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Abstract: The two-wheeled robot is a nonlinear system of multi-variables, higher-
order and strong coupling. This paper presented a PID Controller with Double 
Loops (PCDL) to control the tilt angle and velocity of a two-wheeled robot. The 
angle controller is the regular negative feedback, while the velocity control is the 
positive feedback. The Double Loops work cooperatively to endow the system with 
strong anti-interference ability. The stability of the whole system is analyzed and 
the criterion of the system stability is developed. The simulation and experiments 
showed that the two-wheeled robot can self-balance and move at an expected 
velocity and the system has strong anti-interference ability. 
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1. Introduction 

The two-wheeled robot is a new kind of a robot with two wheels equipped side by 
side. It has been fast developed in recent year thanks to its small size and flexibility. 
It has great application prospects in both civilian and military areas. For example, 
the two-wheeled police vehicles made by Segway Company are used in Security 
patrols [1]. What is more important, the two-wheeled robot is a complex nonlinear 
system with multi-variables, high order and strong-coupling characteristics [2]. It is 
an important model for researchers to test new control strategies and algorithms [3]. 

Many control policies based on modern control theory, such as state feedback 
[4], pole assignment [5] and LQR [6] are proposed to control the two-wheeled 
robot. The performance of these control methods depends on the model accuracy. It 
is difficult to choose the appropriate parameters and the robustness of the system is 
not good. PID controller is widely used in many areas in industry because an 
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accurate model is not required. T s a i [7] proposed an adaptive neural network 
controller for two-wheeled scooter. N a s i r, P e k a n, A h m a d  et al. [8] presented 
investigations on the performance comparison of Fuzzy Logic Controller (FLC) and 
PID controller for a highly nonlinear two-wheeled balancing robot. They can tune 
the gains of PID controller autonomously, however the computation is complicated 
and the real-time performance is poor. 

This paper presents a PID Controller with Double Loops (PCDL) for a two-
wheeled robot which combines the positive velocity feedback control and negative 
angle feedback control. The double loops worked cooperatively. Though the angle 
sensor had zero deviation, the robot could keep self-balance and move with the 
expected velocity. The stability of the whole system was analyzed and the criterion 
of stability was developed, which was never seen in previous similar researches. 
The simulation and the actual experiments both showed that the two-wheeled robot 
could be self-balanced and move with expected velocity under PCDL even when 
any disturbances existed. In addition, the system inherited the advantages of the 
traditional PID controller, such as easy implementation, good robustness and 
independence on the accurate model. 

2. Modeling 

In order to develop an efficient controller for the two-wheeled robot, the system 
dynamics has to be analyzed. The air friction and the friction of the wheel axis are 
ignored. Let us assume that there is no lip between the wheels and the ground, and 
the wheels always stay in contract with the ground. Fig. 1 shows the free body 
diagram of the robot. The two-wheeled robot has similar behavior with a pendulum 
on a cart,  accordingly the modeling  analysis is similar to an inverted pendulum [9]. 

ϕ

 
Fig. 1. A free body diagram of the two-wheeled robot: For the wheel (a); for the chassis (b) 

2.1. Dynamics of the wheel 

For the wheel the vertical forces applied to the wheel are shown in Fig. 1a. They are 
balanced and the next equation is obtained: 
(1)   ,N w yF M g F= +   
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where FN is the force applied to the wheel from the ground, Fy is the vertical force 
applied to the wheel from the chassis, wM  is the wheel mass, g is the acceleration 
of gravity. 

Summing the forces of the wheel in the horizontal direction, we obtain  
(2)    ,xw FfvM −=&   
where v  is the wheel velocity, f is the friction between the ground and the wheel, 
and xF  is the horizontal force applied to the wheel by the chassis. 

The torque balance equation of wheel rotation can be expressed as 
(3)      ,w wI T frθ = −&&  
where Iw is the inertia of the wheel, r is the radius of the wheel, wθ is the angular 
velocity of the wheel, T is the output torque of the wheel motor. 

The torque equation of the motor is as follows: 

(4)    ,T T e wk U k kT
R

θ−
=

&
 

where kT is the motor torque constant, ke is the motor back EMF constant, U is the 
voltage of the motor, and R is the total resistance of motor’s armature circuit.  

