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Abstract: The paper proposes landmark sequence data association for 
Simultaneous Localization and Mapping (SLAM) for data association problem 
under conditions of noise uncertainty increase. According to the space 
geometric information of the environment landmarks, the information 
correlations between the landmarks are constructed based on the graph theory. 
By observing the variations of the innovation covariance using the landmarks of 
the adjacent two steps, the problem is converted to solve the landmark TSP 
problem and the maximum correlation function of the landmark sequences, thus 
the data association of the observation landmarks is established. Finally, the 
experiments prove that our approach ensures the consistency of SLAM under 
conditions of noise uncertainty increase. 
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1. Introduction 

Data association is a key point in simultaneous localization and mapping for robots. 
The Extended Kalman Filter formulation of Simultaneous Localization And 
Mapping (EKF-SLAM) is fundamental for solving SLAM problem. References  
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[6, 7] present the consistency estimate of EKF-SLA and FastSLAM. The researches 
indicate that the data association approach directly affects the accuracy of the 
consistency estimate. Data association defines the process of sensor establishing the 
correlations between its measurements and the targets. Paper [6] shows that data 
association is crucial to solve SLAM problem. Incorrect data association may result 
in infinity of SLAM, even the failure of the whole SLAM process.   

There are already certain achievements in the studies of data association 
algorithms − mainly including three categories: first, the Nearest Neighbor (NN) 
data association; second, Joint Probabilistic Data Association (JPDA) for multiple 
targets; third, correlation data association based on graph theory. In [10] the authors 
propose the nearest neighbour data association, which is easy in implementation, 
but worse in interferences resistance. The probability data association is applicable 
only for a single target scenario. In JPDA for multiple targets it is difficult in obtain 
the probabilities of the joint events and the correlated events and it will be subjected 
to combination exploration due to the echo density increase. So the scholar of this 
paper proposes a compromising approximation algorithm. Paper [11] proposes the 
Takagi-Sugeno Data Association (TSDA), compared to JPDA, the computation 
complexity is reduced.  

In [12] 3SCAN-JPDA algorithm is proposed, which is applied in real time 
dynamic environment, reducing the computations. For clutter environment, [8] 
proposes the Joint Compatibility Branch and Bound (JCBB). For higher correlation 
accuracy [13] multi-target correlation algorithm is suggested − Ant Colony-Genetic 
Algorithm Data Association (AC-GADA). By using the information of the 
characteristics of the landmarks, the layout of the landmark groups and the 
deviation bounds between the landmark prediction and the observation, references 
[14-16] propose an improved probabilistic data association algorithm. In [17, 18] 
the Maximum Common Subgraph (MSC) is proposed which is based on the graph 
theory. But it is difficult to solve the NP issue in searching for the maximum 
common subgraph of the two complete graphs. The MCS approach and the JCBB 
approach both utilize the available correlation information for batch correlations. 
Via the pre-set hypothesis and by explaining the hypothesis on the search tree, 
JCBB takes the hypothesis, corresponding to the best explanation as the reliable 
data association. MCS is divided into two steps: first, compiling to constraints; 
second, conducting the search for the maximum compatible constraint. Under 
conditions of noise uncertainty increase, due to the independence between the 
observed information and landmarks, the matching will fail or the estimation error 
will increase.  

2. Landmark sequence data association 

Simultaneous localization and mapping for robots are based on data association. For 
the situation of noise uncertainty increase, this paper inducts the TSP problem in the 
SLAM problem. By calculating the maximum correlation function of the TSP 
sequences, the landmark sequence data association can be obtained and the map can 
be updated.  
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2.1. The classic EKF-SLAM approach 

The simultaneous localization and mapping for EKF-based robots is based on the 
minimum mean squared error, realizing the optimum recursive process for the robot 
poses in the time domain. This approach is divided into two steps, namely 
prediction and updating. First, send the control signals and the odometer 
information to the state equation of the robot system and complete the predictions 
of the poses and map landmarks. Second, by the observation and extraction of the 
environment landmarks, update the robot poses and the landmark map. 

The predictions are: 

(1)   | 1 1| 1ˆ ˆ( , )k k k k kf− − −=x x u , 
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where | 1ˆ k k −x  represents the estimate of the pose state vector of the robot during the 

state shifting from time k − 1 to k; ku  represents the control vector during the state 
shifting from time k − 1 to k; ( )f ⋅  represents the odometer model; kQ  represents 
the system white noise covariance; f∇  is the Jacobian matrix of f  regarding the 
estimates 1| 1ˆ k k− −x ; , | 1xx k k −P  is the pose covariance matrix during the state shifting 
from time k − 1 to k, denoted as | 1k k −P  for short [21].  
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and ˆ km  represents the estimate of the landmark vector of the static location i at 
time k; ikz  represents the observed location by the robot from landmark i at time k, 
denoted as ( )kz  for short; ( )h ⋅  represents the heading observation model; kR  is 
the observation white noise covariance; h∇  is the Jacobian matrix of h regarding 
the estimates | 1ˆ k k −x  and 1ˆ k −m . 

