
 40

BULGARIAN ACADEMY OF SCIENCES 
 
 
CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 14, Special Issue 
 
Sofia • 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2014-0042 
 
 
 
 
 
 
 
 
 
 
Experimental Demonstration of the Fixed-Point Sparse Coding 
Performance 

Jingfei Jiang, Rongdong Hu, Fei Zhang, Yong Dou 

Science and Technology on Parallel and Distributed Processing Laboratory, National University of 
Defense Technology, ChangSha, Hunan 410073, China 
Emails: jingfeijiang@nudt.edu.cn rongdonghu@nudt.edu.cn feizhang@nudt.edu.cn  

yongdou@nudt.edu.cn 

Abstract: The Sparse Coding (SC) model has been proved to be among the best 
neural networks which are mainly used in unsupervised feature learning for many 
applications. Running a sparse coding algorithm is a time-consuming task due to its 
large scale and processing characteristics, which naturally leads to investigating 
FPGA acceleration. Fixed-point arithmetic can be used when implementing SC in 
FPGAs to reduce the execution time, but the implications for accuracy are not 
clear. Previous studies have focused only on accelerators using some fixed bit-
widths on other neural networks models. Our work gives a comprehensive 
evaluation to demonstrate the bit-width effect on SCs, achieving the best 
performance and area efficiency. The method of data format conversion and the 
matrix blocking are the main factors considered according to the situation of 
hardware implementation. The simulation method of the simple truncation, the 
representation of the domain constraint and the matrix blocking with different 
parallelism were evaluated in this paper. The results have shown that the fixed-
point bit-width did have effect on the performance of SC. We must limit the 
representation domain of the data carefully and select an available bit-width 
according to the computation parallelism. The result has also shown that using a 
fixed-point arithmetic can guarantee the precision of the SC algorithm and get 
acceptable convergence speed.   
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1. Introduction 

Deep Learning technology has been one of the most popular technologies in the 
Machine Learning community with successful results demonstrated by Deep Belief 
Networks (DBNs) [1], sparse AutoEncoder [2], Sparse Coding [3], Deep 
Convolutional Neural Networks (CNNs) [4], etc., challenging recognition, mining 
and synthesis tasks. Sparse Coding (SC) has been shown to be among the best 
neural networks which are mainly used in unsupervised feature learning for 
speeches and vision. Running a SC is a time-consuming task due to its large scale 
and processing characteristics. Many experiments have often reported taking hours 
or days to search the large parameter space (numbers of layers and neurons, the 
learning rate, momentum and all kinds of regulation terms) and calculate millions of 
parameters (weights and biases). One good example is Q u o c  et al. [5] who has 
used a cluster in Google of 1000 machines (16 000 cores) for a week to demonstrate 
the success of larger scale unsupervised learning from Internet images recognition. 

Reducing the training time of a SC is one critical barrier which restricts its 
adoption for building deep structures. The acceleration of SCs and other deep 
learning algorithms is currently under investigation and their overall computational 
time is expected to improve. R a i n a  et al. [6] developed an inherently parallel SC 
algorithm in NVIDIA GeForceGTX 280. The top-level GPU blocks exploited data 
parallelism and GPU threads further subdividing the work in each block, working 
with just several elements of the input example. The speed-up can be up to 15-fold 
compared with a dual-core CPU which decreases the learning time from several 
days to around several hours. FPGA is one of the most attractive platforms for deep 
learning acceleration. For example, a RBM (a building block of DBN) of 256x256 
nodes was tested on a platform of four Xilinx Virtex II FPGAs and gained a 
speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel 
processor [7]. The processing characteristic of SC is very similar to DBN. Its 
acceleration on FPGA is also an attractive topic under study. The latest advance of 
the specific deep learning circuit is the chip design of a high-throughput accelerator 
for machine learning [8], which can achieve very high performance-energy ratio, 
452 Giga-Operations per 1 s at 485 mW, depending on their delicate design and 
advanced silicon process technology. 

