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Abstract: This paper applies a bi-level formalism for the optimal control of an 
urban transportation network. The well known store-and-forward model in traffic 
control is utilized in order to increase the control space of the optimization 
problem. Mainly, the store-and-forward models apply the split as a control 
argument, assuming the traffic light cycle as a constant parameter. The paper 
shows that by using a bi-level formalism the control problem can be defined within 
increased control space comprising both the split and the cycle. Both are found as 
optimal solutions of a bi-level optimization problem. 
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1. Introduction 

The aim of the control of transportation networks is to keep the network capacity on 
its nominal level. The capacity of the traffic network can be considerably 
deteriorated when congestion appears on the network links. Thus, the control 
objective of the traffic control is to restrict the events due to the congested traffic 
conditions like oversaturation and spillback of the waiting vehicles on the links. The 
current traffic control approaches usually focus on either urban or freeway traffic. 
For the urban areas, the traffic lights are the main control actuators used. The 
freeway traffic is usually controlled, applying ramp metering policies [9]. 

This paper addresses the control policies applied for the urban areas. An urban 
network comprises streets, interconnected with junctions. The basic principle of the 
traffic flow control in the urban areas is minimization of the lost times, the passage 
times, and the number of stops during driving. All these criteria are functions of the 
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queue lengths, arising on the links. The control of the urban traffic focuses on the 
estimation of the delays and queue lengths, which result from the traffic control at 
the junctions. Thus, the traffic delays and queues participate in the control criteria 
of the optimization problems. As the store-and-forward model is of primary 
consideration in the urban control, a short description is given in the next section.  

2. Overview of the store-and-forward model 

The research and development of the urban signal control particularly address 
saturated traffic conditions. The store-and-forward modeling allows the 
development of efficient optimization control solutions. Store-and-forward 
modeling of the traffic networks has been suggested at first by G a z i s  and P o t t s 
[6]. This model formalizes in a simple way the flow process in an urban network. 
Due to its internal simplicity, it is applied for the cases of large scale congested 
networks. Some authors have developed traffic control strategies of urban areas, 
applying store-and-forward model [2, 3, 8, 12]. The most important variables are 
the queue lengths xi (or simply vehicles) expressed by the number of vehicles on 
link i. The drawback of this model origins from the constraint control space that it 
can apply. Particularly, only split optimization can be performed while the time 
cycle and offsets must be derived by other control problems. The graphical 
presentation of the store-and-forward model is given in Fig. 1. The traffic demands 
and exit flows are categorized into 4 types, based on their generation and 
destination. 

 
Fig. 1. Graphical presentation of the store-and-forward model 

Using the notation Ni(t) for the number of vehicles on link i at time t, this 
number is formalized as 
(1) )()()( tLtAtN iii −= , 
where Ai(t) denotes the arriving vehicles at link i at time t; Li(t) – leaving vehicles at 
link i at time t. 

Using the notation from Fig. 1, it follows: 
),()()( tOtUtA iii +=  
),()()( tEtDtL iii +=  

where Oi(t) denotes the vehicles that originate from link i; Ei(t) – vehicles that 
ended within link i; Ui(t) – vehicles which enter in link i through the junction; Di(t) 
– vehicles that exit from link i to the next junction. 

Relation (1) can be expressed in a discrete time form as 
)],()()()([)()1( kokdkekqTkxkx iiiiii −+−+=+  

where: )(),1( kxkx ii +  are vehicles in link i for the time period [kT, (k+1)T], T is the 
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control interval; )(kqi – the input flow (veh/h),  ;
T
Uq i

i =  )(koi – the outflow 

(veh/h), ;
T
Do i

i =  )(kei  – exit flow (veh/h), ;
T
Ee i

i =  )(kdi  – demand flow 

(veh/h), .
T
Od i

i =  

The current practice applies the values of di and si as known parameters for the 
control problem. They are estimated like percentage of the input flow qi(k). The 
control argument is introduced for the outflow as  

ii
ii

i gs
c
Gsku ==)(  veh/h, 

where si  is the saturation flow of link i (veh/h),  c  is the traffic light cycle  (s), Gi  is 
the duration of the green light (s), gi  is the relative duration of the green light. 