2.2. The landmark TSP problem based on the simulated annealing algorithm 

The landmarks of the SLAM problem for robots are comparable to the cities of TSP 
problem. The coordinate of the landmark represents the location of the city and the 
distance between the cities can be calculated by their coordinates. In SLAM 
problem, we always suppose that the landmarks are stationary. Hence, the optimum 
solution of the landmark TSP problem is unique. Due to the observation noise, all 
the landmarks within the observation area are regarded as known conditions in TSP 
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problem. The simulated annealing algorithm is suitable for dealing with global 
optimization and discrete variable optimization problems. The simulated annealing 
algorithm of the landmark TSP problem is shown in Fig. 1. 

 
Fig. 1. The landmark TSP problem based on the simulated annealing algorithm 

By calculating the TSP problem for the prediction landmarks (prediction for 
the observed landmarks in the observation area), the optimum TSP path can be 
obtained. Besides, the optimum TSP path can be also obtained by calculating the 
TSP problem of the observation landmarks). 

2.3. The correlation functions of the landmark sequence 

Regarding the coordinates of the landmarks as independent variables, the landmarks 
are two-dimensional discrete points. According to the TSP path, a permutation of a 
set of landmarks can be obtained. Every permutation is a landmark sequence, 
namely the lines between the landmarks represent a fixed time period. The 
sequences are signals. According to the two landmark sequences corresponding to 
the maximum correlation function, the correlations of the common landmarks can 
be ensured. 

2.4. The landmark sequence data association 

The main process of the landmark sequence data association is as follows. First, 
calculate the TSP problem of the prediction landmarks and the observation 
landmarks to obtain the TSP sequences; second, calculate the maximum correlation 
function of the two sequences and mark the observed landmarks and the new 
observed landmarks; at last, correlate the landmarks and update the map. 

The specific steps are six. 
Step 1. Initialization and data association 
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Predict the observed landmarks. The observed landmarks remaining in the 
current observation area are denoted as prediction landmarks. 

Conduct prediction for the landmarks to get the observation landmarks. Regard 
the landmarks as cities in TSP problem. Use the coordinates of the landmarks to 
denote the locations of the cities and calculate the distances between the cities. 

Step 2. Solve the landmark TSP problem 
Solve the TSP problem for the prediction landmarks and the observation 

landmarks to get the landmark permutation. Regard the landmark permutation as a 
two-dimensional sequence respecting to the coordinates and obtain two sets of 
sequences 

Step 3. Calculate the correlation functions of the sequences 
Calculate the correlation functions of the two sequences. Obtain the sequence 

length via the prediction landmark combination. Divide the observation landmark 
combination sequences into observed landmarks 0kz  and new observed landmarks 
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Step 4. Solve the TSP problem for the observed landmarks 
Solve the TSP problem for the observed landmarks to obtain the observed 

landmark sequence permutation. 
Step 5. Calculate the observed landmark sequence 
Calculate the correlation functions for the observed landmark sequence 

permutation and the prediction landmark sequence and choose the observed 
landmark sequence corresponding to the maximum correlation function. 

Step 6. Map correlation 
Conduct the landmark correlations for map building on the observed landmark 

sequence and the prediction landmark sequence. Then add the new observed 
landmarks to the map. 
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To validate the consistency estimate of the algorithm, a Normalized Estimation 
Error Squared (NEES) is used to evaluate the performances of the filtering estimate, 
under linear Gaussian filter [20].  
(10)   T 1

| | |ˆ ˆ( ) ( ).k k k k k k k k kε −= − −x x P x x  
Namely, for filtering the estimate of the approximate Gaussian distribution, NEES 
follows 2χ  distribution. The measure of filter consistency is found by examination 
of the average NEES over N Monte Carlo runs of the filter; kε  approaches to the 
dimensions of the state-vector when :N → ∞   
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Namely, for Gaussian filter, kε  is a density function following 2χ  distribution with 
N degrees of freedom. The pose space of the robot is a three-dimensional vector. 
The probability over 50 Monte Carlo runs is 95%, with confidence interval of [2.36, 
3.72]. It is optimistic when it is greater than 3.72 and conservative when it is less 
than 2.36. 

3. Experiments and analysis 

The advancement of networking and multimedia technologies enable the 
distribution and sharing of multimedia content widely. Fig. 2 shows the experiment 
platform of MT-R robots. The MT-R robot is two-wheel driven, equipped with a 
PTZ camera of two-degrees of freedom, an ultrasound sensor, a speed measuring 
coder and other sensors. 