Eliminating T and f in (2)-(4) and substituting /w v rθ =&  in the equations, Fx  
can be expressed as 

(5)   2 2 .T e wT
x w

k k v Ik UF M v
Rr Rr r

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

&  

2.2. Dynamics of the chassis 

For the chassis of the robot, the free body diagram is shown in Fig. 1(b). Summing 
the forces on the chassis in the horizontal direction, we have 

(6)   2sin cos ,x b b bF M v M l M lθ θ θ θ− = − −&& &&  

where Mb is the mass of the chassis, l is the distance between the centroid of the 
wheel and the chassis. 

From Equations (5) and (6) we can eliminate Fx and get the following 
equation: 

(7)  2
2 2 sin cos .w T e T

w b b b
I k k v k UM M v M l M l
r Rr Rr

θ θ θ θ⎛ ⎞+ + + − − =⎜ ⎟
⎝ ⎠

&& &&    

Summing the forces on the chassis in a vertical direction, we have 
(8)   2 cos sin .y b b bF M g M l M lθ θ θ θ− = − −& &&   

According to the torque balance of the chassis, we have 

(9)   sin cos ,y x bF l F l Iθ θ θ− − = &&   

where Ib is the chassis inertia. 

From (5), (8) and (9), eliminating Fx and Fy  gives  
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(10)    ( )2 sin cos .b b b bI M l M gl M lvθ θ θ+ + = −&& &   

From Fig. 1b we have θ π ϕ= + , where ϕ  represents a small angle from the 
vertical upward direction. Since the robot is being stabilized at an unstable 
equilibrium position where πθ ≈ , ϕ  is always small, when the robot is self-
balancing and moving. Therefore, we approximately have  

2

cos 1, sin , 0.d
dt
θθ θ ϕ ⎛ ⎞= − = − =⎜ ⎟

⎝ ⎠  
Hence (7) and (10) can be linearized as follows: 

(11) 
2

2 2 2

,b T e T

w w w
w b w b w b

M l k k kv v UI I IM M Rr M M Rr M M
r r r

ϕ −
= + +

⎛ ⎞ ⎛ ⎞+ + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

&&&   

(12)    2 2 .b b

b b b b

M l M glv
I M l I M l

ϕ ϕ= +
+ +

&& &   

Transforming (11) and (12) into Laplace domain we obtain:  

( ) ( )

( )
( )

( )
( )2

2

2 2 2

,b T e T

w w w

w b w b w b

M l K K K
sV s s s V s U s

I I I
M M Rr M M Rr M M

r r r

ϕ
−

= + +

+ + + + + +

  

( ) ( ) ( )2

2 2
.b b

b b b b

M l M l
s s sV s s

I M l I M l
ϕ ϕ= +

+ +  
The transfer function from the tilt angle to the input voltage for the robot is as 

follows: 

(13) ( ) ( )
( ) ( ) ( )2 2 2 2 3 2 2 2

.T b
B

b b b T e b b b b T e

s K raM ls
G s

U s Rr aI aM l M l K K I M l Rr aM gls M glK Ks s
ϕ

= =
+ − + + − −  

The transfer function from velocity to input voltage for the robot is as follows, 

(14) ( ) ( )
( )

( )
( ) ( )

2 2

2 2 2 2 3 2 2 2
,T b b T b

S

b b b T e b b b b T e

K r I M l K rM glV s
G s

U s Rr aI aM l M l K K I M l Rr aM gls M glK K

s
s s

+ −
= =

+ − + + − −
 

where 2
w

w b
Ia M M
r

= + + . 

3. Double-loop PID control algorithm 

PID controller has extensive applications in the industrial field for its good 
robustness and easy tuning of the controller parameters. However, each PID 
controller can be used to control only one variable. In a two-wheeled control 
system, we have to control both the tilt angle and the velocity of the robot. Hence, 
two PID controllers are needed. Based on a double-loop controller for inverted 
pendulum, we designed a PID Controller with Double Loops (PCDL) for a two-
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wheeled robot similarly. One of the loops is for balance control (tilt angle control) 
and the other loop is for velocity control. The sum of the controllers output is the 
input voltage of the motor to drive the robot moving. The diagram for PCDL is 
shown in Fig. 2. RB(s) and RS(s) are the command signals of the angle and velocity 
of the robot respectively. DB(s) and DS(s) are the PID controllers of the angle and 
velocity respectively. 

