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Abstract: The cogeneration systems in the industrial sector have become an 
essential part due to their global efficiency and reduced pollution. These systems 
may operate from conventional fuel sources, as well as from renewable energy 
sources (biomass, solar, fuel cell).  

Cogeneration systems could be installed as a distributed generation and on-
site generation source in order to take advantage from the produced heat. The 
utility can motivate factories to install such systems by permitting them to link and 
sell their residual production capacity to the electrical grid. 

This work presents a new technique to find the best solution from multi-
objective optimization results, using a sensitivity and data analysis method. Genetic 
Algorithm (GA) optimization method is used with the data analysis method: 
Multiple Linear Regression (MLR).  

Keywords: Combined Heat and Power (CHP), energy management, Genetic 
Algorithm (GA), sensitivity analysis, multiple linear regression. 

1. Introduction 

Cogeneration or CHP (Combined Heat and Power) is defined by the simultaneous 
production of electric power and heat. The cogeneration system consists normally 
of a prime mover, a generator, a heat recovery system and electrical 
interconnections. Its thermal power is produced from the heat released by the fuels 
combustion in the system. 
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In Section 2 the mathematical models will be settled. In Section 3 we will 
represent the multi-objective optimization and the main factors. In Section 4 the 
sensitivity analysis method will be discussed. Finally, in Section 5 we will discuss 
and analyze the results obtained. 

2. Mathematical formulation 

In this section, the mathematical models are presented and discussed as objective 
functions.  

These objective functions represent the economic and environmental issues.  

2.1. Economic objective function 

The economic objective function corresponds to the total of cogeneration systems 
integration into a smart-grid.  

The total cost function to be minimized is presented by  
totalܨ  (1) ൌ ∑ ൫ܪୠ ௝ܿ൯ே

௝ୀଵ െ ∑ ௝ݐ
ே
௝ୀଵ ௝ܽ ൅ ∑ ௝ܿ୫௝ߙ

ே
௝ୀଵ െ 

െ ቌ෍൫ܲݐ௝ െ ௝ load൯ܧ ቈmax൫ܲݐ௝ െ ௝ load, 0൯ܧ ቆ
݊ െ 1

௝ݐܲ െ ௝ loadܧ
ቇ ൅ 1቉

ே

௝ୀଵ

ቍ tariff ൅ 

൅ InvCost ൅ ∑ ൫ܲݐ௝ െ ௝ load൯ேܧ
௝ୀଵ ܿ୲, 

with:  

෍ ௝ݐ

ே

௝ୀଵ
௝ܽ ൅ ෍ ௝ܿ୫௝ߙ

ே

௝ୀଵ

— 

െ ቌ෍൫ܲݐ௝ െ ௝ load൯ܧ ቈmax൫ܲݐ௝െܧ௝ load, 0൯ ቆ
݊ െ 1

௝ݐܲ െ ௝ loadܧ
ቇ ൅ 1቉

ே

௝ୀଵ

ቍ tariffൌ

ൌ Exchanged energy cost, 
∑ ൫ܪୠ ௝ܿ൯ே

௝ୀଵ ൌ Produced energy cost;  
∑ ௝ܿ୫௝ߙ

ே
௝ୀଵ ൌ Maintenance cost;  

∑ ௝ݐ
ே
௝ୀଵ ௝ܽ ൌ Attrition cost;  

∑ ൫ܲݐ௝ െ ௝ load൯ேܧ
௝ୀଵ ܿ୲ ൌ Transmission cost;  

N.B:   max൫ܲݐ௝ െ ,௝ loadܧ 0൯ ൬ ௡ିଵ
௉௧ೕିாೕ ౢ౥౗ౚ

൰ ൅ 1 ൌ 1 or ݊.  

Thus:  
totalܨ ൌ Produced energy cost െ Exchanged energy cost ൅ Maintenance cost

െ Attrition cost ൅ Investment cost ൅ Transmission cost.   

2.2.  Notations 

ܰ – number of time intervals; 
ܲ – power produced by the cogeneration system, MW; 
(ܲ ൌ ܲୣ୪ୣୡ୲୰୧ୡୟ୪ ൅ ܲ୲୦ୣ୰୫ୟ୪); 
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 ;௝ – production time of the cogeneration system at j-th time interval, hݐ
 ;௝ ୪୭ୟୢ –  load demand at j-th time interval, MW.hܧ
tariff – electricity tariff, € per 1 MW.h; 
݊ – incentive or motivation factor when consumer sells the utility (usually  