                                           
(a)                                                                                                 (b)  

Fig. 2. The experimental verification platform: the mobile robot experimental test platform (a); the 
developed experimental test system (b) 

 
The experiments compared the typical data association approaches. NN, JCBB 

and LSDA are all carried out for SLAM of robots. The first group of experiments is 
under low noise environment. The initial condition is 

4 4 4
0 diag 1 10 ,1 10 ,1 10 ,P − − −⎡ ⎤= × × ×⎣ ⎦  2 2

0 diag 0.3 ,(3.0* /180) ,iQ p⎡ ⎤= ⎣ ⎦  and 
2 2diag 0.1 ,(1.0* /180) .iR p⎡ ⎤= ⎣ ⎦  The second group of experiments is under high noise 

environment. The initial condition is 4 4 4
0 10*diag 1 10 ,1 10 ,1 10P − − −⎡ ⎤= × × ×⎣ ⎦  and 

2 2
0 10*diag 0.3 ,(3.0* /180) ,iQ p⎡ ⎤= ⎣ ⎦  2 210*diag 0.1 ,(1.0* /180) .iR p⎡ ⎤= ⎣ ⎦  

The experiments are about the SLAM data of the data association approaches 
under conditions of noise uncertainty increase Fig. 3, where * denotes the landmark 
on the map; ＋ denotes the prediction location with respect to the landmark. The 
ellipse denotes the prediction location area regarding the landmark. The segment 
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denotes the lines between the headings. The curve denotes the practical path of the 
robot. Fig. 3a is the partial magnified SLAM-graph under NN data association.  
Fig. 4a is the SLAM-graph under JCBB data association. Fig. 4b is the partial 
magnified SLAM-graph under JCBB data association. Fig. 5a is the SLAM-graph 
under LSDA data association. Fig. 5b is the partial magnified SLAM-graph under 
LSDA data association.  

                                   
(a)                                                                                                 (b)  

Fig. 3. The SLAM test based on NN data association in the case of uncertainty noise increasing: the 
SLAM test based on NN data association (a); the partial SLAM map based on NN data association (b) 

            
(a)                                                                               (b)  

Fig. 4. The SLAM test based on JCBB data association in the case of uncertainty noise increasing: the 
SLAM test based on JCBB data association (a); the partial SLAM map based on JCBB data 

association (b) 
 

 
(a)                                                                  (b) 

Fig. 5. The SLAM test based on LSDA data association in the case of uncertainty noise increasing: the 
SLAM test based on LSDA data association (a); the partial SLAM map based on LSDA data 

association (b) 
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Fig. 6. The estimation consistency by data association methods in the case of low uncertainty noise 

 
Fig. 7. The estimation consistency by data association methods in the case of uncertainty noise 

increasing 

By comparing the results of Fig. 5 with Figs 3 and 4, we can see that in the 
map built with NN approach and JCBB approach, there are deviations bewteen the 
estimates and the practical landmarks; however, in the map built with LSDA 
approach, the estimates almost coincide with the practical landmarks. 

To validate the consistency estimate of the proposed approach, we have 
conducted 50 experiments for the three approaches to compare the pose consistency 
estimates under different noise conditions. Fig. 6 shows the NEES data of the 
experiments of the three approaches in a low noise environment. 

As it can be seen from Fig. 6, in a low noise environment, the NEES curves 
under NN and JCBB approaches are mostly out of the confidence interval, which is 
regarded as conservative. Meanwhile, the NEES curves under LSDA approach are 
mostly within the confidence interval, which is regarded as optimistic. 

Fig. 7 shows the NEES data of the experiments of the three approaches in a 
high noise environment. 

As it can be seen from Fig. 7, in a high noise environment, the NEES curves 
under NN and JCBB approaches have vigorous vibrations partially, most of which 
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are out of the confidence interval, regarded as conservative; the NEES curves under 
LSDA approach are mostly within the confidence interval, regarded as optimistic. 

From the experiments above, the proposed approach keeps an optimistic 
consistency estimate for SLAM under conditions of noise uncertainty increase. The 
approach is superior to the NN data association and JCBB association in general.  

4. Conclusion 

This paper proposes the landmark sequence data association for SLAM of robots, 
which is against the condition of system noise uncertainty increase. By using the 
comparable city TSP problem, first the correlation functions of the landmarks are 
calculated out. Then the data associations between the observation landmarks and 
the prediction landmarks are established. Finally, the map is updated. The 
experiments validate that the landmark sequence data association keeps the 
consistency estimate of the algorithm optimistic under conditions of noise 
uncertainty increase. 
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