Parallel implementations of deep learning structures often use vast and regular 
processing units to map the model nodes partially or wholly at a time. Weights and 
neuron values are stored in on-chip RAM during processing and are swapped out to 
off-chip memory after processing. It is too expensive to support a large number of 
floating-point units on chip and store values using the standard double precision 
floating-point representations in on-chip RAMs. Many of the previous attempts 
with FPGAs for machine learning algorithms used the fixed bit-widths (8 bits, 16 
bits or 32 bits). Bit-widths with integral multiple of bytes are convenient to align 
with other components (such as IP cores and user interfaces) and easier to design. 
Previous works have mainly analysed the impact of bit-widths on accuracy and the 
execution time of old-style neural networks [9, 10] and RBM [11, 12]. All reported 
designs of FPGA selected a fixed-point arithmetic with a fixed bit-width as well, 
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e.g., 16 bits in [13] or 32 bits in [14] without analyzing in depth the implications for 
accuracy. Thus it is not clear whether this kind of fixed bit-width is really the most 
suitable and area efficient for SCs. 

Using a bit-width unequal to the machine word-length on a standard processor 
or GPU may rarely deliver any speedup. The programs need more instructions to do 
alignment and splicing which is not a negligible cost. On the other hand, the speed 
and resource usage in FPGAs are more sensitive to the bit-width since many logics 
are mapped to fine-grain LUTs. As SCs have grown in size, compared to old-style 
neural networks, to satisfy the learning demands of contemporary applications, 
resource saving due to narrower bit-widths has become more attractive in 
implementing a larger processing array in FPGAs. However, shrinking the bit-width 
may harm the convergence and accuracy of SCs. From an information theoretic 
perspective, converting the double precision floating-point arithmetic to fixed-point 
arithmetic will lose some information of the inputs, as well as intermediate data. 
The training process becomes more “coarse” than before in both cases. The 
advantage of such approximation is that a high-dimensional input loses the 
redundant and useless information during processing and then can learn features 
easier. The disadvantage is that some critical information may be lost and make the 
feature more indistinct to be learned. For the similar reason, a suitable bit-width 
may trade-off both side effects well. 

There is no relevant research on the arithmetic effects of SC for a specific 
network configuration. This paper reports a comprehensive study of the 
performance of the fixed-point SC. The large scale matrix computation is the main 
objective to evaluate. The rest of the paper is organized as follows. Section 2 
presents the preliminaries of SC. Section 3 provides the conversion methods of the 
fixed-point data and computation. Section 4 presents the experimental results for 
our methods. Finally, Section 5 describes some conclusions. 

2. Preliminaries 

2.1. SC model 

Sparse coding algorithm is an unsupervised learning method, used to search for a 
group of super base vectors to express the sample data efficiently [15]. The sample 
data vector x is to be expressed as a linear combination of the base vector w and its 
coefficient a: 
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where .nRx∈  The basis set can be over-complete (k > n), and can thus capture a 
large number of patterns in the input data. The coefficients a must be sparse to 
avoid the model degeneracy problem for using an over-complete basis. So the cost 
function of SC is usually defined as the summary of the restruction term, indicating 
the error between the linear fitting (AW) and the input, the sparsity term controlling 
the sparse state of the coefficients  (A), and the bound term restricting the scale of 
the basis matrix (W): 
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That equation expresses the cost function in a matrix form. The subscripts denote 
the dimensions of the matrices. The SC model aims to learn the basis (W) and 
coefficients (A) by minimizing the cost function. The cross optimization method is 
actually used and A is learned first by fixing W, and W is learned by fixing A. 

Gradients’ descent is often used to learn the parameters. The model gets the 
gradients by calculating the partial derivative of the cost function. Then some 
optimization methods (like minfun in (3)) are used to calculate the direction and 
step of the descent gradients: 
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Then W is fixed. Because we can get the analytic expressions of A through the 
partial derivative of A in (4), we directly use it instead of calculating the gradients. 
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2.2. Classification using SC 

The SC model is an unsupervised structure that only uses the source data to capture 
the features. For typical applications of the object classification, a classifier layer is 
often added at the top of SC, forming the whole model framework. Fig. 1 shows the 
execution flow of the typical SC classification. The whole process is divided into 
two stages: the training and the prediction. When training, the SC layer learns the 
current input data using (3) and (4), updating the model parameters (A and W) in 
batches for Maxepoch times, and generating the output data for the layer above it at 
the last epoch. The classifier layer often uses a logistic regression model [16] (like 
sofmax) to generate actual labels, comparing with the prepared label to update its 
model parameters. This process is known as supervised training because the label 
usage avoids the search of the optimal gradient which is simplifying the calculation. 
After the model is trained, the updated model parameters are used to do the 
prediction. This process is relatively simple compared to the training process. In 
Fig. 1 the procedure of calculating the gradients of W is the most time-consuming 
core. Moreover, the core may be processed many times, searching for the satisfied 
gradient, thus occupying most of the training time.  

