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Abstract: Modern urban highways are under the influence of increased traffic 
demand and cannot fulfill the desired level of service anymore. In most of the cases 
there is no space available for any infrastructure building. Solutions from the 
domain of intelligent transport systems are used, such as ramp metering. To cope 
with the significant daily changes of the traffic demand, various approaches with 
autonomic properties like self-learning are applied for ramp metering. One of these 
approaches is reinforced learning. In this paper the Q-Learning algorithm is 
applied to learn the local ramp metering control law in a simulation environment, 
implemented in a VISSIM microscopic simulator. The approach proposed is tested 
in simulations with emphasis on the mainstream speed and travel time, using a 
typical on-ramp configuration. 
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1. Introduction 

In recent decades a significant increase in the traffic demand has occurred. This 
trend is especially present in densely populated areas where daily traffic 
congestions occur regularly during rush hours. Congestion is an important issue in 
road traffic because it can significantly reduce the traffic users’ Level of Service 
(LoS). Most significant negative impacts of the reduced LoS are delays in goods 
delivery, in public, freight and private transport, etc. The delays induced by traffic 
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congestion cause time losses for the drivers and passengers, as well as increased 
fuel consumption.  

Considering the above mentioned facts, it is important to develop efficient 
highway management control methods in order to mitigate the congestion and 
restore the originally planned LoS. Such traffic management control methods are 
considered under the scope of Intelligent Transport Systems (ITS). Systems from 
the ITS domain are functionally built as a superstructure of several transportation 
control systems based on advanced optimization of the transport processes with the 
use of information-communication infrastructure and devices. Today autonomic 
properties, such as self-learning, self-adaptation, self-configuration, etc. are also 
added. 

The area where the on-ramp and mainstream flows are actually coming in 
interaction is known as a downstream bottleneck. An intense downstream 
bottleneck occurs as a consequence of vehicles platoon entry from on-ramps and 
leads to traffic overspill on the highway or to peaks in the traffic demand [3]. The 
ramp metering control method can significantly improve the total travel time of 
such an urban highway [5].  

In this paper the technique of Reinforcement Learning (RL), e.g., the  
Q–Learning algorithm was applied to design an adaptive control strategy based on 
learning for local ramp metering control. The control strategy developed has been 
tested under typical traffic conditions in a VISSIM road traffic micro-simulator. 

2. Ramp metering 

Ramp metering uses special traffic signals at on-ramps to control the rate or size of 
the vehicle platoons entering the mainstream traffic according to the current traffic 
conditions [5]. Awareness of the current traffic conditions for a particular highway 
segment (traffic flow, speed and occupancy, etc.) is achieved by analyzing the real 
time data collected from the road sensors (inductive loops), traffic cameras, etc. 
These sensors are usually placed on the on-ramps and on the main road as presented 
in Fig. 1.  

It is possible to divide the ramp metering algorithms in two major categories or 
strategies: local (or isolated) and coordinated. Ramp metering algorithms 
categorized as local, take into account the traffic conditions on a particular on-ramp 
and the nearby segment of the urban highway where they are applied. A drawback 
of the local ramp metering algorithms is their unawareness of the overall traffic 
situation on the entire controlled highway segment. ALINEA is the most widely 
used local algorithm and its core concept is to keep the downstream occupancy of 
the on-ramp at a specified level by adjusting the metering rate [4]. Ramp metering 
algorithms are categorized as coordinated if they take into account the overall 
highway traffic [2]. According to the overall highway traffic state, the metering rate 
for every on-ramp is adjusted. It is possible to divide the coordinated algorithms 
into cooperative, competitive and integrated algorithms [3]. The usual procedure for 
cooperative algorithms is to detect a bottleneck and enrol several upstream on-
ramps to create virtual on-ramp queues. The competitive algorithms obtain during 
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the execution local and global solutions appropriate for the current traffic situation. 
The smaller value of these two solutions is selected. The integrated algorithms are 
based on an optimization engine with defined boundaries and a goal that has to be 
achieved during the control period [10]. In this paper only local ramp metering is 
examined. 
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Fig. 1. Downstream bottleneck and spillback effect location with ramp metering infrastructure 

