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Abstract: In order to improve the prediction precision of wireless sensor network 
traffic, a new prediction algorithm (State Prediction algorithm based on α-stable 
distribution α, SP-α) is proposed, combined with α-stable distribution and wavelet 
transformation. The algorithm proposed first defines the characteristics of  
α-stable distribution and then gives the judge basis that obeys α-stable distribution. 
At the same time, it reduces the prediction error of the actual traffic by fusion of the 
prediction results of α-stable distribution with wavelet transformation. Finally, the 
paper thoroughly researches the key factors impacting on the new algorithm 
through simulations in OPNET and MATLAB. Compared with the performance of 
FARIMA model, the simulation results proved that SP-α algorithm has better 
adaptability.   

Keywords: Wireless sensor network, prediction, α-stable distribution, wavelet 
transformation, error. 

1. Introduction 

With the rapid development of wireless sensor networks, the performance of the 
actual traffic is increasingly considered by more and more people. The question 
whether the problem can be efficiently solved before a network congestion occurs, 
is often regarded. It plays a very important role in improving the network 
performance. 
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Therefore, how to predict the next network traffic state has become the focus 
of the current study. At present the common methods of prediction are divided into 
linear and nonlinear. There are many linear methods, such as AR, ARMA model, 
etc. They have a relatively high prediction precision for the short traffic. However, 
the typically nonlinear prediction methods, such as FARIMA model and others, 
have a relatively high prediction precision for the long traffic. At the same time, 
with the depth of the study, other methods, such as wavelet transformation, chaotic 
model were introduced into the actual traffic prediction. The scholars at home and 
abroad have done a lot of researches on it. In [6] a variable scale method is 
presented which has super linear convergence of the improved ARMA prediction 
model and it has prediction of the smear method, based on the self correlation 
coefficient and partial correlation coefficient based on the actual traffic prediction. 
In [7] a based FARIMA model presents a prediction algorithm for probabilistic 
limitation, which aims at reducing the delay of the actual traffic. In [8], using the 
least squares support vector machine and fuzzy LSSVM training, an optimal sample 
subset of a fuzzy prediction algorithm is established to deeply study the actual 
traffic variability and the long cycle. Reference [9] discusses the problem that since 
the traditional prediction model is highly dependent on the training data, a 
prediction method of network weights of Back Propagation, based on wavelet 
technology and ant colony algorithm is developed to improve the prediction 
precision. In [10], based on the cosine function, the Logistic model is improved, 
using nonlinear time series analysis, method analysis and a Logistic model to 
describe the evolution trend of the actual traffic state and its chaotic characteristics. 
Using the wavelet transformation technology in [11], a prediction model of non-
stationary characteristics is presented, that depicts the non-stationary characteristics 
of the actual traffic efficiently. The authors in [12] discuss the update prediction 
accuracy to establish an online fuzzy least square support vector machine method. 
But the effect of the time scales must be further considered. 

On the basis of the above mentioned, this paper presents a new prediction 
algorithm for the actual traffic. It reduces the prediction error of the actual traffic by 
fusing α-stable distribution [13-15] and the prediction results of wavelet 
transformation [16, 17]. At the same time, it tests and proves the validity of the 
algorithm through mathematical simulations. The structure of the paper can be seen 
as follows: the first section gives α-stable distribution, the second section presents 
the judgment basis of stable distribution and establishes the prediction algorithm, 
the third section carries out simulation experiments by using OPNET and 
MATLAB, the fourth section summarizes the paper. 

2. α-stable distribution 

There are M wireless nodes in the wireless sensor network shown in Fig. 1, which 
are divided into clusters. Each cluster has a cluster head node according to the 
residual energy and location, shown as a black circle in the picture. The cluster 
node is transmitted through the ordinary cluster head node data, and then all clusters 
gather into the base station for data exchange. In order to efficiently describe the 
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performance of the wireless sensor networks traffic, we often use traditional 
methods, such as Poisson model, Gauss distribution, etc., and its research is based 
on the fact that the traffic has short correlation properties. However, with the 
development of the study, the results proved that the actual traffic shows self 
similarity and long correlation characteristics [18]. Thus, the following description 
model is proposed based on the Fractal Brown Motion model:  
(1)    ),()( tBammttA H+=   
where a is the variance coefficient, m is the average arrival rate, H is the self similar 
parameter, BH is the standard Fractal Brown Motion.   

 
Fig. 1. Structure of a wireless sensor network 

The research in recent years proved that the actual traffic has obvious scale 
characteristic and fractal characteristic, that is, it has self similarity and long 
correlation features on a large scale, but it has multi-fractal characteristics [19] on 
small scales. Therefore, according to the characteristic of the properties, such as 
wavelet transformation, chaotic model, FARIMA model are all applied for 
characterization of the traffic characteristics. But the chaos model, FARIMA model, 
is very complex for calculation, which cannot be efficiently put in practice. 
Although the wavelet transformation for multi scale characterization has many 
advantages, there is still a further optimization space for decomposition of the 
wavelet basis and scale.  

