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Abstract: The intent of this paper is to study the fractal patterns of one dimensional 
complex logistic map by finding the optimum values of the control parameter using 
Ishikawa iterative scheme. The logistic map is shown to have bounded and stable 
behaviour for larger values of the control parameter. This is well depicted via time 
series analysis and interesting fractal patterns as well are presented. 
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1. Introduction 

The name “logistic growth model” is essentially due to Verhulst [20] which he used 
for the studies on population dynamics. He introduced logistic equation for 
demographic modelling by extending the Malthus equation of the continuous 
growth of a population with a view to obtain a stable stationary finite state (see [4]).  
It took more than hundred years to recognize his founding contributions towards the 
population dynamics and non-linear sciences. This work received wide attention 
due to the great implications of the simple looking equation in Chaos theory. In 
1963, Edward Lorenz introduced an equivalent version of the logistic model for his 
famous weather forecast model [13]. R. M a y [15, 16], in 1976, recognized the 
importance of the logistic model and observed that the continuous time model may 
not be suitable to reflect the realities in most of the cases and constructed a discrete 
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version of this model.  Thereafter, Feigenbaum [8] and the work of others approved 
this model as the paradigm for the period doubling route to chaos [13]. The 
importance of this model is due to its peculiar behaviour for changing values of the 
parameter. It exhibits the fixed points, bifurcations and chaos for the successive 
values of the growth parameter. This provides the basis of the modern chaos theory 
and represents the simplest cases of chaotic system [3].  The extreme sensitivity to 
the initial conditions has made it to be ideal for various applications. Many variants 
and generalizations of this model have been used to study various physical 
problems. D e t t m e r [6] pointed out that the most obvious reason for knowing 
about chaos is to organize and possibly avoid it because the regularity and stability 
disappears once the system becomes chaotic. Generally feedback linearisation, 
variable structure controller, fuzzy method and neural networks etc. are among the 
various techniques used for controlling the chaos in the literature. Due to the 
advancement of modern computational tools and proliferation of digital computers, 
new vistas have been opened for the study and analysis of these hyper sensitive 
maps and the literature is flourished with the papers signifying their importance in 
chaos, fractals, cryptography, optimization, discrete dynamics, population dynamics 
etc. (see for instance, [5, 6, 11, 17, 18, 19, 21, 22, 26, 28] and several references 
thereof). K i n t  et al. [13] explored the graphical potential of this map and 
generated fractal figures comparable to the well known Mandelbrot fractals. They 
named these attracting fractal figures as Verhulst fractals. Recently R a n i and 
A g a r w a l [27] studied the comparative behaviour of the complex logistic maps 
with Picard orbit, Norland orbit and Mann orbit and found interesting results. Our 
aim is to study the stability of the logistic map for Ishikawa iterates and visualize 
the fractal patterns of such map for varying values of the parameters. We use the 
Matlab tools for all our computational and graphical requirement. 

2. Preliminaries 

Let (Y, d) be a metric space and f be a transformation on Y.  Then f may be called a 
dynamical system in the sense of B a r n s l e y [1] and it is denoted by {Y, f}. The 
orbit of a point x in Y is defined as a sequence of iterates of f in the form of {f n (x): 
n = 0, 1, 2, …}. Different iterative schemes have been used in the literature to 
obtain the orbits of such a dynamical system.  The function iteration also known as 
Picard iteration is popularly used in the literature and its orbit (Picard Orbit – PO) 
is represented as 

(1)   PO(f, x0) := {xn: xn = f(xn-1), n = 1, 2, …}. 

This iteration requires one number as input to return a new number as output 
and popularly called as one step feedback machine.  A two step feedback scheme 
requiring two numbers as input to return a new number as output is used by R a n i 
and A g a r w a l [26] for the study of the chaotic behaviours of the logistic map. The 
n-th, n = 1, 2, 3, …,  iterate of this is given as  xn = αn f(xn-1) + (1– αn) xn-1, where  
0 < αn ≤ 1 and the sequence {αn} is converging  away from 0.  The orbit generated 
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using this scheme is called Mann Orbit (MO) or superior orbit (see [14]) and it may 
be represented in the following manner: 

(2)   MO(f, x0, αn):={xn: xn = αn f(xn-1) + (1– αn) xn-1, n = 1, 2, 3, … }.  

Now we define a three step feedback scheme essentially due to I s h i k a w a 
[10]. 