3. Application of Q-Learning in ramp metering control 

Standard ramp metering algorithms like ALINEA cannot cope with a wide range of 
traffic demand changes. Therefore, the researchers started to develop and apply 
various intelligent control approaches based on learning. Learning to act in ways 
that are rewarded is a sign of intelligence [7]. RL is one of the basic techniques of 
the Intelligent Agent (IA) technology. The learner or decision maker is named agent 
and everything it interacts with is the environment. The agent has a set of sensors to 
observe the state of the environment, and to perform a set of actions in order to 
change the state of the environment. The most important characteristics of the agent 
are the trial and error search, and delayed reward. The learner or an autonomous 
agent that senses its environment or acts in it can so learn through trials to select the 
optimal action or actions which lead to the largest reward. 

Agent

Enviroment

State Reward Action

 
Fig. 2. Agent-environment Interaction 

For a more accurate presentation of the interaction we here assume that the 
agent and the environment communicate in all sequences of discrete time steps:  
t = 0, 1, 2, … At each time step t the agent receives some representation of the state 
of the environment st∈S, where S is the set of possible states. In accordance with 
that, action at∈A(st) is chosen, where A(st) is a set of actions which are available in 
the state st. One step later, as a consequence of its action, the agent gets a numerical 
reward, rt+1∈R and finds itself in a new state, st+1. The agent obtains a reward or a 
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penalty in order to induce the desirability of the final state [11]. Fig. 2 shows the 
agent-environment interaction. The transition from one to another state is shown as 
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where Ѕi is the state at the time step i, аi is the possible action available in each state 
at the time step i, ri is the reward which the agent receives at the time step i for 
taking action аi. One of the most significant achievements in RL was the 
development of the Temporal Differences Off-Policy Algorithm known as  
Q-Learning. The ramp metering control strategy developed in this research is 
performed by an agent. 

3.1. Q-Learning algorithm 

Q-Learning provides the agent with an opportunity to learn the control policy. For 
non-deterministic environments the Q-function has been redefined as an expected 
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−  is the expected value of the 
previously defined value for the new action a' at the next state s'. The parameter γ is 
the discount rate in the range of 0≤γ ≤ 1, αn is the learning rate, (s, a) is the updated 
state and action during n iterations, and visitsn (s, a) is the total number of visits for 
this pair of state-action until the n-th iteration. 

3.2. Adaptation for local ramp metering 

The proposed process of adaptive control strategy development for local ramp 
metering control is composed of three steps which are described in the continuation 
with more details. During the first step, the development of а model is conducted. 
The second step includes the design and development of the Intelligent Agent (IA). 
The third step is related to the learned strategy testing and evaluation. 

Step 1. Development of a model 
Firstly it is necessary to determine the set of states. The selection of 

appropriate variables to describe the traffic process is crucial. Three sets of states S 



 92

are defined: (1) a current phase, (2) a category of average mainstream speed and (3) 
a category of on-ramp queue. Description of the states S can be found in Table 1.   

Table 1. Description of all states S 
States S Values Description 

Phases 
1 Represents “all green” phase with fixed duration  

of 3 s (one vehicle per green strategy)  

2 Represents “all red” phase calculated by ramp  
metering algorithm (extension of current phase duration) 

AverageSpeedClass 
0 Downstream speed is between 0 and 70 km/h 
1 Downstream speed is between 71 and 99 km/h 
2 Downstream speed is larger than 100 km/h  

AverageQueueClass 
0 On-ramp queue length is between 0 and 4 vehicles 
1 On-ramp queue length is between 5 and 7 vehicles 
2 On-ramp queue length is larger than 8 vehicles  

Based on the information related to the detected state, the control agent takes 
an appropriate action. The first possible action is denoted by the value 1. The 
mentioned action suggests that it is necessary to stay at the current traffic light 
phase. The second possible action indicates the necessity to change the current 
traffic light phase and it is denoted by the value 2. It has to be noticed here that for 
ramp metering only the green and red traffic light phases are used. 