Therefore, this paper combines with α-stable distribution to describe the fractal 
characteristic and scale characteristic for the actual traffic characterization again. 
The wireless sensor network base station is used as a receiver, each wireless node is 
used as a data transmitting port, and the actual traffic arriving at the station is 
considered as random variable. Here we use α-stable distribution to discuss its 
performance parameters. If the actual traffic complies with α-stable distribution, it 
is recorded as ),,,(~ μβσαSX  so that the characteristic function must meet the 
following: 
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Here: α (0<α<2) is the feature parameter, which is used to express the emergency 
degree and fractal dimension of the actual traffic; β (−1 ≤ β ≤1) is the deviation 
parameter, which is used to indicate the deviation degree, α and β can determine the 
shape of the density function of the data traffic distribution; σ (σ≥0) is the deviation 
for the scale parameter; μ is the location parameter, which is used to express the 
deviation degree and the average distribution. If σ = 1 and μ = 0 is the standard  
α-stable distribution, sgn(ω) is the sign function, expressed as: 

(3)     
⎪
⎩

⎪
⎨

⎧

<−
=
>

=
.0if1

,0if0
,1if1

)sgn(
ω
ω
ω

ω    

Combined with the stable distribution, it can define several characteristics of 
the network actual traffic. 

Definition 1. If the actual traffic ),,(~ μβσαSX , 0<α<2, meets 
(4)    ).),sgn(,|(|~ bcccSbcx ++ μσα  

Definition 2. If the actual traffic ),,(~ μβσαSX , 1<α<2, meets 

(5)    μ=)(xE . 

Definition 3. If the actual traffic )0,,1(~ βαSX , 1<α<2, meets 
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Definition 4. If the plurality actual traffic X is an independent random 
variable, and its distribution meets iiiii XSX ),,(~ μβσα , then 

(7)    

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+++
+++

=

+++=
+++=

+++

.

,
,)(

,~

21

2211

21

/1
21

,,21

ααα

ααα

αααα

α
μσβ

σσσ
σβσβσβ

β

μμμμ
σσσσ

i

ii

i

i

i Sxxx

L

L

L

L

L

 

The stability of the distribution means that a plurality of obedience to α-stable 
distribution stacks with linear independent variables, the results also meet α-stable 
distribution, so the traffic through polymerization still maintains α-stable 
distribution characteristic. 

Definition 5. If the actual traffic ),,(~ μβσαSX , 0 < α <2, the variance 
meets:  

(8)    .0,,|| α<<∀∞< ppXE p  

If 0< α ≤1, the actual traffic X is unlimited mean; If 1< α <2, the actual traffic 
X is unlimited variance. The infinite variance attribute of the actual traffic can 
explain the sudden actual traffic. 
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Definition 6. If the actual traffic is ),,(~ μβσαSX , 0<α<2, the tail 
probability distribution is 
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3. State prediction algorithm 

The paper sets the ARM based DAS of the embedded gateway of a wireless sensor 
network, such as the environment, talking about the data transmission, including 
temperature and light sensation, from field sensor nodes to sink nodes, using a 
combined trigger mode based on timing and events. The sink nodes then pass in real 
time data through RS-232 serial port to the embedded network DAS, which receives 
data by multi-threading processing. After that, the real-time monitoring and data 
acquisition program will do the transmission to the server-side program, which will 
analyze and process the data and store them in the embedded database. 

To check whether the actual traffic arriving meets α-stable distribution, here 
are three specific test steps. 

1. Assuming that the actual traffic meets α-stable distribution, we can use the 
quartile method, maximum likelihood method, sample characteristic function 
method to estimate the parameters of the α-stable distribution. In order to reduce the 
estimation error, we suggest an adopting maximum likelihood method, quartile 
method, sample characteristic function method, etc., to have comprehensive 
evaluation. 

2. On the basis of getting estimated parameters of the α-stable distribution, we 
can make the statistical probability distribution curve of the actual traffic and the 
probability density curve for the estimated parameters of α-stable distribution. If the 
fitting degree of the two curves does not exceed the specified threshold, we can 
determine whether the actual traffic obeys α-stable distribution, otherwise, we can 
consider that it does not obey α-stable distribution. 

