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Abstract: This paper investigates the Triangular, Trapezoidal and Gaussian 
approximation methods for the purpose of induction of Fuzzy Decision Trees 
(FDT). The generation of FDT is done using a Fuzzy ID3 induction algorithm. In 
this work three fuzzy partitioning techniques which form the basis for our 
investigation are given attention, namely Fuzzy C Means clustering (FCM), Grid 
partitioning and Subtractive clustering (Subclust). Our contribution lies in studying 
the effect of various approximations on the generation of FDT giving specific 
attention to the classification accuracy of FDT. In this study we show that the 
accuracy levels of FDT generated using FCM clustered raw data, bypassing the 
approximation step, is acceptable and this method has several advantages too. 
Several computational experiments are conducted and non parametric statistical 
tests are performed to find if any significant differences exist between the method of 
bypassing the approximation step and the other methods which include 
approximation. Ten FDTs are developed and used in this study. These FDT’s differ 
in their fuzzy partitioning techniques and the approximation methods used. 

Keywords: Fuzzy decision tree, clustering, fuzzy membership functions, non 
parametric statistical test. 
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1. Introduction 

The main motivation of any classification study is to design an accurate classifier 
by taking advantage of the past experience stored in the form of a large amount of 
raw data and to uncover the predictive structure of the problem for extracting 
human-interpretable domain knowledge. Out of many classification techniques, the 
decision tree classifier is commonly used to obtain human interpretable domain 
knowledge due to its capability to break down a complex decision making method 
into a collection of locally optimal simple decisions through top-down greedy 
search techniques [1]. Although the decision trees generated, using an ID3 family 
and C4.5 are useful in building knowledge-based expert systems, they are often not 
capable of handling cognitive uncertainties consistent with human information 
processing, such as vagueness and ambiguity. In general, vagueness is related to the 
difficulty in making sharp classification boundaries and ambiguity is related to one-
to-many mappings observed in the patterns. To overcome these deficiencies, by 
incorporating the fuzzy uncertainty measure in a crisp decision tree generation 
algorithm like ID3, various researchers have developed FDT induction algorithms 
[2-6]. 

There are several applications where FDT is used for extracting human 
interpretable classification rules [7-10]. The most important task in the induction of 
FDT is fuzzy clustering of the input data and its approximation to various 
membership functions. In the development of fuzzy systems, one frequently faces 
the problem of adequate choice of the Membership Functions (MF). The good 
choice of membership functions is crucial to the behaviour of fuzzy systems. In 
many cases there are no theoretical criteria that would justify the use of one or 
another function, and they are selected based on their suitability to empirical data. 
There is a large amount of fuzzy data in almost every real life field. For conversion 
of any clustered data into trapezoidal membership functions, a convex hull method 
is proposed by N a k a n i s h i  et. al. [11]. However, the methodology is not very 
clear and the implementation depends very much on the case-by-case basis. In 
addition, the methodology generates membership functions that are either highly 
overlapped or highly separated. None of the papers [11, 12] mention the trapezoidal 
approximation algorithm clearly. The triangular membership functions are another 
important class of membership functions to model various linguistic modelling 
scenarios that have not been adequately addressed. To overcome these limitations 
we introduced two heuristic approximation algorithms [13]. 

In this paper we aim to study the effect of approximation of clustered raw data 
to various membership functions for the purpose of induction of FDT. We claim 
that the approximation of any clustered raw data to various membership functions 
involves additional processing before beginning of the tree induction process. Also, 
it requires additional parameters to be stored in the main memory, i.e., the 
parameters {a, b, c} for triangular, the parameters {a, b, c, d} for trapezoidal, and 
the parameters {center, sigma} for Gauss; while a simple fuzzy cluster can be 
represented by just one parameter, representing the cluster center. In many cases, 
the approximation may also require experts’ advice to decide the shape of the 
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membership functions and different attributes may need different types of 
membership functions or even a combination of membership functions to perfectly 
model the vagueness. The paper is organized as follows: In Section 2 a FDT 
induction process is presented along with clustering techniques and approximation 
methods. The computational experimental results are reported in Section 3. 
Inferential statistics of the results obtained is discussed in Section 4 and finally, 
concluding remarks are given in Section 5. 

2. Induction of a fuzzy decision tree 

In this section the fuzzy clustering techniques and the approximation methods 
which form the basis for our investigation are discussed along with FDT induction 
process. 

2.1. Fuzzy clustering 

Fuzzy clustering is a process of assigning fuzzy partition labels and the associated 
degrees of membership to each pattern in X. Let X={x1, x2, …, xn} be a set of n 
feature vectors and each feature vector xi be a point in a p-dimensional observation 
(or feature) space. In other words, each pattern xi has been described by a set of p 
attributes{ }1 2, ,..., px x x . Each attribute xj measures some important feature (or 
property, condition) of the system under study. 