A particular advantage of the store-and-forward modelling is that it is 
applicable to large scale congested networks. The main disadvantage is that due to 
the particular modeling simplifications, it is applicable only for split optimization, 
while the cycle time and offsets must be delivered by other algorithms [1]. 

3. Optimization criteria for urban traffic control 

The most suited control objective under congested traffic condition is to minimize 
the events of oversaturation and spillback of the link queues. Thus, an appropriate 
optimization criterion is the minimization of the relative occupancy of the link i or 
xi/ximax, where ximax  is the maximum number of vehicles which the capacity of the 
link can accommodate. This criterion is reasonable from a control point of view and 
it is formalized as minimization of the total queue lengths ∑

∈networki
ix  over the urban 

network [10]. 
An alternative criterion, which is widely applied now, is the minimization of 

the Total Time Spent (TTS) by the vehicles of the network. This criterion leads also 
to the minimization of the sum of xi because its formalization is given like [9] 

∑
=

=
K

k

kNT
1

)(TTS , 

where:  K  denotes the time horizon; N(k) – total number of vehicles in the network 
at time k; T – time interval. 

The number of vehicles in the urban network for each control step changes 
recursively 

0
( 1) ( ) [ ( ) ( )] (0) [ ( ) ( )],

k

N k N k T A k L k N T A k L k
κ =

+ = + − = + −∑  

where N(0) are the initial vehicles in the network, A(k) – arriving vehicles at each 
link (veh/h), L(k) – leaving vehicles at each link (veh/h).  
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Hence, 
1 1

2 2

1 0 1 0
TTS TKN(0) ( ) ( ).

K k K k

k k
T A k T L k

κ κ

− −

= = = =

= + −∑∑ ∑∑  

If it is assumed that the arriving vehicles in the network do not depend on the 
control policy, it is regarded as noise to the control system. Thus, the minimization 
of TTS is equivalent to the maximization of a weighed sum of the leaving cars from 
the network, i.e. the maximization of the early exit flows. 

Later, in the bi-level control problem, we are going to introduce 
simultaneously these two criteria for control: to minimize the sum of the queue 
lengths x and maximize the leaving vehicles L from the network.  

4. Control and optimization approaches 

The store-and-forward modeling of the urban transportation networks is 
implemented by several control approaches. A feedback control is applied by the 
linear quadratic optimal control [1]. The split is found like a linear multivariable 
feedback regulator given as    

),()( kLxqkq N −=  
where Nq  is a fixed control plan, calculated on the basis of historical demands, L is 
the solution of the corresponding Riccati equation, resulting from the LQ 
optimization problem, x(k) are the measured vehicles on the links. 

Due to the LQ control formulation, this strategy does not allow inclusion of 
inequality constraints to restrict the queue lengths and the split (green light 
duration). The control space of this problem concerns only the split of the traffic 
lights. The cycle and offset are not considered in this problem. 

An extension for elaboration of the feedback control is the definition of a 
quadratic programming problem. It comprises the inequality constraints but its 
solution leads to an open loop control system. Respectively, such a control strategy 
needs more on-line computational power to solve the optimization problem. 
Modifications in nonlinear formalization of the control are given in [1, 3, 4]; with 
hierarchical decomposition of the control problem [7]; model predictive control [2]; 
application of the time delay formalism [11]. All these control strategies address the 
split as a control variable. Attempts to extend the control space are done by [5]. But 
the cycle and split controls are implemented as independent control algorithms. 
Such formalization does not allow tackling the internal relations between the 
control influences, addressing the split duration and the time cycle in a common 
optimization problem. 

5. Bi-level approach for extension of the control space 

The idea of bi-level control strategy concerns the solution of two optimization 
problems, which are interconnected (Fig. 2). 
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Fig. 2. Bi-level control strategy 

 
The upper level problem assumes the values of y = y* as known parameters 

and finds an optimal solution x*(y) by solving the problem 
),,(min *yxf xx

 

).( *ySx x∈  
The solution x*(y) is a function of the parameter y. Respectively, the lower 

level problem assumes x = x* as known parameters and finds its solution y*(x) as a 
function of x.  