3. For further verification of the above conclusion, the distribution 
characteristic of the Probability-Probability diagram and Quantile-Quantile diagram 
of the actual traffic analysis are combined. The basic principle of Quantile-Quantile 
is: a plurality of two groups of real traffic quantiles values were calculated 
separately and arranged in an ascending order. If the actual traffic distribution is 
near the angle of 45 degrees in a straight line, within the confidence intervals and 
located in 95% of the two groups, we can determine that the actual traffic of the two 
groups are from the same probability distribution. The Probability-Probability 
diagram can make up the inconvenience of Quantile-Quantile diagram for tail 
extreme observation. It judges the fitting degree of two groups by a probability 
density point of the actual traffic, its judge standard is whether the actual traffic in 
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the Probability-Probability diagram is roughly distributed in a dip line for 45o or so, 
and the deviation is in a certain range. If it is, the assumed distribution conforms to 
the actual traffic distribution. 

If the actual traffic conforms to α-stable distribution, we can predict the 
distribution through the characteristics of the traffic state to deal with the network 
congestion that may occur in advance.  

Assuming that at time t, the actual traffic wireless sensor network base station 
Wt receives Zt,, we mainly analyze the actual traffic for the time delay Dt and the 
line length Lt, that is Zt = [Dt, Lt]. To efficiently deal with the congestion 
phenomenon that may occur, we can analyze the actual traffic state through the 
present and past time to get the next moment traffic state Zt+1, in order to implement 
a reasonable queue management. 

Algorithm 
Step 1. Wt is the actual traffic which reaches the base station at time t. Firstly 

judge whether it meets the stable distribution by the method above mentioned, if it 
meets the requirement, then go to Step 2, otherwise go to Step 7. 

Step 2. According to the calculation method given in [20], solve the time delay 
1+′tD  of the traffic and the line length 1+′tL   at time t+1:  
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where λ is the load size for the base station, b is the buffer size, Ωk+n is the 
distribution function of the actual traffic, the distribution function here is α-stable 
distribution. 

Step 3. At the same time, due to the sudden and scale characteristics of the 
actual traffic, the wavelet transformation of the traffic is introduced into an 
algorithm to process and predict the actual traffic, and fuse the results of prediction 
with the results obtained in Step 2 to reduce the error. According to the wavelet 
transformation formula, shown in the equations below, by using DB2 wavelet base 
to decompose the actual traffic for the time delay Dt and the line length Lt  to obtain 
the scale coefficient of j layer aj(k) and the wavelet coefficient dj(k): 
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Step 4. Using ARMA model to predict the wavelet coefficients, according to 
the estimation of AR(p) parameters τ(1), τ(2),..., τ(p) and FIR filter, 
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= +∑  output an approximate MA(q) process ρ(1), ρ(2), ..., ρ(q) 

and obtain the parameters p and q at the same time. According to the equation given 
below can calculate the wavelet coefficient after prediction and use the inverse 
wavelet transformation after the synthesis prediction time delay 1+′′tD  and captain L; 
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the inverse wavelet, and the synthetic prediction after the delay in 1+′′tD  and the line 
length 1+′′tL : 

(12)   
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Step 5. According to Steps 2 and 4 in order to obtain information about the 
time delay of the actual traffic at time t + 1and the line length, below is the fusion 
processing to reduce the prediction error, 
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where the fusion parameters φ and ϕ indicate the weight distribution of the results 
for two predictions. It can be dynamically adjusted to obtain optimal results, and  
0≤ φ ≤1, 0≤ ϕ ≤1, φ +ϕ = 1. 

Step 6. Assuming that T = t+1, go to Step 1, repeatedly calculate the actual 
traffic vector for the next moment, until it ends. 

Step 7. End of the algorithm. 

4. Mathematical simulation 

In order to prove the validity of SP-α algorithm, we have realized simulation 
experiments combined with OPNET and MATLAB. Firstly, the wireless sensor 
network topology structure, shown in Fig. 2 must be set up in OPNET. It totally 
produces ten clusters, each cluster has five nodes, and sets the link capacity to 4 
Mbps, a delay of 20 ms, the ordinary node buffer capacity is 80 packets, the base 
station buffer capacity is 600 packets, the packet size is 128 B, the fusion 
parameters φ = ϕ = 0.5, the wavelet decomposition level is 10. At the same time, in 
order to illustrate the precision of the prediction algorithm, it is compared to 
FARIMA [21] model which is also used for the description of fractal characteristic. 
Using two kinds of the algorithm in order to have continuous 30 times simulations 
in the experimental environment above mentioned, taking the average value, Figs 3 
and 4 indicate that the two algorithms influence the prediction results for the delay 
and the line length of the actual traffic. It can be seen from Figs 3 and 4 that the 
proposed SP-α algorithm is close to the actual traffic. However, FARIMA model 
has some errors. The reason is that FARIMA model needs complex computation, in 
practice it often delays the dynamic transformation of the real state, and thus is 
causing a too large error. The comprehensive error analysis of the experimental 
results show that the error is 15.33%  and  20.97% for SP-α algorithm and 
FARIMA model respectively.   
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Fig. 2. Simulation environment  