2.1.1. Fuzzy C means clustering 

The general Fuzzy C Means (FCM) algorithm [14] generates c-partitions of X in the 
form of a c×n matrix, whereas the FCM considered for our study generates jc  

partitions for the values of the attribute jx  in the form of a c n j× ×  matrix, where 

for each attribute jx , the partition matrix is ( )
jk

i
F jU xμ= . FCM allows gradual 

cluster membership, i.e., in effect, the data can belong to more than one cluster at 
the same time. The family of the partition matrix U considered for our experimental 
study is 

(1)   
1

| ( ) 1 ,
j

jk

c
cnj i

fcn F j
k

M R x iμ
=

⎧ ⎫= ∈ = ∀⎨ ⎬
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where ( )
jk

i
F jxμ  is the membership degree of the i-th pattern in k-th fuzzy cluster of 

the attribute jx .
                                                                  

2.1.2. Grid partitioning 

Grid Partitioning generates membership values by partitioning the input space into a 
given number of intervals whose limits do not necessarily have any physical 
meaning [15]. 
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2.1.3. Subtractive clustering 

The subtractive clustering method assumes that each data point is a potential cluster 
center and calculates a measure of the likelihood that each data point would define 
as the cluster center, based on the density of the surrounding data points [16]. 

2.2. Approximation methods for FCM and subtractive clustered data 

Two efficient heuristic algorithms proposed in our earlier work [13] are used for 
converting FCM clustered raw data and subtractive clustered Gaussian data to 
parameterized family of fuzzy membership functions, like Triangular MF and 
Trapezoidal MF.  

2.2.1. Triangular approximation 

A fuzzy set F with a triangular membership function is specified by three 
parameters {a, b, c} where the degree of membership of pattern u  to the triangular 
fuzzy set F is  

(2)   ( )

0, ,

, ,

, ,

0, .

F

u a
u a a u b
b au
u b b u c
c b

u c

μ

≤⎧
⎪ −⎪ < ≤
⎪ −= ⎨ −⎪ < <
⎪ −
⎪ ≥⎩

 

Let { }cba ,, , where a<b<c, determines the three vertices of the triangular 
membership function on X. A continuous attribute xj is fuzzified into cj triangular 
fuzzy sets.  

The pseudo code of the proposed algorithm for obtaining the parameters 
{ }cba ,,  for triangular membership functions from FCM/Subtractive cluster matrix 
U and a center vector (or matrix) C is given in Algorithm 1.  

The symbols used in the pseudo code [13] are: 
_sortjx  is the ascending order of sorting the patterns of xj, 

_ indexjx  are the indices of the sorted patterns, 
U is the cluster matrix generated using FCM, 
Uk is the k-th row of matrix U, 
Uk_sort is the arrangement of Uk with respect to xj_index, 
C is the center vector (or matrix), 
aindex is the index of the pattern of xj corresponding to parameter a, and cindex is 

the index of the pattern of xj corresponding to the parameter c. 
Algorithm 1 [13]. Triangular approximation algorithm 
Input: U, C 
Output: {a, b, c} for a Triangular membership function Fk ( jck ,...,1= ) 
Start 
calculate xj_sort  
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calculate xj_index 
for k=1:cj 
 calculate Uk_sort 
 minU = minimum(Uk_sort) + 0.05 
       ucut = min_max indices of Uk_sort equal to max U 
       L = xj_sort (ucut(1)) 
       R = xj_sort (ucut(2)) 
       b is the average of L and R 
 lcut = indices of Uk_sort less than minU 
 aindex = an element from lcut which is less than b and maximum of lcut   
 cindex = an element from lcut which is  greater than b and minimum of lcut   
 a = xj_sort (aindex) 
 c = xj_sort (cindex) 
 if (a=’null’) 
  if Uk_sort(1) =1 or Uk_sort(1) = 0 
   a = xj_sort(1) 
  else 
   a = xj_sort(1) – (Uk_sort(1)/ (1 – Uk_sort(1))) * (b – xj_sort(1))  
  end 
 end 
 if (c=’null’) 
  if Uk_sort(n) =1 or Uk_sort(n) = 0 
   c = xj_sort(n) 
  else 
   c = xj_sort(n) + (Uk_sort(n)/(1 – Uk_sort(n))) * (b –a)  
  end 
 end 
end 
Stop 

2.2.2. Trapezoidal approximation 

A fuzzy set F with a trapezoidal membership function is specified by a set of four 
parameters { }dcba ,,,  where the degree of membership of pattern u to the 
trapezoidal fuzzy set F is given by 
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The pseudo code of the proposed algorithm for obtaining the trapezoidal 
parameters { }dcba ,,,  is given in Algorithm 2. The symbols used in the pseudo 
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code are the same as explained in Section 2.2.1. 
Algorithm 2 [13]. Trapezoidal approximation algorithm 
Input: U, C 
Output: {a, b, c, d} for a Trapezoidal membership function Fk  ( jck ,...,1= ) 
Start 
calculate xj_sort  
calculate xj_index 
for k=1:cj 