Definition 2.1. Let Y be a non-empty set and f: Y → Y.  For a point x0 in Y, 
construct a sequence {xn} in the following manner: 

(3)   yn-1 = βn  f(xn–1) + (1– βn) xn–1,  

xn = αn  f(yn–1) + (1– αn) xn–1, 

for n = 1, 2, 3, …, where 0 < αn ≤ 1 and 0 ≤ βn ≤ 1 and {αn} is convergent away 
from 0. Then sequence {xn} constructed above will be called the Ishikawa iteration 
of a point x0 and it is denoted by IO(f, x0, αn, βn).  We shall study the Ishikawa Orbit 
(IO) for αn = α  and βn = β. 

It is remarked that (3) becomes (2) when we put βn = 0 in it and (2) with αn = 1 
is the Picard iteration (1). 

This scheme is widely studied by P r a s a d and K a t i y a r [23, 25] and 
interesting fractal patterns are generated in [24] using it. 

Definition 2.2 [2]. Let Y be a non-empty set and f: Y → Y. A point p ∈Y is 
called a periodic point of f  of period n ≥ 1, n∈N (the set of natural numbers), iff   
fn(p) = p and f k(p) ≠ p for all   k = 1, 2, ..., n –1, where  f k(p) is the k-th iterate of 
point p under f. A periodic point of f of period 1 is simply a fixed point of f. 

Definition 2.3 [9]. Let f be a function and p be a periodic point of f with prime 
period k. Then x is forward asymptotic to p if the sequence x, fk(x), f2k(x), f3k(x), ... 
converges to p. In other words, pxf nk

n
=

∞→
)(lim . The stable set of p, denoted by 

Ws(p), consists of all points which are forward asymptotic to p. If the sequence |x|, 
|fk(x)|, |f2k(x)|, |f3k(x)|, ... grows without bound, then x is forward asymptotic to ∞. 
The stable set of ∞, denoted by Ws(∞), consists of all points which are forward 
asymptotic to ∞. 

The following definition is motivated by Rani and Agarwal [26]. 

Definition 2.4 [26]. Let S ⊂ R (the set of real numbers), f: S → S and p is a 
periodic point of f with prime period k. For a point x0 ∈ S and p ∈ [0, 1], construct 
a sequence {xn: n = 1, 2, ... } such that 

y0 = (1 – β) x0 + βf(x0), 

xk = (1 – α)x0 + αf(y0), 

yk = (1 – β)xk + βf(xk), . . . 

x2k = (1 – α)xk + αf(yk), 

y(n–1)k = (1 – β)x(n-1)k + β f(x(n-1)k), . . . 
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xnk = (1 – α)x(n–1)k + αf(y(n–1)k). 

Then x0 is called Ishikawa forward asymptotic to p and sequence {xnk} 
converges to p. 

Definition 2.5 [1]. Let C be the complex plane, }{∞∪=CC
)

and CCf
))

→:  
denote a polynomial of degree greater than 1. Let Ff denote the set of points in C

)
 

whose orbits do not converge to the point at infinity. That is, 

( ){ }.bounded is|}{|: 0
∞
=∈= n

n
f zfCzF

)
 

This set is called the filled Julia set associated with the polynomial f. The 
boundary of Ff is called the Julia set of the polynomial f and is denoted by Jf. 

3. Discussions and results 

Verhulst postulated that the growth rate at any time should be proportional to the 
fraction of the environment that is not yet used up by the population at that time and 
thus formulated the following model: 

(4)  ),1(1 nnnn pappp −+=+  

here np  measures the relative population count at time n and a, the growth rate at 
time n measures the increase of the population in one time step relative to the size 
of the population at  that time [21]. Verhlust’s model was further expressed by R. 
May in the following manner: 

(5)  )1(1 nnn XrXX −=+ , 

where Xn (a real number between 0 and 1) represents population density at time  
n = 1, 2, 3, … and r (a non-negative  real number) is used for the combined rate for 
reproduction and starvation [9].  

The quadratic transformations of the type ,2 czz +→ where z and c both are 
from complex plane C, are widely studied by [1, 7, 12, 22] and many others in the 
literature. The interest is to know the behaviour of the structure of the orbit of the 
iterates of z when z and c vary. For n = 0, 1, 2, … the iteration scheme of such map 
is 

(6)   zn+1=  zn
2 + c. 