1 ൑ ݊ ൑ 4ሻ; 
  ;ୠ – fuel enthalpy in the boiler of the cogeneration system, MW.hܪ 
ܲ ൌ ܲ୲୦ୣ୰୫ୟ୪ ൅ ܲୣ୪ୣୡ୲୰୧ୡୟ୪  or  ܪୠ ൌ ௝ݐܲ ൅ Losses; 

௝ܿ – fuel cost of the cogeneration system at j-th time interval, € per 1 MW.h;  
  ௝ – deterioration factor of the cogeneration system at j-th time intervalߙ

(0 ൑ ߙ ൑ 1; ߙ  ൌ 0  for ideal cogeneration system and ߙ ൌ1 for damaged one); 
ܿ௠௝  – average maintenance cost of the cogeneration system at j-th time 

interval, €; 
InvCost – Investment Cost of the cogeneration system (proportional to the 

Power), €; 
௝ܽ – attrition cost of the conventional extinct generator at j-th time interval due 

to cogeneration system integration, € per 1 h; 
ܿ୲  –  transmission cost, € per 1 MW.h; 
 ,௝ –  pollution rate of fuel in the boiler of the system at j-th time intervalܦ

kg/(MW.h); 
Dam௝ –  pollution due to Damaging of the system at j-th time interval, kg; 
Pol௝ –  Pollution of the extinct generator at j-th time interval, kg/h. 

2.3.  Environmental objective function 

The environmental objective function corresponds to the polluting emissions of the 
cogeneration systems integration into a smart-grid.  

The polluting emissions function to be minimized is presented by: 
pollutionܨ  (2) ൌ ∑ ൫ܪୠܦ௝൯ே

௝ୀଵ ൅ ∑ ௝Dam௝ߙ
ே
௝ୀଵ െ  ∑ ௝ݐ

ே
௝ୀଵ Pol௝, 

with: 
∑ ൫ܪ௕ܦ௝൯ே

௝ୀଵ ൌ fuel pollution;  
∑ ௝Dam௝ߙ

ே
௝ୀଵ ൌ pollution due to system deterioration;  

∑ ௝ݐ
ே
௝ୀଵ Pol௝ ൌ pollution due to conventional extinct generator,  

thus: 
pollutionܨ ൌ Fuel pollution ൅ Pollution due to systemdeterioration െ 

െPollution due to conventional extinct generator. 

3. Multi-objective optimization  

The objective functions of the previous section are contradictory in terms of 
solutions. As mentioned in [3], the operational cost, which is related to the total 
cost, is inversely related to pollution. Thus, the system consisting of these two 
functions must be solved using a multi-objective optimization tool. For this reason, 
we chose the Genetic Algorithm (GA) multi-objective optimization method. The 
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latter is applied using Matlab R2011b, on an Intel Core I7 PC with a CPU speed of 
3.4 GHz. 

3.1.  What is multi-objective optimization? 

Anyone might need to formulate problems with more than one objective, since a 
single objective with several constraints may not adequately represent the problem 
being faced. If so, there is a vector of objectives, F (x) = [F1 (x), F2 (x), ... , Fm (x)], 
that must be traded off in some way. The relative importance of these objectives is 
not generally known until the system's best capabilities are determined and tradeoffs 
between the objectives are fully understood. As the number of objectives increases, 
the tradeoffs are likely to become complex and less easily quantified. 

In our case, we have F(Power) = [Total_cost (Power), Polluting_emissions 
(Power)]. Thus we need to evaluate the system we are studying by its economic and 
environmental performance. In addition, we only have two objectives which means 
that we do not have the tradeoffs complexity problem. 

3.2.  Genetic algorithm 

GA concept was developed by Holland and his colleagues in the 1960-ies and 1970-
ies [7]. It is inspired by the evolutionist theory explaining the species origin [8]. 

The proposed GA procedure works through the following steps: 
1) creation of a random initial population; 
2) evaluation of the individuals and application of the penalty function 

method; 
3) ranking of the individuals, calculation of the fitness and registration of the 

best individuals; 
4) registration of all non-dominated individuals in the Pareto set filter operator; 
5) selection of the pairs of individuals as parents; 
6) crossover of the parents to generate the children; 
7) replacement of the individuals using the niche operator; 
8) genetic mutation; 
9) replacement of the individuals using the elitism operator [9]. 

3.3. Elitist multi-objective Genetic algorithm 

The multi-objective GA function uses a controlled elitist genetic algorithm (a 
variant of NSGA-II [10]).  

In fact, a controlled elitist GA prefers individuals affecting the diversity 
increase of the population even if they have a lower fitness value, while an elitist 
GA always prefers individuals with better fitness value only. The diversity of 
population is maintained for convergence to an optimal Pareto front. This is done 
by controlling the elite members of the population as the algorithm progresses. Two 
options are used to control the elitism: “ParetoFraction” and “DistanceFcn”. The 
Pareto fraction option limits the number of individuals on the Pareto front (elite 
members or best solutions), whereas the distance function option helps to maintain 
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diversity on a front by preferring individuals that are relatively far away on the front 
[11]. 