calculate Uk_sort 
minU = minimum(Uk_sort) + 0.05 
maxU = maximum(Uk_sort) – 0.05 
ucut = min_max indices of  Uk_sort greater than maxU 
lcut = indices of Uk_sort less than minU 
 b = xj_sort(ucut(1)) 
 c = xj_sort(ucut(2)) 
 aindex = an element from lcut which is less than ucut(1) and maximum of 
lcut   
 dindex = an element from lcut which is  greater than ucut(2) and minimum of 
lcut   
 a = xj_sort (aindex) 
 d = xj_sort (dindex) 
 if (a=’null’) 
 if Uk_sort(1) =1 or Uk_sort(1) = 0 
  a = xj_sort(1) 
 else 
  a = xj_sort(1) – (Uk_sort(1)/ (1 – Uk_sort(1))) * (b – xj_sort(1))  
 end 
end 
if (d=’null’) 
 if Uk_sort(n) =1 or Uk_sort(n) = 0 
  d = xj_sort(n) 
 else 
    d = xj_sort(n) + (Uk_sort(n) / (1 – Uk_sort(n))) * (c–xj_sort(1)) 
  end 

end 
end 

Stop 

2.2.3. Gaussian approximation 

The center of each Gaussian membership function has been initialized by cluster 
centers generated by the FCM algorithm. To initialize the standard deviations 
(sigma) we have used a value, proportional to the minimum distance between 
centers [17]. The pseudo code to obtain Gaussian parameters from FCM clustered 
centers is given in Algorithm 3.  
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The symbols used in the pseudo code are: 
V  is the Cluster matrix, 
C is the Cluster center vector, 
λ  is the dispersion parameter, 0 1λ< <= . 
Algorithm 3. Gaussian approximation algorithm  
Input:      C, λ  
Output:   Standard deviation {S} for jkF  (k = 1,…, jc ) 

for each variable jx  (j = 1,…, p) 

for each membership function jkF  (k = 1,…, jc ) 

Calculate the Euclidean distance ,( )jk jhdc c c , h = 1,…, jc , h k≠   

Calculate min* ( , );jk jk jhdc c cσ λ= 0 1λ< <=  
end 

end 

2.3. Approximations using Grid partitioning technique  

The fuzzy set F is determined using triangular, trapezoidal, and Gaussian 
membership functions. The parameters for these MFs are generated using Grid 
partitioning technique available in MATLAB [18]. The pseudo code given in 
Algorithm 4 and Algorithm 5 describes the approach for generating parameters for 
various membership functions using grid partitioning technique. 

The symbols used in the pseudo code are: 
X: Data matrix 
c: number of clusters 
mftype: type of the membership function. 
Algorithm 4. Triangular and trapezoidal membership function parameters 

estimation using Grid partitioning technique  
Input: X, c, mftype 
Output: {a, b, c} for a Triangular MF and {a, b, c, d} for a Trapezoidal MF, Fk 

( jck ,...,1= ) 
Start 
for each of the numerical attribute j in X 

mf_n(j)= Initialize the number of mf’s for j 
range(j, 1)= minimum of (xj) 
range(j, 2)= maximum of (xj) 
avalue =(range(j,2) − range(j, 1))/2/(mf_n(j) − 1) 
b(1:mf_n(j))=linspace(range(j, 1), range(j, 2), mf_n(j))’  

if mftype is ‘trimf’ 
 for i =1:mf_n(j) 
  a(i) = b(i) − 2*avalue 
  c(i) = b(i)+2*avalue 
 end 
else 
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for i = 1:mf_n(j) 
  a(i) = bvalue(i) − 1.4 *avalue 
  b(i) = bvalue(i) − 0.6 *avalue 
  c(i)=bvalue(i) + 0.6 *avalue 
  d(i)=bvalue(i) + 1.4 *avalue 
end 
end 

end 
Algorithm 5. Gaussian membership function parameters estimation using Grid 

partitioning technique  
Input: X, c 
Output: {S, C} for Gaussian MF Fk ( jck ,...,1= ) 
Start 
    for each of the numerical attribute j in X 
  mf_n(j)= Initialize the number of mfs for j 
  range (j, 1)= minimum of (xj) 
  range (j, 2)= maximum of (xj) 
  sigma =[ (range (j, 2) − range (j, 1))/2/(mf_n(j) − 1)]/ sqrt(2*log(2))  
     S=sigma*ones(mf_n(j), 1)  
  C(1:mf_n(j))=linspace(range (j, 1), range (j, 2), mf_n(j))’   
   end  
end 
The “linspace” function [18] in Algorithms 4 and 5 determines the center of 

the generated membership functions in such a way that they are always equally 
spaced along the domain of an input variable xj, where the domain is determined as 
the interval between the minimum and maximum of the corresponding xj. Using the 
center {b}, the left and right cut points {a, c} are determined for each triangular 
membership function. The {a, b, c, d} parameters determine the four vertices of the 
trapezoidal membership function. The center point of each membership function is 
used to calculate the left cut point {a}, the height of the membership function  
{b, c} and the right cut point {d}. The pseudocode in Algorithm d determines the 
sigma (standard deviation{S}) and center {C} for the Gaussian membership 
function. 