P e i t g e n et al. [21] have established the equivalence of the maps given 
above. Following them, one can easily see that equations (4) and (6) are identical 
for ,4/)1( 2ac −=  nn apaz −+= 2/)1( , whereas (4) and (5) are identical for 

)1/( apaX nn += , ar +=1 . On simplifying, we find that (5) and (6) become 
identical for 4/)2( rrc −= , .2/ nn Xrrz −=  This functional equivalence is useful 
to generate the fractal patterns for the quadratic map given by (6)  after obtaining c 
in terms of r. 
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First we study the behaviour of the map given by (5) when X and r are 
complex numbers. Let yxyxn rirrXiXX

nn
+=+= , . Now we compute the values of 

nxX  and 
nyX at different iteration levels using the iterative scheme (3) in the 

following manner 

( ) ( ){ } ( )
( ) ( ){ } ( ) ,12

,12
22

1

22
1

nnnnnnn

nnnnnnnn

yyxxyyxyxny

xyxyyyxxxx

XXXXrXXXrX

XXXXrXXXrX
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αα

−+′+′−′+′′−′=
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+  
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( ) ( ){ } ( )
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22

22
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and find the optimum value of |r| for various  choices of parameters α, β. We 
consider iXiXX yx 01.001.0

000 +=+=  as the initial choice for our experimental 
study of the complex logistic map (5).  We study it in two cases for the values of the 
parameter r.  

Case I. When r is purely real, we compute the orbits of the map for fixed α 
and β and go on varying r until the iterate of the map remains bounded. These 
threshold values of r are computed under 2000 iterations and shown in the Table 1.  

Table 1. The optimum values of |r| (when ry = 0) under 2000 iterations 
           α 
β   1 0.9 0.7 0.5 0.3 0.1 

0 2.7918 3.0140 3.5438 4.3768 5.6343 11.9099 

0.1 3.1829 3.3820 3.9119 5.9062 8.3954 18.7901 

0.3 3.2580 3.4635 4.0839 5.3423 7.0228 11.0184 

0.5 3.3556 3.5767 3.9804 4.5628 5.5696 8.4131 

0.7 3.1993 3.3453 3.5687 4.0233 4.7714 7.0142 

0.9 2.9097 3.0355 3.3343 3.8592 4.2570 6.2209 

 
In this case it is observed that for a fixed β and varying α (from 1 towards 

zero), the optimum value of the control parameter r increases surprisingly to a 
maximum of 18.7901. Further, on fixing α and varying β, the optimum value of r 
shows an increment to some instant after which it starts decreasing (see Table 1). 
The corresponding fractal patterns for some random values of r (shown bold) are 
drawn, although the same could be drawn for all the tabulated values of r.  The time 
series analysis showing the behaviours of the map is also shown in Fig. 1 for some 
specific choices of the parameter r (shown underlined). 
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              (a)  α = 1, β = 0, r = 2.7918                                        (b) α = 1, β = 0.9, r = 2.9097 

  
              (c) α = 0.7, β = 0.1, r = 3.9119                           (d)  α = 0.3, β = 0.9, r = 4.2570 

  
                (e) α = 0.1, β = 0.1, r = 18.7901                                     (f)  α = 0.1, β = 0.9, r = 6.2209 

Fig. 1. Time series at different values of α, β (when ry = 0) 

Case II. In this case, we obtain the optimal values of a purely imaginary r for 
the same choices of the parameters α and β. We observe that for a fixed β and 
varying α (from 1 towards zero), the optimum value of the magnitude of the control 
parameter r increases to a maximum of 10.7525 for the same choice of α and β. 
Further, on fixing α and varying β, the optimum value of r shows an increment to 
some instant after which it starts decreasing (Table 2). 
Table 2.  The optimum values of |r| (when rx = 0) under 2000 iterations 

           α 
β   1 0.9 0.7 0.5 0.3 0.1 

0 1.0318 1.1079 1.3651 1.8024 2.3884 4.3997 
0.1 1.1049 1.2358 1.5775 2.1436 3.4989 10.7525 
0.3 1.2592 1.4230 1.8535 2.5349 3.8058 7.6298 
0.5 1.2509 1.3979 1.7636 2.2977 3.2410 6.0884 
0.7 1.1584 1.2859 1.5932 2.0378 2.8187 5.1939 
0.9 1.0520 1.1633 1.4346 1.8241 2.5078 4.5937 
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The corresponding fractal patterns for some random values of  |r|  (shown 
bold) are drawn, although the same could be drawn for all the tabulated values of |r|.  
The time series analysis showing the behaviours of the map is also shown as Fig. 2 
for some specific choices of the magnitude of the parameter r (shown underlined).  

  
(a)  α = 1, β = 0, r = 1.0318i                              (b)  α = 0.7, β = 0.3, r = 1.8535i 

  
(i) for whole range of |X|      (ii) zoomed for 0.08 |X| 0.18 

(c)  α = 0.3, β = 0.3, r = 3.8058i 

  
(i) for whole range of |X|   (ii) zoomed for 0.08  |X| 0.21 

(d)  α = 0.1, β = 0.1, r = 10.7714i 

Fig. 2. Time series at different values of α, β (when rx = 0) 



 21

We also study the behaviour of the map for general complex r  by taking some 
selected values of α and β. The optimum value of  r is plotted for 72 directions with 
an angular increment of 5 degrees (Fig. 3). 

