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Abstract: The cogeneration systems in the industrial sector have become an
essential part due to their global efficiency and reduced pollution. These systems
may operate from conventional fuel sources, as well as from renewable energy
sources (biomass, solar, fuel cell).

Cogeneration systems could be installed as a distributed generation and on-
site generation source in order to take advantage from the produced heat. The
utility can motivate factories to install such systems by permitting them to link and
sell their residual production capacity to the electrical grid.

This work presents a new technique to find the best solution from multi-
objective optimization results, using a sensitivity and data analysis method. Genetic
Algorithm (GA) optimization method is used with the data analysis method:
Multiple Linear Regression (MLR).

Keywords: Combined Heat and Power (CHP), energy management, Genetic
Algorithm (GA), sensitivity analysis, multiple linear regression.

1. Introduction

Cogeneration or CHP (Combined Heat and Power) is defined by the simultaneous
production of electric power and heat. The cogeneration system consists normally
of a prime mover, a generator, a heat recovery system and electrical
interconnections. Its thermal power is produced from the heat released by the fuels
combustion in the system.
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When compared to a separated conventional generation system with efficiency
about 58%, the cogeneration system efficiency is much more than 85% (Fig. 1).
Then the integration of these systems is economically and environmentally viable.

A cogeneration system may operate from conventional fuel sources, as well as
from renewable energy sources (biomass, solar, fuel cell).

Cogeneration is installed as distributed generation and on-site generation to
profit from the produced heat. In fact, it is good to invest in such systems in the
factories because of the utility support that can be translated by permitting them to
link their residual production capacity to the electrical grid.

In the previous works, Tsay et al. [1] have calculated the power that must be
imported to get the minimum production cost and the power that must be imported
to get the minimum polluting emissions. They have proposed a dispatch strategy
that could be suitable for the decision makers. In [2] and [3] they have also
considered the environmental constraints. They have calculated the optimal costs
during peak, semi-peak and off-peak periods in [2]. In [3] they deduced that a
minimum production cost corresponds to maximum pollution and conversely.
Frangopoulos etal. [4] have used the Genetic Algorithm (GA) with sensitivity
analysis to find the number of cogeneration systems to be installed for given
capacities, without considering the environmental issues. In fact, the systems
capacities were specified, so they only selected the systems quantity. In
Furusawa et al. [5] have studied the production cost under environmental
constraints. They deduced that even if the installed cogeneration systems are large,
they are always efficient in reducing the primary energy consumption and the
polluting emissions (CO,). Freschi etal. [6] have found trade-off solutions by
applying the weighted sum method on the economic and the environmental
assessments.

As shown in the previous works, there is not a clear viewpoint of concerning
the best power to be installed when having environmental constraints. In this work
the goal is to find the best suitable cogeneration capacity to be installed in a factory
considering the environmental constraints. The multi-objective optimization is
executed using the GA method, and the best result selection is performed using the
sensitivity analysis method: the Multiple Linear Regression (MLR).
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Fig. 1. Efficiency comparison between separated conventional generation and cogeneration
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In Section 2 the mathematical models will be settled. In Section 3 we will
represent the multi-objective optimization and the main factors. In Section 4 the
sensitivity analysis method will be discussed. Finally, in Section 5 we will discuss
and analyze the results obtained.

2. Mathematical formulation

In this section, the mathematical models are presented and discussed as objective
functions.
These objective functions represent the economic and environmental issues.

2.1. Economic objective function

The economic objective function corresponds to the total of cogeneration systems
integration into a smart-grid.
The total cost function to be minimized is presented by

1) Fiotal = X0=1(Hoe;) = X0ty a + X0y ajemy —
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= Exchanged energy cost,
Z?]=1(Hbcj) = Produced energy cost;
Z?}=1 @jcyj = Maintenance cost;
Z?Ll tj aj = Attrition cost;

?’=1(Ptj — Ej load) ¢; = Transmission cost;
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Thus:
Fiotai = Produced energy cost — Exchanged energy cost + Maintenance cost
— Attrition cost + Investment cost + Transmission cost.