2.4. Fuzzy ID3 

One popular approach for the induction of FDTs is the Fuzzy ID3 [2] algorithm, 
which is a fuzzy version of the ID3 algorithm, initially developed by Q u i n l a n 
[19] for the crisp partitions. Fuzzy ID3 utilizes fuzzy classification entropy of a 
probability distribution to determine the best node during decision tree generation. 
For each fuzzy set { | 1, ..., ; 1, ..., }jk jF j p k c= =  of the attribute xj, the certainty 
factor concerning the l-th  class is defined as 
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The fuzzy classification entropy of jkF is defined as 
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The averaged fuzzy classification entropy of jx is defined as 
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where jkw  denotes the weight of the k-th fuzzy set of the j-th attribute and is 
defined as 
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The general procedure for generating FDT using Fuzzy ID3 is outlined as 
follows: 

Prerequisites: Fuzzy partition space, leaf selection threshold thβ , best node 
selection criterion. 

Procedure:  
While there exist candidate nodes DO 
 Select one of them using a search strategy, 
 Generate its child-nodes,  
 Child-nodes, meeting the leaf threshold have to be levelled as leaf-nodes, 

otherwise the remaining child-nodes are regarded as new candidate nodes and the 
procedure is repeated until the stopping criterion is met. 

3. Computational experiments 

To experiment with the fuzzy partitioning techniques and various approximation 
methods described in Section 2, totally 10 FDTs are developed in three 
experimental setups. In the first setup, the fuzzy partitioning of each individual 
attribute in the input space X is performed, using FCM clustering technique. The 
FCM clustered raw data (FCM-Noapp) is approximated to triangular membership 
functions (FCM-Tri), trapezoidal membership functions (FCM-Trap) and Gaussian 
membership functions (FCM-Gauss). Here four FDTs are developed using Fuzzy 
ID3, taking Triangular approximated FCM values, Trapezoidal approximated FCM 
values, Gaussian approximated FCM values and finally taking FCM generated 
membership values directly without performing any approximation.  
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In the second setup, a similar kind of an experiment is conducted by 
partitioning the inputs using the genparam function available in MATLAB [18] for 
grid partitioning technique. In this case three FDTs are developed using Fuzzy ID3 
taking Triangular approximated grid partitioned membership values (GRID-Tri), 
Trapezoidal approximated grid partitioned membership values (GRID-Trap) and 
Gaussian approximated grid partitioned membership values (GRID-Gauss).  

In the third setup, for subtractive clustering, a subclust (radii, data) function 
available in MATLAB [18] is used to obtain the parameters of a Gaussian function. 
The radii parameter controls the number of clusters to be formed. If a small value is 
chosen for radii, the number of clusters formed would be large, in the same way if 
radii is increased to a bigger value, few numbers of clusters would be formed. 
Depending on the dataset properties, the choice of radii would differ. For all the 
experiments conducted, we started with a small random value and 
increased/decreased the radii in such a way that it leads to three numbers of clusters. 
The three numbers of clusters are chosen only for experimental purposes. Actually 
one has to obtain the optimal number of clusters for each numerical attribute in the 
input space. Here we do not consider the optimal cluster number estimation within 
the scope of this paper. In this setup, three more FDTs are developed using 
subtractive clustered membership values (Subclust-Gauss) and its approximation to 
triangular (Subclust-tri) and trapezoidal (Subclust-trap) ones. 
 

Table 1. Sports dataset 
Outlook Temp (f) Humidity (%) Windy? Decision 
Rain 71 96 True Don’t play 
Rain 65 70 True Don’t play 
Overcast 72 90 True Play 
Overcast 83 78 False Play 
Overcast 83 78 False Play 
Rain 75 80 False Play 
Overcast 64 65 True Play 
Sunny 75 70 True Play 
Sunny 80 90 True Don’t play 
Sunny 85 85 False Don’t play 
Overcast 81 75 False Play 
Rain 68 80 False Play 
Rain 70 96 False Don’t play 
Sunny 72 95 False Don’t play 
Sunny 69 70 False Play 

 
Here we have considered the Sports dataset [20] given in Table 1 to 

demonstrate the results of the approximation methods of all fuzzy partitioning 
techniques considered. Out of the four attributes in the sports dataset, Temp and 
Humidity are numerical attributes. They are fuzzified into three fuzzy clusters using 
the FCM algorithm. Windy and Outlook are categorical attributes fuzzified into 
fuzzy singletons. Each pattern is classified to either Play or Don’t Play.  
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3.1. Triangular approximations 

The FCM clustered raw data and subtractive clustered Gaussian data are 
approximated to a triangular membership function using Algorithm 1, given in 
Section 2. The grid partitioning technique and its triangular approximations are 
obtained using Algorithm 4.  
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Fig. 1. Triangular approximations 
 

Table 2. Triangular membership function parameters 

Clustering technique 

TRI 

First fuzzy partition Second fuzzy 
partition Third fuzzy partition 

a b c a b c a b c 
FCM-Temp 46 65 71 65 72 81 72 83 246.22 
Grid-Temp 53.5 64 74.5 64 74.5 85 74.5 85 95.5 
Subtractive-Temp 54.56 65 71 65 71 80 75 81 86.49 
FCM-Humidity 15.76 70 78 70 80 95 80 95 585.23 
Grid-Humidity 49.5 65 80.5 65 80.5 96 80.5 96 111.5 
Subtractive-Humidity 62.70 70 80 70 80 90 85 95 307.26 

 
The graphs of FCM degree of the membership (FCM-Noapp) of each pattern 

along with the value of Temp and Humidity attribute are shown in Fig. 1 along with 
its approximations to Triangular Membership Functions (Triangular MF) using 
different clustering techniques. The Triangular MF  parameters obtained from Fig 1. 
are given in Table 2. 