In our experiments MNIST classification was selected as the objective 
application because of its popularity in machine learning studies and we use a 
simple configuration of SC in these studies. The dataset is 5000 training samples 
and 1000 testing samples of 28×28 pixel images of the digits. The model is with 
size of 784-256-10, with a lower layer of unsupervised training and a top layer of 
output logistic regression, using softmax. The batch size is 100. We use Quasi-
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Newton with limited-memory BFGS, updating the algorithms for optimization of 
the gradients (in Minfun). 

Prediction

Training Input data

Label

SC: 
Unsupervised train

For epoch=1:Maxepoch
For Batch=1:MaxbatchNum   

Minfun: 
While  criteria(g) is not satisfied       

Calculate gradients (g) of W; 
Calculate step and direction of g;
Calculate criteria of g;

Update W;
Update A;

For epoch=1:Maxepoch
For Batch=1:MaxbatchNum   

Calculate gradients of classifier weights(C_W);
Minfun: update C_W;

SoftMax:
Supervised train

test Input dataModel parameters: 
W, A, C_W

Classification rate  
Fig. 1. Execution Flow of the SC classification 

3. Fixed-point processing of SC 

3.1. Conversion of the data format 

The software implementation of SC classification algorithm uses double precision 
floating-point representations which need 64 bits for a data. When the algorithm is 
implemented in hardware, the fixed-point data format is used to save area, which is 
shown in Fig. 2. The fixed-point representation domain is much smaller than the 
floating-point one. The basic method of data format conversion corresponding to 
hardware implementation is simple truncation, that is, each data would be amplified 
by a factor of 2n–m, truncated by a factor of 2n−1 and then divided by 2n−m, thus 
simulating the calculation process as a limited fixed-point one. This procedure 
simulates the simple hardware that directly truncates the overflows, which may lose 
more precision for the number whose absolute value is larger than the fixed-point 
representation upper bound. 

The more precise method converting double precision floating-point data to 
the fixed-point one is the representation range constraint, as Fig. 3 shows. First, for 
positive data larger than MaxPD or smaller than MinPD, it would be set to MaxPD 
or MinPD respectively. For negative data larger than MaxND or smaller than  
MinND, it would be set to MaxND or MinND respectively. Thus, we constrain the 
domain of a floating-point data to the domain that a n bits fixed-point data can 
represent. Secondly, each data would be amplified by a factor of 2n−m, rounded to 
the nearest integer and then divided by 2n−m, thus constraining the data to the fixed-
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point representation domain. This method introduces additional comparison 
operations during simulation which slows down the simulation time. 

 
Fig. 2. Fixed-point data format 

 
Fig. 3. Representation of the domain constraint 

3.2. Matrix blocking for fixed-point operations 
For some main operations like matrix multiplication in SC, parallel multiply-
accumulators are often used, as shown in Fig. 4. The operands are stored on a 
distributed block RAM, which bit-width is n bits.  A 2n bits partial product can be 
produced by the n bits multiplier. An accumulator with a larger bit-width can be 
used to accumulate the partial product, avoiding the lost precision and not 
increasing much the logic cost at the same time. So, we often choose a bit-width in 
the range of n bits to 2n bits for the adder and the accumulator. Only the bit-width 
of the final result which needs to be stored back to on-chip RAM is constrained to n 
bits. The partition of the integer part and fractional part for the result depends on the 
representation range of the data, which must be studied when converting to the 
fixed-point hardware. 