In our work we apply the GA to the economic and environmental functions 
simultaneously. We have on the Pareto front, individuals corresponding to a power 
for given values of the total cost and the polluting emissions. 

Then we can deduce from this multi-objective optimization a set of proposals 
described by the triplet (Total_cost; Polluting_emissions; Power).  

3.4. Integration levels 

The multi-objective optimization is carried out considering two industrial energy 
levels. The first corresponds to an average energy level pharmaceutical factory. 
This has 77000 MWh as consumption (electrical + thermal) in the first year, and 
76000 MWh in the second year. The second one corresponds to a high energy level 
paper mill which consumption is 200 000 MW.h (electrical + thermal) in the first 
year and 210 000 MW.h in the second year.  

The study concerns two years of integration of the cogeneration systems with 
an average of 8000 hours of operation per year. Thus, the number of time intervals 
is  ܰ ൌ 2. The data that will be obtained correspond to the functions values after 
two years of operation. 

The inequality constraint concerning the first level is: ܲ ൑ 15 MW; 1 MW is 
the lower bound and 15 MW is the upper bound of ܲ ൌ tܲhermal ൅ eܲlectrical. 

The inequality constraint concerning the second level is: ܲ ൑ 50 MW; 16 MW 
is the lower bound and 50 MW is the upper bound of ܲ ൌ ܲ୲୦ୣ୰୫ୟ୪ ൅ ܲୣ୪ୣୡ୲୰୧ୡୟ୪. 

3.5. Main factors 

The motivation factor ݊ is considered equal to 2; it means that the factory sells the 
utility of its residual energy (electrical + thermal) at twice the tariff.    

The efficiency of a cogeneration system is considered 85%, thus:  
௝ݐܲ ൌ ฺ ୠܪ0.85 ୠܪ ൌ ௉௧೔ೕ

଴.଼ହ
 . 

• For the pharmaceutical factory, we have:  
cm = [120 000; 130 000],  €; 
a = [15; 15], € per 1 h; 
D = [300; 280] ൈ 10ିଷ, kg/(MW.h); 
Dam = [2000; 2100] ൈ 10ିଷ, kg; 
Pol = [75; 76] ൈ 10ିଷ, kg/h; 

• For the paper mill, we have:  
cm = [200 000; 300 000], €; 
a = [25; 25], € per 1 h; 
D = [500; 480] ൈ 10ିଷ, kg/(MW.h); 
Dam = [3000; 3100] ൈ 10ିଷ, kg; 
Pol = [90; 96] ൈ 10ିଷ, kg/h; 
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• The other parameters for both factories are:  
c = [85; 90], € per 1 MW.h;  
ct = 10, € per 1 MW.h. 

 
 

Fig. 2. Total cost vs. pollution variations in function of power 

4. Data analysis  

GA is a heuristic method; at each simulation the solution changes. Thus, the 
obtained solution is not guaranteed to be the best.  The simulations number is then 
selected to be 1000 (i.e., 1000 solutions). And to select the best solution, we use the 
multiple linear regression (MLR) as a sensitivity analysis method. 

4.1. Multiple linear regression 

If we have two or more variables in a linear function, the MLR will be an excellent 
method to fit the data corresponding to the system [12].  

In our work we have two correlated variables: the total cost(ݔଵ) and the 
pollution(ݔଶ). The predicted value of the power function is ݕො. Then we have the 
MLR model:   
ොݕ  (3) ൌ ଴ߙ ൅ .ଵߙ ଵݔ ൅ .ଶߙ ଶݔ ൅  .ߝ
The parameter ߙ଴ is the intercept of the power. The parameters ߙଵ and ߙଶ are 
referred to as partial regression coefficients. Parameter ߙଵ represents the change in 
the mean response corresponding to a unit change in ݔଵ when ݔଶ is held constant. 
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Parameter ߙଶ represents the change in the mean response corresponding to a unit 
change in ݔଶ when ݔଵ is held constant. ߝ is the random error [13].  

4.2. Data selection 

The difference between the observed value of the dependent variable (ݕ) and the 
predicted value (ݕො) is called a residual (݁). Each data point has one residual. 
(4)  ݁ ൌ ݕ െ  ,ොݕ

Residual ൌ Observed value െ Predicted value. 
In our work we consider the nearest observed value to the predicted one as the 

best solution. It means that the data point with the lowest residual value corresponds 
to the best power.  