3.2. Trapezoidal approximations  

A similar experiment is conducted to obtain Trapezoidal approximations of FCM 
clustered raw data and subtractive clustered raw data using Algorithm 2. The grid 
partitioning and its trapezoidal approximations are obtained using Algorithm 4.  
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Fig. 2. Trapezoidal approximations  
 

Table 3. Trapezoidal membership function parameters 

Clustering technique 

TRAP 

First fuzzy partition Second fuzzy partition Third fuzzy partition 

a b c d a b c d a b c d 

FCM-Temp 64 64 65 71 65 72 72 81 72 81 83 363.47 

Grid-Temp 56.65 60.85 67.15 71.35 67.15 71.35 77.65 81.85 77.65 81.85 88.15 92.35 

Subtractive -Temp 54.56 65 65 71 65 71 71 80 75 81 81 89.23 

FCM-Humidity 15.76 70 70 78 70 78 80 95 80 95 96 1106.8 

Grid-Humidity 54.15 60.35 69.65 75.85 69.65 75.85 85.15 91.35 85.15 91.35 100.65 106.85 

Subtractive-Humidity 62.70 70 70 80 70 80 80 90 85 95 96 750.91 

 
The graphs of the degrees of membership of each pattern approximated to the 

Trapezoidal MF are shown in Fig. 2. The Trapezoidal MF parameters obtained from 
Fig. 2 are given in Table 3. 

3.3. Gaussian approximations 

The FCM clustered raw data is approximated to Gaussian MF using Algorithm 3. 
The Grid partitioning and its Gaussian approximations are obtained using 
Algorithm 5. The graphs of the Gaussian degree of membership of each pattern 
obtained using different clustering techniques are given in Fig. 3. The parameters of 
the graphs generated in Fig. 3 are given in Table 4. 
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Fig. 3. Gaussian approximations 

 
Table 4. Gaussian membership function parameters 

Clustering 
technique 

GAUSS 
First fuzzy partition Second fuzzy partition Third fuzzy partition 

Center C Sigma S Center C Sigma S Center C Sigma S 
FCM-Temp 65.7882 5.0122 72.1920 5.0122 82.2164 5.0122 
Grid-Temp 64 4.4589 74 4.4589 85 4.4589 
Subtractive-Temp 65 2.2274 71 2.2274 81 2.2274 
FCM-Humidity 69.1630 5.2640 79.6909 5.2640 93.5592 5.2640 
Grid-Humidity 65 6.5822 80 6.5822 96 6.5822 
Subtractive-
Humidity 70 3.2880 80 3.2880 95 3.2880 

 
For each clustering technique considered, the graphs of the degree of 

membership of each pattern approximated to Triangular MF, Trapezoidal MF and 
Gaussian MF are given in Figs 4-6. 
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Fig. 4. FCM clustered raw data and its approximations 
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Fig. 5. Fuzzy approximations using Grid partitioning technique 
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Fig. 6. Fuzzy approximations using Subtractive clustering technique 
 

The FDT for sports dataset given in Fig. 7 is generated utilizing the values of 
FCM membership values directly without performing any approximation.  

 
Fig. 7. Fuzzy ID3 for sports dataset 

The fuzzy rules extracted from Fuzzy ID3 are: 
If Outlook is rain and Humidity is medium then Play=0.0016 and  

Don’t Play =0.9984. 
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If Outlook is rain and Humidity is low then Play=0.9752 and   
Don’t Play =0.0248. 

If Outlook is rain and Humidity is high then Play=0.0005 and  
Don’t Play =0.9995. 

If Outlook is overcast then Play=1 and Don’t Play =0. 
If Outlook is sunny and Humidity is medium then Play=0.9504 and  

Don’t Play =0.0496. 
If Outlook is sunny and Humidity is low then Play=0.0186 and  

Don’t Play =0.9814. 
If Outlook is sunny and Humidity is high then Play=0.0012 and  

Don’t Play =0.9988. 
The FDT with triangular approximation and trapezoidal approximation is the 

same as given in Fig. 7, except the certainties at the leaf nodes.  
The fuzzy rules extracted from fuzzy ID3 with Triangular Approximation are: 
If Outlook is rain and Humidity is medium then Play=1 and Don’t Play =0. 
If Outlook is rain and Humidity is low then Play=0 and Don’t Play =1. 
If Outlook is rain and Humidity is high  then Play=0 and Don’t Play =1. 
If Outlook is overcast then Play=1 and Don’t Play =0. 
If Outlook is sunny and Humidity is medium then Play=0 and Don’t Play =1. 
If Outlook is sunny and Humidity is low then Play=1 and Don’t Play =0. 
If Outlook is sunny and Humidity is high then Play=0 and Don’t Play =1. 
 