 
(a)  α = 1, β = 0                                                         (b)  α = 1, β = 0.9 

 
(c)  α = 0.5, β = 0.1                       (d)  α = 0.7, β = 0.1 

 
(e)  α = 0.1, β = 0                         (f)  α = 0.1, β = 0.9 

Fig. 3. Plots of the optimum values of r (with increment 5 degrees) under 2000 iterations 

Now we study the fractal analysis of the map defined in (5) and generate the 
fractal patterns for (6) by obtaining the value of the parameter c from the tabulated 
value of r (Tables 1-2) using 4/)2( rrc −= . Devaney [7] defined the escape criteria 
for Picard iterate of the complex quadratic map and observed that the orbit escapes 
when |zn| ≥  |c| > 2. So, when |zn| ≥  |c| > 2 for some n, then |zn| → ∞ as n → ∞. 
Attractive fractal patterns are obtained by them on the basis of this escape 
algorithm. We extend it for the Ishikawa iterates of the complex quadratic maps and 
found that the orbit escapes when { }βα /2,/2,max czn >  where 0 < α ≤ 1, 0 ≤ β ≤ 1. 
Therefore, if we construct a sequence {zn} using Ishikawa iteration with 

{ }βα /2,/2,max czn >  for some n, then |zn|→  ∞ as n→ ∞. We follow the colour 
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schemes of P i e t g e n and S a u p e [22] along with the above defined escape 
criterion for our study of the complex logistic map. The colouring scheme of the 
graphics presented in the figures depends upon the rate of escape to infinity.  A 
point z0 is coloured black if the orbit of z0 not escaped within the first 100 iterates, 
red is used to denote points which escape to infinity fastest. Shades of orange, 
yellow and green are used to colour points which escaped less quickly and shades 
of blue and violet represent the points which escaped, but only after a significant 
number of iterations. This colouring scheme is well depicted in the graphical 
patterns given in Figs 4 and 5. 

  
           (a) α = 1, β = 0, r = 2.7918                  (b)  α = 0.9, β = 0.1, r = 3.3820 

  
         (c) α = 0.7, β = 0.7, r = 3.5687    (d)  α = 0.7, β = 0.5, r = 3.9804 

  
(e) α = 0.3, β = 0.7, r = 4.7714    (f) α = 0.3, β = 0.3, r = 7.0228  

   
(g) α = 0.1, β = 0.9, r = 6.2209    (h)  α = 0.1, β = 0.1, r = 18.7901                          

Fig. 4. Julia sets for real r 



 23

   
     (a) α = 1, β = 0, r = 1.0318i                          (b)  α = 1, β = 0.9, r = 1.0520i 

  
(c) α = 0.9, β = 0.1, r = 1.2358i   (d)  α = 0.7, β = 0.5, r = 1.7636i 

   
(e) α = 0.3, β = 0.7, r = 2.8187i    (f)  α = 0.1, β = 0.9, r = 4.5937i 

   
     (g) α = 0.1, β = 0.1, r = 10.7525i        (h)  α = 0.1, β = 0, r = 4.3997i    

Fig. 5.  Julia sets for purely complex r 

4. Conclusion 

We observe that for a fixed β and varying α (from 1 towards zero), the optimum 
value of the magnitude of the control parameter r (in purely real case) increases 
surprisingly to a maximum of 18.7901 whereas it  increases to a maximum of 
10.7525 in case of  purely imaginary r for the same choice of α and β.  Further, on 
fixing α and varying β the optimum value of r shows an increment to some instant 
after which it starts decreasing (see, Tables 1 and 2) for both the cases. The time 
series analysis of the complex logistic map confirms the bounded behaviour of the 
logistic map even for the higher values of |r| for specific choices of the parameters α 
and β. 



 24

Acknowledgements:  The authors would like to thank the learned referees for their valuable comments 
and suggestions for the improvement of this manuscript. 

R e f e r e n c e s  
1. B a r n s l e y, M. F. Fractals Everywhere. Second Ed. Revised with the Assistance of and a 

Foreword by Hawley Rising, III. Boston MA, Academic Press Professional, 1993. 
2. B a r n s l e y, M. F. Superfractals. Cambridge, Cambridge University Press, 2006.  
3. A. Bunde, S. Havlin, Eds. Fractals in Science. Springer-Verlag, 1994. 
4. C a m a c h o, E. F., C. B o r d o n s. Model Predictive Control. Berlin, Springer, 1999.  
5. C r o w n o v e r, R. M. Introduction to Fractals and Chaos. Jones & Barlett Publishers, 1995. 
6. D e t t m e r, R. Chaos and Engineering. – IEE Review, September 1993, 199-203. 
7. D e v a n e y, R. L. A First Course in Chaotic Dynamical Systems: Theory and Experiment. 