The rewarding function is the second key element for the agent. The reward is 
a function that depends on the system’s state and the action taken. Each action, 
derived by the agent, influences the environment. So upon completion of an action, 
the environment is in a new state. The agent is rewarded if the action is good. A 
reward for a particular traffic solution is added in case the on-ramp queue category 
has a value 0 or/and 1. Additional reward is added in case the speed reaches 
category 0. 

The Q-matrix (size 35×4) represents the knowledge base of our agent and it 
stores the memory of what the agent has learned via numerous trials [11]. This 
approach of describing the Q-function in a look-up table is simple to use. 
Definitions and values of the parameters α and γ are displayed in Table 2. 

Table 2. Parameters α and γ values applied in the research 
Parameter Parameter definition and value 

α  
The point of changing α is changing the balance of the exploration/exploitation 
relationship that the algorithm is to be determined, whereby at the beginning the 
algorithm is set to do more search for the solution and later it is set to optimize 
the solution it has found (the value of α is 0.9) 

γ  The parameter is responsible for the reward transfer. It determines the influence 
of the future rewards over the agent’s behaviour (the value of γ  is 80) 

Step 2. Design and development of the IA 
In the design of the intelligent agent, tools following software has been used: 

microscopic traffic simulation VISSIM5.4-0.3 (Germ. Verkehr In Städten 
SIMulationsmodell), specialized library dedicated for communication between 
VISSIM and Visual Studio-VISSIM COM (Engl. COMPONENT OBJECT 
MODEL) and database management tool Microsoft SQL [11]. 
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Fig. 3. The process of communicating and interaction among the main elements 
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Fig. 4. Sequence diagram  

The traffic demand has been created via VISSIM simulator’s graphical 
interface. The number of vehicles is entered for every link within intervals of 5 
minutes per peak hour (known/unknown demand). The vehicle arrivals are 
described by the Poisson distribution. To express the stochastic variations of the 
traffic flows as realistically as possible, a parameter used to initialize a random 
number generator is applied (Random Seed). In Fig. 3 the communication process 
and the interaction among the main elements is presented and in Fig. 4 the sequence 
diagram of the simulation setup is given.  

4. Simulation results and evaluation 

A highway model with one on-ramp is created in order to test the proposed local 
ramp metering approach based on RL. The created model contains additional 
detectors so that all relevant traffic parameters could be monitored. The simulation 
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results with and without the use of ramp metering are compared. In this paper a  
Q-Learning algorithm with its constant parameters set is applied during only one 
simulation step. Q-Learning algorithm is also applied with constant parameters in 
four simulation steps whereby the algorithm parameters are dynamically changed at 
every new simulation step.  

 
Fig. 5. Graphical representation of the highway model 

 
Fig. 6.  Traffic flow values for every 5 minutes interval 

4.1. Urban highway model 

The model of the highway used in order to test the application of the Q-Learning 
based ramp metering is 1458 m long. It contains one on-ramp which is located 900 
m from the starting point of the model. Furthermore, the model contains one signal 
head and three groups of traffic sensors.  

Table 3. Comparative analysis between Q-Learning based ramp metering algorithm and no  
ramp metering applied 

Parameter 
No ramp 
metering  
(1 step) 

Q-Learning 
algorithm  
(1 step) 

Q-Learning 
algorithm  
(4 steps) 

Mainstream travel time (h) 80.24 72.1 69.8 
On-ramp travel time  (h) 60 100.5 112.2 
Average downstream speed (km/h) 63.4 70.5 72.1 
Average on-ramp speed  (km/h) 48.7 29.1 28.5 
Average Speed of whole highway (km/h) 64.31 64.83 74.13 
Total delay (h) 31.84 29.55 27.28 
Total travel time (h) 80.94 78.05 75.82 

First a traffic (check-in) sensor is placed at the entrance of the on-ramp. The 
second traffic (queue) sensor detects the queue length and it is located 150 m before 
the previously mentioned sensor. A third traffic (mainstream) sensor has the task to 
obtain the mainstream traffic data and it is placed 188 m downstream of the on-
ramp. Graphical representation of the highway model which is used for simulation 
testing is presented in Fig. 5. The duration of the simulation is set to 3300 s. The 
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on-ramp flow was set to 450 vech/h being constant during the whole simulation. 
The mainstream in-flow values of the simulation model are constantly changed 
during every 5 minutes interval. The traffic flow values for every 5 minutes interval 
in the simulation run are presented in Fig. 6.   