2.2. Notations

N — number of time intervals;
P — power produced by the cogeneration system, MW;

(P = Pelectrical T Pthermal);
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tj - production time of the cogeneration system at j-th time interval, h;
Ej10ad — load demand at j-th time interval, MW h;

tariff — electricity tariff, € per 1| MW.h;

n — incentive or motivation factor when consumer sells the utility (usually
1<n<4);

Hy, — fuel enthalpy in the boiler of the cogeneration system, MW.h;

P = Pthermal T Pelectrical O Hp = Ptj + Losses;

¢j — fuel cost of the cogeneration system at j-th time interval, € per 1 MW.h;

@; — deterioration factor of the cogeneration system at j-th time interval
(0 £ a £1; a =0 forideal cogeneration system and a =1 for damaged one);

Cmj — average maintenance cost of the cogeneration system at j-th time
interval, €;

InvCost — Investment Cost of the cogeneration system (proportional to the
Power), €;

a; — attrition cost of the conventional extinct generator at j-th time interval due
to cogeneration system integration, € per 1 h;

¢; — transmission cost, € per 1 MW.h;

Dj — pollution rate of fuel in the boiler of the system at j-th time interval,
kg/(MW.h);

Dam; — pollution due to Damaging of the system at j-th time interval, kg;

Pol; — Pollution of the extinct generator at j-th time interval, kg/h.

2.3. Environmental objective function

The environmental objective function corresponds to the polluting emissions of the
cogeneration systems integration into a smart-grid.
The polluting emissions function to be minimized is presented by:
(2) Fpollution = Z?]=1(HbDj) + Z?}=1 ajDamj - Z?l=1 tj Pol;,
with:
Z?Ll(HbDj) = fuel pollution;
Z?Ll a;Dam; = pollution due to system deterioration;
Z?Ll ti Polj = pollution due to conventional extinct generator,

thus:

F

pollution = Fuel pollution + Pollution due to systemdeterioration —

—Pollution due to conventional extinct generator.

3. Multi-objective optimization

The objective functions of the previous section are contradictory in terms of
solutions. As mentioned in [3], the operational cost, which is related to the total
cost, is inversely related to pollution. Thus, the system consisting of these two
functions must be solved using a multi-objective optimization tool. For this reason,
we chose the Genetic Algorithm (GA) multi-objective optimization method. The
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latter is applied using Matlab R2011b, on an Intel Core 17 PC with a CPU speed of
3.4 GHz.

3.1. What is multi-objective optimization?

Anyone might need to formulate problems with more than one objective, since a
single objective with several constraints may not adequately represent the problem
being faced. If so, there is a vector of objectives, F (x) = [F1 (X), F2 (X), ... , Fn (X)],
that must be traded off in some way. The relative importance of these objectives is
not generally known until the system's best capabilities are determined and tradeoffs
between the objectives are fully understood. As the number of objectives increases,
the tradeoffs are likely to become complex and less easily quantified.

In our case, we have F(Power) = [Total_cost (Power), Polluting_emissions
(Power)]. Thus we need to evaluate the system we are studying by its economic and
environmental performance. In addition, we only have two objectives which means
that we do not have the tradeoffs complexity problem.

3.2. Genetic algorithm

GA concept was developed by Holland and his colleagues in the 1960-ies and 1970-
ies [7]. It is inspired by the evolutionist theory explaining the species origin [8].
The proposed GA procedure works through the following steps:

1) creation of a random initial population;

2) evaluation of the individuals and application of the penalty function
method;

3) ranking of the individuals, calculation of the fitness and registration of the
best individuals;

4) registration of all non-dominated individuals in the Pareto set filter operator;

5) selection of the pairs of individuals as parents;

6) crossover of the parents to generate the children;

7) replacement of the individuals using the niche operator;

8) genetic mutation;

9) replacement of the individuals using the elitism operator [9].

3.3. Elitist multi-objective Genetic algorithm

The multi-objective GA function uses a controlled elitist genetic algorithm (a
variant of NSGA-11 [10]).