The fuzzy rules extracted using fuzzy ID3 with Trapezoidal approximation 

are: 
If Outlook is rain and Humidity is medium then Play=1 and Don’t Play =0. 
If Outlook is rain and Humidity is low then Play=0 and Don’t Play =1. 
If Outlook is rain and Humidity is high  then Play=0 and Don’t Play =1. 
If Outlook is overcast then Play=1 and Don’t Play =0. 
If Outlook is sunny and Humidity is medium then Play=0 and Don’t Play =1. 
If Outlook is sunny and Humidity is low then Play=1 and Don’t Play =0. 
If Outlook is sunny and Humidity is high then Play=0 and Don’t Play =1. 
 
The fuzzy rules extracted using fuzzy ID3 with Gaussian approximation are: 
If Outlook is rain and Humidity is low then Play=0.1957 and  

Don’t Play =0.8043. 
If Outlook is rain and Humidity is high then Play=0.0388 and  

Don’t Play =0.9612. 
If Outlook is rain and Humidity is medium then Play=0.9089 and  

Don’t Play =0.0911. 
If Outlook is overcast then Play=1 and Don’t Play =0. 
If Outlook is sunny and Humidity is low then Play=0.9943 and  

Don’t Play =0.0057. 
If Outlook is sunny and Humidity is high then Play=0 and Don’t Play =1. 
If Outlook is sunny and Humidity is medium and Temp is high then 

Play=0.0949 and Don’t Play =0.9051. 
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If Outlook is sunny and Humidity is medium and Temp is low then 
Play=0.9318 and Don’t Play =0.0682. 

9.  If Outlook is sunny and Humidity is medium and Temp is medium then 
Play=0.8476 and Don’t Play =0.1524. 

To study the effect of partitioning techniques and the approximation methods, 
several experiments were conducted. Totally 30 datasets were chosen from UCI 
repository [20]. For each considered dataset in Table 5, 10 fold cross validations are 
performed. The α-cut of 0.05 is considered to reduce the fuzziness of the data. The 
leaf selection threshold value of 0.75 is chosen for most of the datasets. The 
Product-Product-Sum reasoning mechanism is used for Fuzzy decision tree 
inference. The percentage classification accuracy has been calculated by c 100%,n

n
×  

where n is the total number of the test patterns, and cn  is the number of test patterns 
classified correctly. 
Table 5. Computational experimental results − classification accuracy 

Dataset FCM- 
Noapp

FCM- 
Tri 

FCM- 
Trap 

FCM- 
Gauss 

Grid- 
Tri 

Grid- 
Trap 

Grid- 
Gauss 

Sub  
clust-Tri

Sub  
clust-Trap 

Sub  
clust-Gauss 

Australian 85.74 85.74 85.74 85.74 44.12 44.12 85.59 85.74 85.74 85.74 

Breast  
cancer 92.54 92.99 92.69 91.04 86.12 39.7 92.24 73.88 73.88 73.88 

Cleveland  
heart  
disease 

75.17 75.17 75.52 75.52 61.38 61.03 74.48 75.51 75.51 75.52 

Pima Indian  
diabetes 74.74 75.13 75.13 74.87 68.42 74.08 66.97 75.00 75.92 76.05 

ICU data 85.50 85.50 85.50 85.50 20.00 20.00 80.00 85.50 85.50 85.50 

Iris 96.00 91.33 94.00 94.00 63.33 90.00 66.67 91.33 91.33 88.67 

Omib 87.88 88.78 89.22 85.78 85.69 69.34 82.91 77.10 80.02 83.96 
Planning- 
relax 72.22 72.22 72.22 72.22 72.22 67.78 72.22 72.22 71.66 72.22 

Rice 95.00 95.00 95.00 94.00 85.00 68.00 86.00 92.00 91.00 91.00 
Satellite 
image 73.84 72.98 75.62 74.9 75.66 70.92 70.06 73.67 73.74 72.91 

Image  
segmen- 
tation 

78.35 78.96 79.78 45.06 62.20 66.06 65.75 70.64 70.69 70.04 

Thyroid  
disease 93.4 93.4 92.53 92.34 92.61 92.55 92.71 87.44 87.44 87.44 

Thyroid  
Gland 87.73 86.82 87.27 72.27 82.38 87.14 80.48 70.00 70.00 70.00 

Veteran  
Lung  
cancer 

92.31 92.31 92.31 92.31 100 100 71.67 90.76 90.76 90.77 

Wine 75.29 74.71 74.71 73.53 89.37 30.62 89.37 82.35 82.35 82.94 

Glass 51.90 52.38 51.90 41.90 53.89 50.00 57.22 52.85 52.85 53.33 
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Table 5 (c o n t i n u e d) 