4.2. Obtained results 

The use of ramp metering based on the Q-Learning algorithm (the one step and four 
steps version) is compared to the no ramp metering scenario. Results of the 
mentioned comparative analysis are presented in Table 3. In case when the  
Q-Learning algorithm is used only during one step, parameter α  has a constant 
value of 0.9 while parameter γ  has the value of 90. During the 4 steps, the  
Q-Learning algorithm updates the Q-Learning matrix with values from previous 
steps. But at every next step parameter α   decreases its values by 0.2 and parameter 
γ  by 15 with respect to the previous step. The influence of the future rewards over 
the agent’s behaviour is decreased at every following step. It can be concluded that 
for every following step the results of the Q-Learning main equation have smaller 
effects on finding the optimal solution.  

From Table 3 it can be concluded that Q-Learning algorithm can produce 
better values of the total travel time in comparison with the situation with no ramp 
metering. In case when Q-Learning algorithm is conducted during 4 steps, longer 
on-ramp queues are created. This implies a shorter mainstream and total travel time. 
The negative impact of this solution is a longer on-ramp travel time.  

 
Fig. 7. Mainstream speed data analysis 

In Figs 7 and 8 the speed and density are presented in 3 seconds intervals. 
Polynomial fit of 6th order has been done and presented in Figs 7 and 8 for the sake 
of a clear graphical representation of the monitored traffic parameters change 
trends. In the graphs mentioned, a typical behaviour of the simulated highway 
segment with respect to the average speed and density is given. 
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Fig. 8. Mainstream density data analysis 

4.3. Discussion of the results 

The first simulation results obtained show improvement of the mainstream travel 
time compared to the traffic situation without ramp metering applied. Learning IA 
based on Q-Learning is especially efficient during periods of a high traffic demand. 
Additionally, it is possible to conclude that the on-ramp travel time is larger and the 
on-ramp average speed is lower with the use of the learning IA compared to the 
situation without ramp metering. These negative results can be explained by the 
longer queues at the on-ramp induced by the IA in order to increase the mainstream 
speed. The longer on-ramp travel time is justified only in case when the value of the 
total travel time is not lower compared to the situation when the ramp metering is 
not applied. 

Running the Q-Learning algorithm during four steps under different 
parameters   has produced improvements compared to the case with only one step. 
Application of the described learning IA is not advisable in traffic scenarios 
characterized by low traffic load on the mainstream. In such cases it is better to turn 
off the ramp metering since no traffic demand related restrictions for vehicles 
entering the mainstream exist. 

5. Conclusion 

In this paper the Q-Learning algorithm was applied for local ramp metering. The  
Q-Learning algorithm was used to train an IA. Motivation for this research was to 
implement autonomic learning properties into local ramp metering by adjusting the 
parameters of the Q-Learning algorithm using an IA. The approach proposed was 
tested in simulations using a VISSIM based micro-simulation setup. An application 
that connects with a VISSIM micro-simulation model and saves all relevant traffic 
data in a database has been applied. Several types of the travel time (total travel 
time, on-ramp travel time and mainstream travel time) are analyzed as strategy 
efficiency measures. Additionally, the overall average speeds and mainstream 
density are also included in the analysis. The simulation results given in this paper 
are promising. A learning based IA for local ramp metering can be successfully 



 97

applied. The advantages, compared to the situation without ramp metering, are most 
noticeable in the mainstream travel time and average mainstream speed values 
improvement. According to the obtained results, the learning IA is not adequate in 
traffic scenarios with low mainstream speeds where ramp metering is usually 
switched off.  

Future work will include tuning of the applied reward system. Additionally, 
cooperation between several on-ramps and additional highway control systems like 
variable speed limit, based on a learning IA will be also examined. 
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