These two interconnected optimization problems give the solution of the 
global problem 
(2)  ),,(min yxf xx
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which means xopt is the solution of the optimization problem where y modifies the 
goal function fx (x, y) and the admissible area Sx (y). Also, y is a solution of the low 
level problem, influenced on its turn by x.  

We will make a comparison of the bi-level optimization problem (2) with a 
classical optimization problem 

(3)   ),(min xf xx
 

.xSx∈  
The bi-level formalization in (2) extends the space of the arguments from xopt  

to (xopt, yopt). The bi-level problem optimizes not only the goal function fx(x, y), but 
an additional one fy(x, y) as well, which means that the optimization goals are 
increased nevertheless that the function fy(x, y) is subordinated to the main goal  
fx(x, y). For the classical case (3) the goal function is only one − fx (x). The third 
peculiarity is that the area of constraints in (2) is considerably wider in comparison 
with (3), which gives advantages to the bi-level optimization to tackle more 
constraints in comparison with the classical problem (3). Starting from this 
conceptual framework, the urban control policy can be complicated to deal with 
both the split and the cycle as control arguments. 

),(min xyf yy
, 

     )( xSy y∈  

),(min yxf xx
, 

     )( ySx x∈  

x y 
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The paper is developing a bi-level control problem for the case of urban 
traffic, integrating two optimization problems, Fig. 3. The lower level problem 
optimizes the queue lengths of the vehicles by changing the splits of the green 
lights. Their problem assumes that the time cycles are known parameters. The upper 
optimization problem optimizes the time cycles, assuming given splits. The goal 
function of this problem is defined as a maximization of the leaving traffic from the 
urban network. Such a control policy will define in an optimal way both traffic 
arguments: splits and time cycles. The optimization will address minimization of 
the queue lengths and maximization of the leaving vehicles which goals are targeted 
by the control policies, discussed in the previous section. 

 
Fig. 3. Traffic control optimization problems 

6. Development of a formal model of the bi-level optimization  

The paper studies the case of an urban network with a structure, given in Fig.4.  

 
Fig. 4. Traffic network structure 

 

The urban network has been chosen with eight junctions, j = 1,.., 8. Each 
junction is controlled by traffic lights. The split of the green lights in the horizontal 
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direction are denoted by uj. The amber light is assumed as 0.1 part of the traffic 
cycle cj. Hence, the relation 

split(green) split(red)+split(amber) 1,+ =  
is noted like 

split (red) 0.1 ,j j j j j ju c c c c+ + =  
or 

split (red) 0.9 , 1,...,8.j j j jc u c j= − =  
Thus, the split of the red light is not an independent control variable and it is 

derived simply from the cycle and the split of green of the corresponding junction. 
The bi-level optimization problem will contain the control space formed by cj and 
uj,  j = 1, …, 8. 

The low level optimization problem is defined in a common way to minimize 
the queue lengths xi, i=1, ..., 16, satisfying the conservation equations. Each xi 
formalizes the vehicles on a corresponding link of the network. In Fig. 5 the 
conservation equations are illustrated for the first 4 junctions of the network. The 
following assumption is made in the figure: the saturation flows per junction are the 
same for the horizontal and the vertical directions. The notations si, i = 1, ..., 4, are 
the saturation flows, assumed like known parameters of the control problem. 

,4,...,1, =isi  are coefficients, which take into consideration the amount of vehicles 
which make a turn and the corresponding saturation of the infrastructure. These 
values − si, is , i=1,..,4,  are assumed to be known from statistical measurements or 
can be changed for each optimization problem from real measurements.  

 

 
Fig. 5. Arterial road traffic flow 
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,4,...,1,, =ix ini  are the demands, which have to enter the urban network. They are 
assumed as known values needed by the off-line estimations or real time 
measurements.  