 
Fig. 2. The diagram of PCDL 

(15)    ,)( sKKsD dbpbB +=   

(16)     .)(
s

KsK
sD isps

S
+

=   

The tilt angle is controlled by a PI controller whose gains (Kpb and Kdb) are 
positive, while the velocity is controlled by a PD controller whose gains (Kps and 
Kis) are negative. In this way PCDL combines the negative angle feedback and 
positive velocity feedback. Taking the acceleration as an example, we can use  
Fig. 3 to explain how PCDL works and how the robot accelerates and self-balances.  

ϕ&ϕ&

 
(a) State I             (b) State II            (c) State III          (d) State IV 

Fig. 3. The principle of PCDL 

We assume that the robot is expected to accelerate from 0 up to 0.5 m/s. We 
take the rightward direction as positive for velocity, and the counter-clockwise 
direction as positive for angle. At the very beginning, the robot is shown as state I. 
The angle and velocity are both zero at this moment. When the velocity command  
of 0.5 m/s is sent to the controller, the error between the command and the actual 
velocities is positive. Accordingly the output of the velocity controller is negative 
which makes the wheel turn left. At the same time, because of the inertia, the robot 
will lean to the right, which is shown as state II. Then the tilt controller begins to 



 164

work. It makes the wheel roll to the right direction, so that the robot can keep 
balancing which is shown as state III. At last the robot returns to balance gradually 
and the velocity reaches the command value (0.5 m/s), which is shown as state IV. 

Normally the positive feedback would lead to system instability. However, 
here the positive velocity controller can be successfully used to control the two-
wheeled robot move with the expected velocity. Furthermore, the two control loops 
work cooperatively and they endow the system with strong anti-interference ability. 
The system stability will be further discussed theoretically in the next section. 

4. Stability analysis of the control system 

In Section 2 we discussed the transfer functions from the tilt to the input voltage 
and from velocity to input voltage, which are GB(s) and GS(s). 

Without loss of generality, we replaced the parameter variables with the actual 
parameters of the two-wheeled robot in this paper in order to simplify the equations. 
The actual parameters of the two-wheeled robot are shown in Table 1. Substituting 
the parameter values into (13) and (14), we have simplified GB(s) and GS(s) as 
follows: 

(17)    ,
88.943.38404405.0

9.104
)(
)()( 23 −−+
==

sss
s

sU
ssGB

ϕ   

(18)   .
88.943.38404405.0

9.513368.2
)(
)()( 23

2

−−+
−

==
sss

s
sU
sVsGS   

Calculating the poles of GB(s) and GS(s) gives 
1 2 319.7; 19.5; 0.2469.s s s= = − = −  

Because they have poles in the right complex plane, the system is unstable. We 
have to design the controller for the two-wheeled robot. 

Table 1. The parameters of the two-wheeled robot 
Various parameters Symbol Quantity Unit 

Motor armature resistance R 1.875 Ω 
Electromagnetic constant Ke 0.06 V per 1 rad/s 

Torque constant KT 0.163 (N.m)/A 
Wheel radius r 0.0325 m 

The distance of the connection point 
to the body center of gravity  l 0.04 m 

The quality of the wheels Mw 0.05 kg 
The quality of the vehicle Mb 0.42 kg 

Wheel rotation inertia Iw 0.00002 kg.m2 
Vehicle body rotation of inertia Ib 0.00022 kg.m2 

Acceleration of gravity g 9.8 N/m2 

To control the two-wheeled robot self-balance and move with the expected 
velocity, the PCDL is designed as shown in Fig. 2. Then the close-loop transfer 
functions of the angle and velocity are expressed as follows: 
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(19)    ,
)()()()(1