Dataset FCM-
Noapp 

FCM- 
Tri 

FCM-
Trap 

FCM-
Gauss

Grid- 
Tri 

Grid- 
Trap 

Grid- 
Gauss

Sub  
clust-Tri

Sub clust- 
Trap 

Sub clust- 
Gauss 

Web 62.22 58.89 56.67 64.44 62.22 61.11 66.67 58.88 58.88 60.00 

Breast tissue 45.00 44.00 46.00 39.00 51.25 17.5 50.00 30.00 30.00 33.00 

Trans fusion 76.67 67.73 67.73 74.93 76.62 76.89 77.16 65.06 65.06 62.00 
Mammo- 
graphic  
mass 

82.56 82.68 82.68 79.15 79.15 79.51 79.15 79.63 79.63 79.51 

Magic 78.24 80.22 80.36 74.11 74.26 77.29 74.18 77.81 77.84 77.98 
Skin region 
segmentation 88.97 89.3 89.64 80.78 79.64 88.42 79.25 92.63 92.3 90.18 

Acath 67.91 66.84 67.42 67.91 67.37 66.62 66.44 66.17 66.17 66.84 

Haber-man 70.97 70.97 70.97 70.97 63.33 72.33 72.33 70.97 70.97 70.97 

Liver disorder 55.71 56.86 56.57 47.14 47.35 53.52 46.47 59.14 58.86 58.85 

Post operative  
patient 68.75 43.75 68.75 62.22 70.00 70.00 70.00 60.00 60.00 60.00 

Thoracic  
surgery 85.1 82.97 84.89 82.76 84.89 84.89 83.82 85.31 85.1 85.68 

Indian liver  
disorder 71.57 71.92 71.92 71.92 71.92 71.92 71.92 72.1 71.05 71.57 

Stat log heart  
disease 77.77 71.85 77.77 71.85 48.51 48.51 77.77 68.88 68.88 68.14 

Balance scale 44.83 46.5 44.83 41.29 44.83 44.83 44.83 41.12 41.12 41.12 

4. Inferential statistics 
To compare the multiple algorithms results, the two most interesting specialized 
procedures for testing the significance of the differences between the multiple 
means are the well-known ANOVA [21] and its non-parametric counterpart, the 
Friedman test [22, 23]. Unfortunately, ANOVA is based on assumptions which are 
most probably violated when analyzing the performance of machine learning 
algorithms [24]. So we preferred to conduct Friedman test and its Iman Davenport 
extension test. But the main drawback of the Friedman and other non parametric 
tests like Iman Davenport test is that they can only detect significant differences 
over the whole multiple comparisons, being unable to locate exactly among which 
algorithms exists any significant difference. As an alternative, post hoc procedures, 
namely Nemenyi [25], Holm [26], Shaffer Statistic [27] and Bergmann-Hommel  
[28] tests are conducted to find among which algorithms significant differences 
exist. The other drawback is that the p-values given by Friedman test are not 
suitable for multiple comparisons. So, we prefer to choose Adjusted p-Values [29] 
(APVs). APVs can be compared directly with any chosen significance level. The 
procedure for finding the adjusted p-values is given by J o a q u i n [30]. Considering 
the advantages and the conclusion given by D e m s a r [24] that the non-parametric 
tests should be preferred over the parametric ones for machine learning data, we 
conducted Friedman, non parametric statistical test for comparison of FDTs using 
KEEL software tool [31, 32] in four setups. 
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4.1. Comparison of FDTs developed utilizing FCM values and its approximations 

In this section the classification accuracies of FDT developed by directly utilizing 
the FCM clustered raw data without doing any approximations (FCM Noapp) and 
its approximations to Triangular MF (FCM Tri), Trapezoidal MF (FCM Trap) and 
Gaussian MF (FCM Gauss) are considered for comparison.  

The p-values computed through Freidman statistics (0.00821) given in Table 6 
and Iman Davenport extension (Ff = 4.363159, p-value = 0.006535) strongly 
suggest the existence of significant differences among the four algorithms 
considered, since the p-value obtained is less than 0.05. 

Table 6. Average rankings of the FDT algorithms 
using Fuzzy C means clustering technique 

Algorithm Ranking 
FCM-Noapp 2.33 
FCM-Tri 2.46 
FCM-Trap  2.05 
FCM-Gauss 3.15 
Statistic 11.77 
p-value 0.00821 

Table  7. Adjusted p-values 
No Hypothesis Unadjusted p pNeme pHolm pshaf pBerg 

1 FCM-Trap vs   
FCM-Gauss 0.001 0.0058 0.0058 0.0058 0.0058 

2 FCM-Noapp  
Vs FCM- Gauss 0.0142 0.0857 0.0714 0.0428 0.0428 

3 FCM-Tri vs FCM-Gauss 0.0403 0.2421 0.1614 0.1210 0.0807 
4 FCM-Tri vs FCM-Trap 0.2112 1.2677 0.6338 0.6338 0.6338 

5 FCM-Noapp   
vs FCM-Trap 0.3953 2.3719 0.7906 0.7906 0.6338 

6 FCM-Noapp  
vs FCM- Tri 0.6891 4.1349 0.7906 0.7906 0.6891 

To perform the post-hoc test, we raise the 6 hypotheses of equality among the 
four algorithms of FDT generated utilizing the FCM membership values and its 
approximations. 