The conservation equation for the queues x1 and x2 are defined like: 
,)()()()()()()1( 111111in1101 skukcskukckxkxkx −−+≤+  

.)()()()()]()()(9.0[)()()()1( 222222111111202 skukcskukcskukckcskukckxkx −−−++≤+  
The inequality forms of the conservation equations give more flexibility 

because a part of the vehicles can have destination stops on the appropriate link and 
will not participate in the exiting flow of the link. The low level optimization 
problem assumes the cycles ,4,...,1),( =ikci  as given parameters (not as problem 
arguments). The low level optimization problem is defined and solved repetitively 
for each control step to cope with the stochastic nature of changes of the demands 
and the turning rates is . Thus, the discrete type optimization applies a time horizon  
k = 1 and the low level optimization becomes a type of mathematical programming.  

Following the above considerations, the low level optimization problem 
becomes a linear-quadratic one in the form  

),,(min
,

uxf xxu
 

,, ,uxSux ∈  
where ,0, ≥ux  

The goal function is chosen in a quadratic form  
,),( 2

T
1

T uQuxQxuxfx +=  
Q1 and Q2 can be identity or weighted matrices. The engineering meaning of this 
goal function is the minimization of the total sum of the queues and the constraining 
of the split duration; uxS ,  denotes a set of inequalities: 

,111111in1101 sucsucxxx −−+≤  
,)9.0( 222222111111202 sucsucscusucxx −−−++≤  

,)9.0()9.0( 222222in3303 scuscuxxx −−−−+≤  
,)9.0()9.0()9.0( 333333222222404 scuscuscusucxx −−−−−++≤  

,)9.0( 333333888888505 sucsucscusucxx −−−++≤  
,)9.0( 444444333333606 sucsucscusucxx −−−++≤  

,)9.0()9.0( 444444in7707 scuscuxxx −−−−+≤  
,)9.0()9.0()9.0( 111111444444808 scuscuscusucxx −−−−−++≤  

,)9.0( 555555222222909 sucsucscusucxx −−−++≤  
,)9.0( 66666655555510010 sucsucscusucxx −−−++≤  

,)9.0()9.0( 666666in1111011 scuscuxxx −−−−+≤  
,)9.0()9.0()9.0( 77777766666666612012 scuscusuccscusucxx −−−−+−++≤  

,777777in1313013 sucsucxxx −−+≤  
,)9.0( 88888877777714014 sucsucscusucxx −−−++≤  

,)9.0()9.0( 888888in1515015 scuscuxxx −−−−+≤  
,)9.0()9.0()9.0( 55555588888816016 scuscuscusucxx −−−−−++≤  
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,16,...,1,0 =≥ jx j  
.8,...,1,0 =≥ ju j  

After rearrangement, the set of inequalities is presented in the form 
,21 CuAxA ≤+  

where 16161 ×= IA is an identity matrix. 
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7. Upper level optimization problem 

The upper level optimization problem targets the maximization of the vehicles 
which leave the urban network. The leaving flows, tackled by the problem, are 
according to Fig. 6. 

 

Fig. 6. Network leaving flows 

All the other flows are not taken into consideration because they do not 
decrease the number of the vehicles into the network. The central part of the 
network endures capacity restrictions. This reason is considered by additional 
constraints to the upper optimization problem. The capacity constraints are aided 
also to all internal links of the network. The formal description of the upper level 
problem takes the form 

)(max T cQc cc
 

cc CcA ≤ , 
where 8,...,1, == jcc j , 

1 1 3 3 3 3 4 4 5 5 5 5 6 6 7 7diag||(0.9 ) 1 ( ) 0.9 ( ) 0.9 (0.9 ) 1||.cQ u s u s s s u s u s s s u s u s= − − + − + −  
The goal function targets the maximization of the flows which leave the 

network of Fig. 1. Several flows which go round the network do not enter the 
network like ,111 suc   666 )9.0( scu− . The last flows are not taken into consideration 
of the goal matrix Qc  

Because the cycles c2 and c8 do not influence directly the leaving flows, their 
coefficients into the goal function could have constant values. For the current case 
they are assumed equal to 1. 