)()(
)(

)()(
sGsDsGsD

sGsD
sR

ssG
SSBB

BB

B
BC ++

==
ϕ  

(20)   .
)()()()(1

)()(
)(
)()(

sGsDsGsD
sGsD

sR
sVsG

SSBB

SS

S
SC ++

==   

Substituting (15), (16), (17), (18) into Equations (19) and (20), we have 
( ) ( )
( ) ( )

3 2 4 3

2

( ) 104.9 104.9 / 104.9 2.368 0.04405

104.9 2.368 384.3 513.9 94.88 513.9 ,

BC db pb db ps

pb is ps is

G s K S K S S K K S

K K S K S K

= ⎡+ + + + +⎣
⎤+ + − − + − ⎦

( ) ( )
( ) ( )

S

3 2 4 3

2

( ) 2.368 2.368 513.9 513.9 / 104.9 2.368 0.04405

104.9 2.368 384.3 513.9 94.88 513.9 .

C ps is ps is db ps

pb is ps is

G s K S K S K S K S K K S

K K S K S K

= ⎡+ − − + + + +⎣
⎤+ + − − + − ⎦

 

GBC(s) and GSC(s) have the same denominator, which means that the two close-
loop transfer functions have the same characteristic equation. Therefore, if a group 
of PID parameters meet the stability requirements of one close-loop transfer 
function, the parameters also meet the stability requirements of another. 

According to Routh’s stability criterion [10], the system is stable only if the 
parameters of the PCDL satisfy the following stable conditions. 

(21)    ,0004.0022.0 −−> psdb KK  
(22)    ,66.302.0 +−> ispb KK  
(23)    ,185.0−<psK  
(24)    ,0−<isK  
(25)   ,03021 >− aaaa  
(26)   ,0)( 4

2
130213 >−− aaaaaaa  

where,  
0 1,a =  

1 104.9 2.368 0.04405,db psa K K= + +  

2 104.9 2.368 384.3,pb isa K K= + −  

3 513.9 94.88,psa K= − −  

4 513.9 .isa K= −  
Although these conditions are only for the two-wheeled robot whose 

parameters are shown in Table 1, the method for developing the criterion of system 
stability is general.  

5.  Simulation 

In this section we did several simulation experiments to verify the effect of PCDL 
designed in this paper with Simulink.  
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5.1. Simulation for balance and velocity control 

The Simulink block diagram for the two-wheeled robot with PCDL is shown in  
Fig. 4. In this simulation the robot was expected to self-balance and move with the 
specified velocity which is 0.5 m/s. The “Balance input signal” block is the 
command angle signal, and it is set to zero. “Velocity input signal” block is the 
command velocity, and it is a step signal whose amplitude is 0.5. The “Balance 
controller” block and the “Velocity controller” block are the angle and velocity 
controllers of PCDL designed in Section 2. The “Balance object” block and the 
“Velocity object” block are the angle and velocity transfer functions of the robot. 
According to the stability analysis in Section 4, the two-wheeled robot system with 
PCDL can be stable only if the parameters satisfy the stable conditions (21)-(26). 
We determined a set of parameters according to the conditions as following: 
Kpb=45, Kdb = 3, Kps = −12, Kis = −10.  The initial  angle and velocity were both zero. 

 
Fig. 4. Simulink block diagram for a two-wheeled robot system 
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(a)                                                                                   (b)  

Fig. 5. Simulation results for a two-wheeled robot system: Angle of the robot  (a);  
velocity of the robot (b) 

The angle and the velocity output in the simulation are shown in Fig. 5. 
According to Fig. 5a, the robot stood initially upright, and leaned to the right after 
the robot began to move. The robot recovered the balance because of the negative 
angle feedback of the angle controller. As seen in Fig. 5b, although the expected 
velocity is 0.5 m/s, the robot moved towards the negative direction at first and then 
moved towards the expected direction. At last, the velocity reached the expected 

Balance input signal Balance controller Balance object 

Velocity input signal Velocity controller Velocity object 

Time (s)
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value under PCDL. The simulation results are matched with the theoretical analysis 
in Section 3.  