In fact, a controlled elitist GA prefers individuals affecting the diversity
increase of the population even if they have a lower fitness value, while an elitist
GA always prefers individuals with better fitness value only. The diversity of
population is maintained for convergence to an optimal Pareto front. This is done
by controlling the elite members of the population as the algorithm progresses. Two
options are used to control the elitism: “ParetoFraction” and “DistanceFcn”. The
Pareto fraction option limits the number of individuals on the Pareto front (elite
members or best solutions), whereas the distance function option helps to maintain
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diversity on a front by preferring individuals that are relatively far away on the front
[11].

In our work we apply the GA to the economic and environmental functions
simultaneously. We have on the Pareto front, individuals corresponding to a power
for given values of the total cost and the polluting emissions.

Then we can deduce from this multi-objective optimization a set of proposals
described by the triplet (Total_cost; Polluting_emissions; Power).

3.4. Integration levels

The multi-objective optimization is carried out considering two industrial energy
levels. The first corresponds to an average energy level pharmaceutical factory.
This has 77000 MWh as consumption (electrical + thermal) in the first year, and
76000 MWh in the second year. The second one corresponds to a high energy level
paper mill which consumption is 200 000 MW.h (electrical + thermal) in the first
year and 210 000 MW.h in the second year.

The study concerns two years of integration of the cogeneration systems with
an average of 8000 hours of operation per year. Thus, the number of time intervals
is N = 2. The data that will be obtained correspond to the functions values after
two years of operation.

The inequality constraint concerning the first level is: P < 15 MW; 1 MW is
the lower bound and 15 MW is the upper bound of P = Py ermal + Pelectrical-

The inequality constraint concerning the second level is: P < 50 MW; 16 MW
is the lower bound and 50 MW is the upper bound of P = Piermal + Pelectrical-

3.5. Main factors

The motivation factor n is considered equal to 2; it means that the factory sells the
utility of its residual energy (electrical + thermal) at twice the tariff.
The efficiency of a cogeneration system is considered 85%, thus:

Pt; = 0.85Hy, = Hy =- 1
o For the pharmaceutical factory, we have:
cm =[120 000; 130 000], €;
a =[15; 15], € per 1 h;
D =[300; 280] x 1073, kg/(MW.h);
Dam = [2000; 2100] x 1073, kg;
Pol = [75; 76] x 1073, kg/h;

e For the paper mill, we have:

Cm = [200 000; 300 000], €;

a=[25; 25], € per 1 h;

D = [500; 480] x 103, kg/(MW.h);
Dam = [3000; 3100] x 103, kg;
Pol = [90; 96] x 1073, kg/h;
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e The other parameters for both factories are:

¢ = [85; 90], € per 1L MW.h;
¢;=10, € per 1 MW.h.
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Fig. 2. Total cost vs. pollution variations in function of power

4. Data analysis

GA is a heuristic method; at each simulation the solution changes. Thus, the
obtained solution is not guaranteed to be the best. The simulations number is then
selected to be 1000 (i.e., 1000 solutions). And to select the best solution, we use the
multiple linear regression (MLR) as a sensitivity analysis method.

4.1. Multiple linear regression

If we have two or more variables in a linear function, the MLR will be an excellent
method to fit the data corresponding to the system [12].

In our work we have two correlated variables: the total cost(x,) and the
pollution(x,). The predicted value of the power function isy. Then we have the
MLR model:

3) Y=ayg+a;.x; +a.x, + €.

The parameter « is the intercept of the power. The parameters @, and a, are
referred to as partial regression coefficients. Parameter a represents the change in
the mean response corresponding to a unit change in x; when x, is held constant.
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Parameter a, represents the change in the mean response corresponding to a unit
change in x, when x; is held constant. ¢ is the random error [13].

4.2. Data selection

The difference between the observed value of the dependent variable (y) and the
predicted value () is called a residual (e). Each data point has one residual.
(4) e=y—7,
Residual = Observed value — Predicted value.
In our work we consider the nearest observed value to the predicted one as the
best solution. It means that the data point with the lowest residual value corresponds
to the best power.