The feasible area of the problem is defined from considerations of constraining 
the internal flows according to the capacity restrictions 
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,]9.0)([ 333333 Lsssuc ≤+−  
,]9.0)([ 444444 Lsssuc ≤+−  
,]9.0)([ 555555 Lsssuc ≤+−  
,]9.0)([ 666666 Lsssuc ≤+−  
,]9.0)7([ 77777 Lsssuc ≤+−  
,]89.0)([ 88888 Lsssuc ≤+−  

,]9.0)([]9.0)([ 98888822222 Lsssucsssuc ≤+−++−  
,8,...,1,maxmin =≤≤ jccc j  

where Lj, j = 1,…, 9; cmin, cmax – predefined values for capacity constraints and 
eligible durations of the cycles. 

For definition of the upper level problem, the control engineers have a relative 
freedom to choose the exact form of the goal function, the form and content of the 
constraints. For this research the authors try to keep a simple form of the upper 
level problem in order to direct their attention to the overall bi-level problem 
behaviour. The goal function has an engineering meaning of (flow)2. Analytically, 
the product  TT

cQc  represents a flow. To provide (flow)2, the relation cQQc cc
TT  

takes place. From numerical considerations, the matrix cc QQT can be substituted 
simply by cQ , which does not change the engineering meaning of (flow)2 of the 
goal function. Particularly, the presented upper problem applies a goal function in 
the form )( T cQc c  which misses the linear part for simplification of the problem. The 
goal function can be modified if additional considerations have to be taken for the 
control problem. In the same way, the interconnected constraints can describe 
additional relations between the flow behaviours into the urban network. 

For the case of exploration of the bi-level formal problem this paper has 
restricted additional considerations taken into account. The upper level problem 
assumes the splits ui, i = 1, …, 8, as known parameters and the problem arguments 
are the cycles cj,  j = 1, …, 8. 

8. Numerical simulations of the bi-level control problem 

The problem has been solved repetitively. Starting with initial values of the vehicles 
xi0, i = 1,…, 16 in the network, the problem is solved in the sequence low level 
problem – upper level problem, till finding convergence to the global solutions. 
After that, the obtained values opt

ix  are assumed as new initial values 
,16,...,1,opt

0 == ixx ii  and the new bi-level problem is solved again. The numerical 
results from the simulation have been compared with the classical open loop linear 
quadratic control. Having in mind the low level optimization problem, it gives an 
exact LQ optimal solution for the case when the cycles cj, j = 1, …, n, are fixed. If 
the cycles cj are found according to the upper level optimization and taking into 
consideration that the upper and low level problems are interconnected, the bi-level 
problem will calculate other solutions, which differ from the classical LQ 
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optimization. To compare these two control policies (LQ and bi-level), two criteria 
are introduced: 

• the total amount of the queues at each link for the time duration of the 
simulation period; 

• the total amount of vehicles, which leave the urban network for the time of 
simulation. 

These two integral criteria were calculated for each step of the numerical 
simulation. The integration is done for all links and it is different for each time step. 
It is concluded that the bi-level control problem results in fewer amounts of vehicle 
queues and a bigger number of vehicles which leave the urban network, Figs 7 and 
8. This means that the bi-level policy has a potential for better servicing of the users 
in crossing the urban area.  

 

     
Fig. 7. Total amount of the queues                        Fig. 8. Total amount of outgoing flows 

9. Conclusions 

The paper applies a new formal description of the control policy on an urban 
transportation area. A bi-level optimization problem is defined and numerically 
tested. The optimization problem applies the widely used model of store-and-
forwarding phenomenon. The bi-level formalism achieves and increases the control 
space not only of the splits, but in the common problem it includes the time cycles. 
The classical LQ formalization applies the time cycles as constant values and thus, 
the control space contains only the split. Having a wider control space, it is possible 
to achieve more and additional goals in the control process and to consider more 
control constraints. The current research applies optimization towards decrease of 
the total queues and maximization of the vehicles which cross the urban area. The 
next steps for exploration of the bi-level models and optimization imply evaluation 
of the computational power, needed for real time implementation of the bi-level 
control policy. 
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