5. Results and discussions 

After the multi-objective optimization, the sensitivity analysis was carried out for 
each data series. So we applied the MLR on the data in an Excel sheet. 10171 and 
10268 observations were analyzed for the first and the second data series 
respectively, knowing that these values are distinct from each other because we 
removed the duplicates. The data number for each series is largely greater than the 
simulations number 1000, because of the different suggested solutions at each 
simulation (Pareto front).  

Fig. 2 presents the variations of the total cost and the pollution in function of the 
power. As remarked, the total cost is inversely related to the power capacity while 
the pollution is directly related to it. In addition, the total cost corresponding to the 
highest power capacity (15 MW) in the pharmaceutical factory is widely smaller 
than that corresponding to the smallest power capacity (16 MW) of the paper mill. 
In fact, these values correspond to two years of integration of the cogeneration 
systems, thus it is the resulting cost after these two years. Particularly, if we 
compare the energy consumption for each factory we could realize that the 
exchanged energy cost is negative for the first one (i.e., benefits) and positive for 
the second one.   

5.1. Multiple linear regression models 

The MLR model of the first data series is:  
ොݕ ൌ 0.22306 െ 9.21590. 10ିଷݔଵ ൅ ଶݔ0.00019 ൅ 0.00022. 

The MLR model of the second data series is: 
ොݕ ൌ 0.16204 െ 2.84781. 10ିଷݔଵ ൅ ଶݔ0.00011 ൅ 0.00043. 

As mentioned in the previous section, the data point with the lowest residual 
value corresponds to the best power. The latter corresponds to the best compromise 
between the economic and environmental issues. In fact, the best economic 
performance corresponds to the highest power installed in both cases, because the 
energy produced will be greater than the energy demanded. Thus, the factory can 
sell its residual energy and have a lower total cost. Besides, the best pollution 
performance corresponds evidently to the lowest power installed.  
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Figs 3 and 4 represent the total cost and the polluting emissions fitting plots 
for the MLR, for the first and the second data series respectively.  

5.2. Best suitable powers 

Tables 1 and 2 represent the best residuals values for the first and the second data 
series respectively. Each residual value corresponds to a data point, particularly to a 
power (thermal+ electrical).   

As shown in Table 1, the best nominal power to be installed in the 
pharmaceutical factory is 8.78 MW (3.62 MW electrical and 5.16 MW thermal). 
From Table 2 we can also deduce that the best nominal power for the paper mill is 
45.54 MW (18.75 MW electrical and 26.79 MW thermal).  

 
Fig. 3. Predicted power vs power (1-15 MW) 

 
Fig. 4. Predicted power vs. power (16-50 MW) 
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Table 1. Best residuals values for the first data series 
Predicted power (MW) Residuals Absolute value of residuals 

8.781599931 6.92814×10–8 6.92814×10–8 
9.99709993 7.04118×10–8 7.04118×10–8 

8.586100095 –9.52529×10–8 9.52529×10–8 

8.56910011  –1.0964×10–7  1.0964×10–7 

3.387800136  –1.36326×10–7 1.36326×10–7 

9.946099852  1.47978×10–7  1.47978×10–7 
 

Table 2. Best residuals values for the second data series 

Predicted power (MW) Residuals Absolute value of  residuals 
45.5399999 9.3504×10–8 9.3504×10–8 
44.9450001 –9.7538×10–8 9.7538×10–8 
45.8799998 2.0251×10–7 2.0251×10–7 
45.9649998 2.2976×10–7 2.2976×10–7 
44.4350003 –2.6133×10–7 2.6133×10–7 
44.2650003 –3.1612×10–7 3.1612×10–7 

 

Fig. 5. Best electrical and thermal powers for the pharmaceutical factory and the paper mill 

Fig. 5 represents the best suitable and nominal electrical and thermal powers to 
be installed in the pharmaceutical factory and the paper mill. The red blocks 
correspond to the electrical power and the blue blocks correspond to thermal power. 
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6. Conclusion 

Nowadays the industrial sector depends more and more upon cogeneration systems 
due to their global efficiency and reduced pollution.  

In this work we have presented a study concerning the optimized cogeneration 
capacities to be installed in a pharmaceutical factory and a paper mill. These two 
samples represent two different power levels from the industrial sector.  

The main goal from this study is to find the best compromise between the 
economic and the environmental issues. The economic issues are related more and 
more to the environmental constraints due to the global warming and the climate 
change.  

In this work, the optimized cogeneration capacity was calculated and selected 
using the Genetic algorithm multi-objective optimization method and the multiple 
linear regression as a sensitivity analysis method.   

This study could be applied in many other sectors as it could be suitable for 
small industries and residential buildings. 
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