5. Results and discussions

After the multi-objective optimization, the sensitivity analysis was carried out for
each data series. So we applied the MLR on the data in an Excel sheet. 10171 and
10268 observations were analyzed for the first and the second data series
respectively, knowing that these values are distinct from each other because we
removed the duplicates. The data number for each series is largely greater than the
simulations number 1000, because of the different suggested solutions at each
simulation (Pareto front).

Fig. 2 presents the variations of the total cost and the pollution in function of the
power. As remarked, the total cost is inversely related to the power capacity while
the pollution is directly related to it. In addition, the total cost corresponding to the
highest power capacity (15 MW) in the pharmaceutical factory is widely smaller
than that corresponding to the smallest power capacity (16 MW) of the paper mill.
In fact, these values correspond to two years of integration of the cogeneration
systems, thus it is the resulting cost after these two years. Particularly, if we
compare the energy consumption for each factory we could realize that the
exchanged energy cost is negative for the first one (i.e., benefits) and positive for
the second one.

5.1. Multiple linear regression models

The MLR model of the first data series is:
§ =0.22306 — 9.21590.1073x; + 0.00019x, + 0.00022.

The MLR model of the second data series is:

$ =0.16204 — 2.84781.1073x; + 0.00011x, + 0.00043.

As mentioned in the previous section, the data point with the lowest residual
value corresponds to the best power. The latter corresponds to the best compromise
between the economic and environmental issues. In fact, the best economic
performance corresponds to the highest power installed in both cases, because the
energy produced will be greater than the energy demanded. Thus, the factory can
sell its residual energy and have a lower total cost. Besides, the best pollution
performance corresponds evidently to the lowest power installed.
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Figs 3 and 4 represent the total cost and the polluting emissions fitting plots
for the MLR, for the first and the second data series respectively.

5.2. Best suitable powers

Tables 1 and 2 represent the best residuals values for the first and the second data
series respectively. Each residual value corresponds to a data point, particularly to a
power (thermal+ electrical).

As shown in Table 1, the best nominal power to be installed in the
pharmaceutical factory is 8.78 MW (3.62 MW electrical and 5.16 MW thermal).
From Table 2 we can also deduce that the best nominal power for the paper mill is
45.54 MW (18.75 MW electrical and 26.79 MW thermal).
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Table 1. Best residuals values for the first data series

Predicted power (MW) Residuals | Absolute value of residuals
8.781599931 6.92814x107 6.92814x107°
9.99709993 7.04118x1078 7.04118x1078
8.586100095 -9.52529x1078 9.52529x107°
8.56910011 -1.0964x1077 1.0964x1077
3.387800136 -1.36326x107" 1.36326x107
9.946099852 1.47978x107 1.47978x107

Table 2. Best residuals values for the second data series

Predicted power (MW) | Residuals | Absolute value of residuals
45.5399999 9.3504x107° 9.3504x10°®
44.9450001 -9.7538x107° 9.7538x10°®
45.8799998 2.0251x10~7 2.0251x1077
45.9649998 2.2976x1077 2.2976x1077
44.4350003 -2.6133x1077 2.6133x1077
44.2650003 -3.1612x10~7 3.1612x1077
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Fig. 5. Best electrical and thermal powers for the pharmaceutical factory and the paper mill

Fig. 5 represents the best suitable and nominal electrical and thermal powers to
be installed in the pharmaceutical factory and the paper mill. The red blocks
correspond to the electrical power and the blue blocks correspond to thermal power.
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6. Conclusion

Nowadays the industrial sector depends more and more upon cogeneration systems
due to their global efficiency and reduced pollution.

In this work we have presented a study concerning the optimized cogeneration
capacities to be installed in a pharmaceutical factory and a paper mill. These two
samples represent two different power levels from the industrial sector.

The main goal from this study is to find the best compromise between the
economic and the environmental issues. The economic issues are related more and
more to the environmental constraints due to the global warming and the climate
change.

In this work, the optimized cogeneration capacity was calculated and selected
using the Genetic algorithm multi-objective optimization method and the multiple
linear regression as a sensitivity analysis method.

This study could be applied in many other sectors as it could be suitable for
small industries and residential buildings.
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