Table 7 lists all the hypotheses and the p-values achieved. Using a level of 
significance (α) of 0.10, hypotheses 1, 2 and 3 are rejected by Bergman procedure 
showing improvement of FCM-Trap, FCM-Noapp and FCM-Tri over FCM-Gauss. 
The Nemenyi, Holm and Shaffer methods reject two of the hypotheses as Bergman 
procedure, showing improvement of FCM-Trap and FCM-Noapp over FCM-Gauss. 
None of the remaining three hypotheses (4, 5 and 6) are rejected. Hence, it can be 
concluded that the classification accuracy of FDT developed taking FCM-Noapp 
membership values is equivalent to FDT developed, utilizing FCM-Trap 
membership values and FCM-Tri membership values, and further from the rejected 
hypotheses it is clear that the accuracy of FDT developed using FCM-Noapp is an 
improvement with respect to FDT developed utilizing FCM-Gauss membership 
values. 
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4.2. Comparison of FDTs developed using grid partitioned approximations  

The p-values computed through Freidman statistics (0.875173), given in Table 8 
and Iman Davenport extension (Ff = 0.129464, p-value = 0.878819) strongly 
suggest that there are no statistically significant differences among the FDTs 
generated utilizing the grid partitioned membership values. 

Table 8. Average rankings of the FDT algorithms using 
Grid Partitioning technique 

Algorithm Ranking 
Grid-Tri 2 
Grid-Trap 2.066666 
Grid-Gauss 1.933333 
Statistic 0.266666 
p-value 0.875173 

4.3. Comparison of FDTs developed using Subtractive clustering and its 
approximations 

Table  9. Average rankings of the FDT algorithms utilizing 
subtractive clustered data 

Algorithm Ranking 
Subclust-Tri 2 
Subclust-Trap 2.1 
Subclust-Gauss 1.9 
Statistic 0.6 
p-value 0.740818 

The p-values computed with the help of Freidman statistics (0.740818), given 
in Table 9 and Iman Davenport extension (Ff = 0.292929, p-value = 0.747172) 
strongly suggest the there are no statistically significant differences among the 
FDTs generated utilizing subtractive clustered membership values. 

4.4. Comparison of FDTs developed using different partitioning techniques 

Considering FDT-Noapp as a control method from Section 4.1, 1 X N multiple 
comparisons are performed with all the other FDTs developed utilizing grid and 
subtractive approximated membership values.  

Table 10. Average rankings of the FDT algorithms 
Algorithm Ranking 
FCM-Noapp 2.7 
Grid-Tri 4.1833 
Grid-Trap 4.9 
Grid-Gauss 4.15 
Subclust-Tri 3.9333 
Subclust-Trap 4.2333 
Subclust-Gauss 3.9 
Statistic 16.875 
p-value 0.009754 
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The p-values computed through Freidman statistics (0.009754), given in Table 
10 and Iman Davenport extension (Ff = 3, p-value: 0.008166) strongly suggest the 
existence of significant differences among the FDT, utilizing direct FCM 
membership values (FCM-Noapp) and FDT utilizing grid and subtractive clustered 
membership values. 
Table 11. Adjusted p-values (Friedman) 

Algorithm Un 
Adjusted p pBonf pHolm pHoch-

berg 
pHom-

mel 
pHoll-

and pRom pFinner pLi 

Grid-Trap 0.0000 0.0004 0.0004 0.0004 0.0004 0.000 0.000 0.0004 0.000 
Subclust- 
Trap 0.0059 0.0358 0.0298 0.0280 0.0186 0.029 0.027 0.0178 0.006 

Grid-Tri 0.0078 0.0469 0.0313 0.0280 0.0234 0.030 0.027 0.0178 0.008 
Grid- 
Gauss 0.0093 0.0560 0.0313 0.0280 0.0279 0.030 0.027 0.0178 0.009 

Subclust- 
Tri 0.0270 0.1621 0.0540 0.0314 0.0314 0.053 0.031 0.0323 0.027 

Subclust- 
Gauss 0.0314 0.1886 0.0540 0.0314 0.0314 0.053 0.031 0.0323 0.031 

 
Considering the level of significance (α) being 0.10, all the six hypotheses in 

Table 11 are rejected by seven procedures showing that FCM-Noapp is improved in 
comparison with the other FDTs considered. These results support our claim that 
bypassing the approximation step during FDT induction is acceptable. 

5. Conclusion 
In this study we show that the FDT which utilize FCM membership values directly 
bypassing the approximation step, is also a good choice since it reduces the need of 
a domain expert to decide which parameterized function to use, it reduces the effort 
of choosing the appropriate cut points and other parameters for generating 
parameterized membership functions, it also reduces the computational complexity 
of the approximations to be carried out in calculating the membership values of the 
novel test data. The limitation of the test data that is falling within the range of the 
sorted training data during approximation is overcome by directly using the matrix 
of raw membership values. Then it is proven that the classification accuracy of FDT 
bypassing the approximation step is promising and acceptable. 
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