5.2. Simulation of the condition when the angle sensor has a zero deviation 

In actual applications the angle sensor has always zero deviation which is shown in 
Fig. 6. It means that the angle measurement deviates from the actual angle, which 
will cause that the actual angle could not reach the command signal with a normal 
negative feedback controller. The PCDL has two control loops which work 
cooperatively. It can keep the robot self-balancing and moving with the expected 
velocity even if the angle sensor has zero deviation. This cannot be realized only 
with an angle negative feedback controller.  

True angle(°) 

45° 
A

ngle m
easurem

ent(°)

 ideal measurement 

 actual measurement  

 
Fig. 6. The tilt angle measurement with zero deviation 

The Simulink block diagram for the system whose angle sensor has zero 
deviation is shown in Fig. 7. The parameters for the system are the same as in the 
above simulation, except that the angle feedback to the controller has a deviation of 
0.02 rad. The simulation result is shown in Fig. 8. The robot kept self-balancing and 
moving with the expected velocity of 0.5 m/s. The angle can converge to 0 even 
when the angle feedback to the controller has deviation of 0.02 rad. Hence PCDL 
has the advantage of strong anti-disturbance from the angle sensor, which is very 
important for the actual application. 

 

 
Fig. 7. Simulink block diagram for the system with zero deviation 

Balance input signal Balance controller Balance object 

Velocity input signal Velocity controller Velocity object 
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(a)                                                                             (b)  

Fig. 8. Simulation result for a two-wheeled robot system with zero deviation: Angle of the robot  (a); 
velocity of the robot (b) 

6.  Experiment 

We designed a two-wheeled robot described in [11] and it was used to do the 
experiments in this paper. The PCDL algorithm was coded and downloaded in the 
CPU of the robot. The angle was measured by fusing the gyro signal with an 
accelerometer signal with the help of Kalman filtering method. The velocity was 
measured with a photoelectric encoder. According to the parameters used in the 
simulation, we did three experiments. 

Firstly, the initial angle and velocity were both zero and the command velocity 
was set zero, which means the robot was expected to stand still and keep balance. 
The experimental result is shown in Fig. 9. The actual angle and velocity of the 
robot were approximately zero, which meant the robot self-balanced and stood still 
as expected.   

In the second experiment the robot stood still and kept balance initially, then 
we gave the robot a disturbance by pushing the robot. The robot was tilted at first 
and then recovered to balance soon. The experimental result is shown in Fig. 10. To 
compare conveniently, we drew the angle and velocity outputs in the figure. The 
robot stood still and kept balance at first. At 2.7-th second, the robot was pushed 
and tilted about 0.045 rad. After about one second, the robot recovered balance and 
the angle was converged to zero.  

In the third experiment, the initial angle and velocity were both zero, and the 
command velocity was set to 0.5 m/s. The robot moved with 0.5 m/s velocity and 
kept balance under PCDL. The experimental result is shown in Fig. 11. Although 
the angle measurement has zero deviation in the actual experiment, the robot can 
still keep balance. The experimental results are matched with the simulation ones.   
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Fig. 9. Experimental results (the command velocity is set to 0): Angle of the robot  (a); 
velocity of the robot (b) 

 
Fig. 10. Experimental result with disturbance 
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(a)                                                                         (b)  

Fig. 11. Experimental results (the command velocity is set to 0.5m/s) ): Angle of the robot  (a); 
velocity of the robot (b)  

7. Conclusion 

The paper analyzes the model of a two-wheeled robot and then presents PCDL for it 
to ensure the robot self-balance and movement at expected velocity. We have 
analyzed the system stability and gave the stability criterion. According to the 
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stability criterion we can easily determine the parameters of PCDL. The simulation 
and experiment both showed that the robot can self-balance and move with an 
expected velocity under PCDL. Furthermore, the PCDL has strong anti-interference 
ability because the two control loops work cooperatively. The simulation showed 
that the robot can self-balance and move with expected velocity even if the angle 
sensor has zero deviation and the experiment also showed that the robot can keep 
self-balancing with disturbance under PCDL. In addition, the system inherits the 
advantages of the traditional PID controller, such as easy implementation, good 
robustness and independence on the accurate model. 
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