Addison-Wesley, 1992.  
8. F e i g e n b a u m, M. Quantitative Universality for a Class of Non-Linear Transformations. –  

J. Statistical Physics, Vol. 19, 1978, 25-52. 
9. H o l m g r e n, R. A. A First Course in Discrete Dynamical Systems. Springer-Verlag, 1994. 
10. I s h i k a w a, S. Fixed Points by a New Iteration Method. – Proc. Amer. Math. Soc., Vol. 44, 

1974, No 1, 147-150. 
11. J u l i e n, C. S. Chaos and Time-Series Analysis. Oxford University Press, 2003. 
12. K e l l e r, K. Invariant Factors, Julia Equivalences, and the (Abstract) Mandelbrot Set. – Berlin 

Heidelberg New York, Springer-Verlag, 2000. 
13. K i n t, J., D. C o n s t a l e s, A. V a n d e r b a u w h e d e. Pierre-Francois Verhulst’s Final 

Triumph. – In: M. Ausloos, M. Dirickx Eds. The Logistic Map and the Route to Chaos: From 
the Beginnings to Modern Applications.  Springer-Verlag, 2006. 

14. M a n n, W. R. Mean Value Methods in Iteration. – Proc. Amer. Math. Soc., Vol. 4, 1953, No 3, 
506-510. 

15. M a y, R. M. Simple Mathematical Models with Very Complicated Dynamics. – Nature, Vol. 261 
1976, No 459, 459-475.  

16. M a y, R. M., G. F. O s t e r. Bifurcations and Dynamic Complexity in Simple Biological Models. 
– The American Naturalist, Vol. 110, 1976, No 974, 573-599. 

17. M o o n e y, A., J. G. K e a t i n g, D. M. H e f f e r n a n. A Detailed Study of the Generation of 
Optically Detectable Watermarks Using the Logistic Map. – Chaos, Solitons and Fractals, 
Vol. 30, 2006, No 5, 1088-1097. 

18. M o r a n, P. A. P. Some Remarks on Animal Population Dynamics. – Biometrics, Vol. 6, 1950, 
No 3, 250-258. 

19. P a r e e k, N. K., V. P a t i d a r, K. K. S u d. Image Encryption Using Chaotic Logistic Map. – 
Image and Vision Computing, Vol. 24, 2006, No 9, 926-934. 

20. P a s t i j n, H. Chaotic Growth with the Logistic Model of P.-F. Verhulst. – In: M. Ausloos, M. 
Dirickx, Eds. The Logistic Map and the Route To Chaos: From the Beginnings to Modern 
Applications. – Springer-Verlag, 2006. 

21. P e i t g e n, H., H. J u r g e n s, D. S a u p e. Chaos and Fractals: New Frontiers of Science.  
Springer-Verlag, 2004. 

22. H. Peitgen, D. Saupe, Eds. The Science of Fractal Images.  Springer-Verlag, 1988. 
23. P r a s a d, B., K. K a t i y a r. A Comparative Study of Logistic Map Through Function Iteration. – 

In: Proc. Int. Con. Emerging Trends in Engineering and Technology. ISBN: 978-93-80697-
22-2, Kurukshetra, India, 2010, 357-359. 

24. P r a s a d, B., K. K a t i y a r. Fractals via Ishikawa Iteration. – CCIS, Springer, Berlin, Heidelberg, 
Vol. 140, 2011, No 2, 197-203. 

25. P r a s a d, B., K. K a t i y a r. A Stability Analysis of Logistic Model. – International Journal of 
Nonlinear Science, Vol. 17, 2014, No 1, 71-79.  

26. R a n i, M., R. A g a r w a l. A New Experimental Approach to Study the Stability of Logistic Map. 
– Chaos, Solitons and Fractals, Vol. 41, 2009, No 4, 2062-2066. 

27. R a n i, M., R. A g a r w a l. Generation of Fractals from Complex Logistic Map. – Chaos, Solitons 
and Fractals, Vol. 42, 2009, No 1, 447-452. 

28. S a l a r i e h, H., M. S h a h r o k h i. Indirect Adaptive Control of Discrete Chaotic Systems. – 
Chaos, Solitons and Fractals, Vol. 34, 2007, No 4, 1188-1201. 


