12)   22

2 2
,

ˆ arg min ,ij ij
i j

λ= − + −∑
Y

Y Y X D R Yα   

where Ŷ  is the output de-noised image. Solving it for the partial derivative of Y, 
we can get a closed-form solution of the form as follows: 

(13)   T 1 Tˆ ˆ( ( ).ij ij ij ij
ij ij

λ λ−= ∑ ∑Y I + R R ) X + R Dα   

The graphic demonstration of the overall de-noising process is presented in  
Fig. 1. 

 
Fig. 1. Flowchart of the proposed de-noising method 

4. Experimental results and analysis 

In this section, in order to test the performance of the proposed method, we have 
used four different methods for comparison. The parameters of the proposed 
method are set as: 10J = , 0.03κ =  and 8 8n = × . As in reference [17], we set λ  and 

ŶX
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c to be 30/σ  and 1.15, respectively. For the compared methods, the parameters are 
set to the default value in order to reach their best results. In our experiments PSNR 
and SSIM were adopted as objective indices to evaluate the quality of de-noised 
images. All the experiments are implemented on a Core i5(R) 3.2 GHz PC with 8 
GB RAM. 

In the first experiment, we compared the SSIM result of the proposed method 
with those of Wavelet Transformations using a Statistical Model (WT-SM) [31], 
sparse representation using DCT dictionary (SR-DCT) [30], K-SVD [17] and the 
method proposed by Z h o u and L u o [23]. The tests were performed on three 
images, which are given in Fig. 2: “Parking lot”, “Crossroad” and “Garage”. Each 
image has a size of 256×256 pixels, the horizontal and vertical resolution is 300 dpi 
and the bit depth is 8. White noise with variations of 25, 35 and 55 were added in 
the images. The SSIM results are given in Fig. 3. 

 
(a)                                             (b)                                               (c) 

Fig. 2. The original images: Parking lot (a); crossroad (b); garage (c) 

 
(a)                                                  (b)                                                   (c) 

Fig. 3. The SSIM results obtained by five compared methods on three test images: Results on “Parking 
lot” image (a); results on “Crossroad” image (b); results on “Garage” image (c) 

As it can be observed in Fig. 3, the proposed method outperforms the other 
methods on all SSIM results for all three images. For instance, by adding white 
noise with variance of 35 to the Garage image, the SSIM result obtained by the 
proposed method is 0.809, with a gain of 0.125, 0.086, 0.064, and 0.063 
respectively over the values obtained by the WT-SM, SR-DCT, K-SVD and the 
method in [23]. It can also be found that the results obtained by the proposed 
method are better than the others for different images, with an average rise at 0.111, 
0.087, 0.053 and 0.044 in average, respectively in WT-SM, SR-DCT, K-SVD and 
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the method in [23]. In addition, when the images were de-noised by using the 
compared methods, some important details in the images would disappear together 
with the noise. Our method de-noises images by using a detailed-preserving sparse 
model, which can help to efficiently keep the structure characteristics, and 
meanwhile the useful information in WMSN images can be better retained. 

In the second experiment we compared the PSNR result obtained by the 
proposed method with those of the other four methods. The tests were performed on 
the same images: “Parking lot”, “Crossroad” and “Garage”. AWGN is 
superimposed on them with  25, 35 and 55. The PSNR results are shown in Tables 
1, 2 and 3. It can be found that the results obtained by the method proposed are 
better than those of the other methods for the same image. For instance, by adding 
white noise with variance of 35 to the “Garage”, the PSNR result obtained by the 
proposed method is 27.15 dB, with an increased value by 3.58 dB, 2.44 dB, 0.50 dB 
and 0.19 dB respectively compared to the values in WT-SM, SR-DCT, K-SVD and 
the method in [23]. We also  found that the results obtained by the proposed method 
are better than the others for different images. For instance, the PSNR result 
obtained by the proposed method is increased by 3.51 dB, 2.56 dB, 0.53 dB and 
0.36 dB on average, respectively to WT-SM, SR-DCT, K-SVD and the method in 
[23]. 

Table 1. Performance of the de-noised methods of “Parking lot” by PSNR (dB) 
Noise σ WT-SM SR-DCT K-SVD Method [23] Proposed 

25 28.93 30.07 32.24 32.45 32.65 
35 28.45 29.52 31.69 31.86 32.12 
55 25.17 26.06 28.12 28.19 28.66 

 
As a final experiment, we compared the de-noised effects achieved in the 

proposed method, K-SVD and the method in [23], because they use similar 
techniques. Figs 4 and 5 both offer visual comparison between them. From the 
visual results one can see that the proposed method can preserve the structural 
features better than the other methods. 

Table 2. Performance of the de-noised methods of “Crossroad” by PSNR (dB) 
Noise σ WT-SM SR-DCT K-SVD Method [23] Proposed 

25 26.87 27.95 30.18 30.30 30.69 
35 26.01 27.04 29.17 29.26 29.63 
55 21.44 22.16 24.14 24.19 24.68 

Table 3. Performance of the de-noised methods of “Garage” by PSNR (dB) 
Noise σ WT-SM SR-DCT K-SVD Method [23] Proposed 

25 25.04 26.20 28.46 28.54 28.95 
35 23.57 24.71 26.65 26.96 27.15 
55 19.58 19.87 21.27 21.65 22.13 
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Fig. 4. Visual comparison of the de-noising results on three images (Parking lot, Crossroad and 
Garage), with 75σ = . The first row: De-noising results by using WT-SM. The second row:  

De-noising results by using SR-DCT. The third row: De-noising results by using K-SVD. The fourth 
row: De-noising results by using the method in [23]. The final row: De-noising results obtained by the 

proposed method 
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Fig. 5. Detail comparison of the de-noising results on three images (Parking lot, Crossroad and 

Garage), with 75σ = . The first row: De-noising results by using WT-SM. The second row:  
De-noising results by using SR-DCT. The third row: De-noising results by using K-SVD. The fourth 

row: De-noising results by using the method in [23]. The final row: De-noising results obtained by the 
proposed method 
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The reasons giving our proposed method better performance than the other 
four algorithms can be summarized as follows: First, the de-noising based on sparse 
representation can efficiently distinguish the useful information and the noise. 
Second, since SSIM can accurately evaluate the perception quality of the image, the 
proposed method uses SSIM as a new fidelity term, which has some advantages in 
terms of the image structure characteristics. Third, the proposed method uses the 
residual ratio as an iteration termination condition and therefore avoids the defect of 
a hard threshold which can introduce noise in the process of iterations. Because of 
this it achieves a better de-noising effect than the other methods. 

5. Conclusion 

In this paper we have proposed an improved de-noising method for WMSN image 
de-noising. The proposed method can overcome the drawbacks of the traditional 
methods based on sparse representation. We take SSIM as a fidelity term and utilize 
the residual ratio as an iteration termination condition, so that the de-noised image 
can be efficiently reconstructed by this Detail-Preserving Sparse Model. The 
experimental results have shown that the method suggested has better de-noising 
performance than some other methods in terms of SSIM and PSNR. In the future, 
we will focus on the dictionary learning method and the low-complexity sparse 
recovery method to improve the efficiency of the proposed method. 
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