       
       Fig. 3. Delay prediction results comparison          Fig. 4. Line length prediction results comparison 

Secondly, the performance of SP-α algorithm is considered to discuss the 
effect on the performance of the changes in key parameters. For the algorithm 
performance under a different sudden state, Figs 5 and 6 show the changes that 
appear between the prediction errors of delay, the line length and the fusion 
parameter φ. It can be seen from Fig. 5, that with the increase of δ, the prediction 
errors of delay have a tendency from a decrease to an increase. The smaller 
parameter δ is, the bigger α is, the smaller the delay prediction error is. When the 
parameter δ is larger, α is bigger, the delay prediction error is bigger as well. Since 
α is larger, the sudden actual traffic is larger. SP-α algorithm has prediction, 
combined with α-stable distribution and wavelet transformation. The smaller the 
parameter δ is, the greater the wavelet transformation influence is δ + η=1. The 
wavelet transformation has a good effect on the elimination sudden state, thus the 
corresponding error is smaller. When the parameter is larger, α-stable distribution 
plays an important role; it has a good effect in the treatment of a low sudden state. 
Therefore, the smaller α is, the smaller the prediction error is. A similar 
phenomenon can also be found in Fig. 6. When the parameter is smaller, α is larger, 
the cohort prediction error is also larger. When the parameter is larger, it will jump. 
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   Fig. 5. Changes in the relationship between                    Fig. 6. Changes in the relationship between  
   the delay prediction error and parameter δ                   the line length prediction error and parameter δ 

At the same time, Figs 7 and 8 show the changes between the delay, line length and 
buffer b under a different parameter α. It can be seen from Fig. 7, that with the 
increase of buffer, the curve shows a progress increase trend. It conforms to the 
common phenomenon. The larger the buffer is, the more packets can be 
accommodated, thereby causing the transformed packet queuing time increase. In a 
small buffer, the bigger α is, the longer the delay is, while in the large buffer, the 
bigger α is, the shorter the delay is, which usually has different comprehension. A 
similar phenomenon is also shown in Fig. 8. In a small buffer, the larger α is, the 
smaller the line length is. In a large buffer, the larger α is, the larger the line length 
is. The reason for this phenomenon is mainly affected by limited buffers effect of 
truncation; when the buffer is in full state, it will directly discard subsequent data 
packets, which affects the long-range correlation of the traffic. 

         
Fig. 7. Changes in the relationship                     Fig. 8. Changes in the relationship 

    between delay and buffer                                between Line length and buffer 

In the later network executing phase, some improvements must be made in the 
network management and implementation aspects as follows: 

1. Realize the node monitoring, mobile node controlling, maintenance of the 
sink node linked routes, and the sensor node’s function of tracing neighbor nodes. 
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2. Provide network maintenance and diagnose services. Give the users access 
authorization to the network management service, including the functions of data 
acquisition, processing, analysis, and fault handling. This requires a new fully 
distributed network management mechanism according to the energy-constrained, 
self-organizing, and node-accidental-damage features of the sensor network. 

3. To ensure the network connection and efficient data transmission, save 
energy, and prolong the duty cycle, some nodes will be put into hibernation 
according to certain regulations. In this context, the topology management aims to 
coordinate all the nodes in the sensor network, and design an algorithm that ensures 
the network connection and the demand-driven network connection. 

4. To prolong the lifetime of a network, energy must be used reasonably and 
efficiently. Because of the main tasks of sensor nodes, which are data acquisition, 
processing and transmission, the energy consumption concentrates mainly on two 
parts: computing consumption and communication consumption. The former is 
consumed in data collection and preprocessing, the latter in data communication 
between nodes. Considering these two factors, proper solutions must be made to 
realize an efficient energy management system.  

4. Conclusion 

For the prediction precision of the actual traffic in a wireless sensor network, a new 
prediction SP-α algorithm is proposed. At first it defines the characteristics of  
α-stable distribution, and then it gives the judge basis that the actual traffic obeys its 
distribution. At the same time, it sets up an actual traffic prediction method 
combined with α-stable distribution and wavelet transformation. It aims at reducing 
the prediction error of the actual traffic by fusing the prediction results of α-stable 
distribution and wavelet transformation. Finally, the paper thoroughly researches 
the key factors impacting on the new algorithm through simulating OPNET with the 
help of MATLAB. Compared with the performance of FARIMA model, the 
simulation results proved that SP-α algorithm has better adaptability. In a 
subsequent study it is considered to establish a set of wireless sensor network 
prediction and an evaluation model that combines with the chaotic model and other 
prediction methods. 
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