Under the implementation assumption above, it is more reasonable to maintain 
the precision of a block matrix multiplication instead of converting the partial 
product for each element. Assuming that we can choose a sufficiently wide bit-
width for the accumulation operation, we only need to cut down the bit-width to n 
bits for the result of block multiplication when simulating the fixed-point 
operations. Based on this observation, we converted all matrix operations in SC to a 
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loop code of block matrix operations and converted each element of the block result 
to a fixed-point representation described in Section 3.1. 

Using a conversion method and a blocking method, we rewrote all the train 
processes in Fig. 4. The bit-width, the domain constraint configuration, and the 
blocking number are all parameterized. All experiments were done in Matlab2010a. 

 
Fig. 4. Parallel multiply-accumulator array 

4. Experimental result and analysis 

When considering a fixed-point representation for real numbers, the integer part of 
a number mainly influences the representation scope while the fractional part 
mainly decides the precision. So, we experimented using various combinations of 
the integer part and the fractional part under various converting configurations to 
evaluate the influence of precision change. All the programs are run on a PC using 
Pentium® Dual-Core CPU E6500 in 2.94 GHz and 4 GB memory. The SC 
classification rate, using double precision floating-point representations is about 
91%, running at most 20 epochs. 

We firstly evaluate the simple truncation method in Section 3.1. Figs 5 and 6 
show the results. For each bit-width configuration, four integer widths (6 bits ~ 
9bits) are simulated. There are less than four results for some bit-widths (like 26 
bits bit-width in Fig. 5), because some results are much lower than the Y axis lower 
bound and are not shown in the figure. The classification rate of 10 epochs (about 
80%) is a little higher than that of 20 epochs (about 75%). But both of them are 
much lower than 91%, which means that the data truncation affects the SC 
performance to a great extent. Increasing the bit-width (up to 40 bits) or the integer 
part width (up to 9 bits) helps a little. The whole trend shows very oscillatory 
variation.  
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Fig. 5. Fixed-point SC classification rate, running 20 epochs using a simple truncation 

 
Fig. 6. Fixed-point SC classification rate, running 10 epochs using a simple truncation 

The method of representation domain constraint is simulated next; the results 
are shown in Fig. 7. SC performance is much higher than that of the truncation 
method, using much smaller bit-width at the same time. There are many 
configurations in the 16 bits or more bit-widths that can achieve the performance of 
above 90%.  Some results, such as 30 bit-width with 9 bits integer (91.7%) are even 
higher than 91%. It means that the representation domain constraint throws away 
the redundant and useless information of the high-dimensional input data. The 
integer part with an available width covers the scope of the model and the fractional 
part keeps the features precision. High performance and rapid convergence can be 
archived.  
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Fig. 7. Fixed-point SC classification rate, using the representation domain constraint 

We chose some most available bit-widths in Fig. 7 and added a matrix 
blocking method in the simulation. Figs 8-10 shows the performances using the 
block number of 64, 32 and 16 respectively. It is clear that the performance in the 
corresponding bit-widths becomes worse compared to Fig. 7. And the performance 
in the bit-widths of 16 bits and 20 bits became a little worse with the decrease of the 
block number. It means that the hardware computation parallelism will also affect 
the SC performance. Implementation with large parallelism can map many units in 
the hardware with rather small bit-widths, while the architecture with small 
parallelism may use more bits to compensate the precision loss of the fixed-point 
computation.  

 
Fig. 8. Fixed-point SC classification rate, using matrix blocking with a block number 64 
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Fig. 9. Fixed-point SC classification rate, using matrix blocking with a block number 32 

 
Fig. 10. Fixed-point SC classification rate, using matrix blocking with a block number 16 

5. Conclusion 

Our work gives a comprehensive evaluation for implementing SC on FPGAs by 
studying a wide range of bit-widths achieving the best performance and area 
efficiency. The method of data format conversion and matrix blocking are the main 
factors that must be considered when implementing SC in large computation arrays. 
The simulation method of the simple truncation, representation domain constraint 
and matrix blocking with different parallelism were evaluated in this paper. The 
results showed that the fixed-point bit-width did have effect on the performance of 
SC. We must constrain the representation domain of the data carefully and select 
the available bit-width according to the computation parallelism. The result also 
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showed that using a fixed-point arithmetic can guarantee the precision of SC 
algorithm and obtain an acceptable convergence speed. 
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