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Abstract: In the study the efficiency of three features for trajectory-based endpoint 
detection is experimentally evaluated in the fixed-text Dynamic Time Warping 
(DTW) − a based speaker verification task with short phrases of telephone speech. 
The employed features are Modified Teager Energy (MTE), Energy-Entropy (EE) 
feature and Mean-Delta (MD) feature. The utterance boundaries in the endpoint 
detector are provided by means of state automaton and a set of thresholds based 
only on trajectory characteristics. The training and testing have been done with 
noisy telephone speech (short phrases in Bulgarian language with length of about  
2 s) selected from BG-SRDat corpus. The results of the experiments have shown 
that the MD feature demonstrates the best performance in the endpoint detection 
tests in terms of the verification rate. 
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1. Introduction 

The aim of the endpoint detection is to locate the beginning and the ending points of 
the speech message. This detection is a crucial preprocessing stage in automatic 
speech and speaker recognition systems designed to operate in noisy real-world 
environments. The wrong endpoint detection increases the cases when the system 
processes the part of a speech message or the message, prolonged with non-speech 
frames. This leads to increase of the recognition error or/and amount of 
computations.  
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The endpoint detection algorithms are based on the speech/non-speech 
detection paradigm and can be divided into two general groups. The first one 
comprises the algorithms for analyzing the time variations (trajectories) of selected 
parameters. These algorithms utilize a combination of state automaton and a set of 
thresholds (fixed or adaptive) in order to produce utterance endpoints based only on 
the trajectories characteristics [3, 6, 7, 21]. The second group comprises algorithms 
based on some type of pattern recognition technique. In this case, during the 
training mode the reference models for two classes (i.e., speech and non-speech) are 
created based on selected features. In the classification mode, each frame is 
associated with one of the classes based on some kind of similarity function. Then 
the first and the last frames (i.e., the endpoints) are located using additional rules 
[18, 20, 24, 25]. 

The most frequently used feature for endpoints detection is the energy of the 
speech signal [3]. This feature is efficient for clean conditions but does not have 
robustness in noisy real-world environments. To improve the noise robustness of 
the endpoint detection, a lot of features are developed, such as energy and spectral 
entropy combinations [4, 5], modifications of the spectral entropy [6, 21], features 
based on wavelets [19], bispectrum [9], etc. 

In the study the Mean-Delta (MD) parameter [14] is proposed as a feature for 
trajectory-based real-world endpoint detection. Two additional features: the 
Modified frame Teager Energy (MTE) [4, 5] and the Energy-Entropy feature (EE) 
[4] are included for comparative purposes only. The starting and ending frames of 
an utterance are estimated by means of state automaton and a set of thresholds and 
based only on trajectory characteristics. 

In order to validate the performance of the proposed endpoint detection 
algorithms, two experiments are carried out. In the first one the accuracy was 
evaluated in terms of frame difference between manually labelled and detected 
endpoints. In the second experiment the performance of the endpoints detection 
features in terms of the recognition rate is estimated in the Dynamic Time Warping 
(DTW) fixed-text speaker verification task with short noisy telephone phrases in 
Bulgarian language [16]. The verification results are compared with those obtained 
by the manual endpoint detection. 

The HTERZ -test method proposed in [1] is applied to check whether the 
verification rate obtained by a given endpoint detection feature is statistically 
significantly different from the rate provided by another one. To illustrate the 
verification results the Receiver Operating Characteristics (ROC) curves are plotted 
[8].  

2. Endpoint detection parameters 
2.1. Mean-Delta feature 

The Mean-Delta (MD) feature was proposed in [14] and it is defined as the mean 
absolute value of the delta spectral autocorrelation function of the power spectrum 
of the speech signal. In order to remove the slope of the spectral autocorrelation 
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function and enhance the peaks, a parameter obtained in a way similar to the delta 
cepstrum evaluation was proposed in [14]. It is named Delta Spectral 
AutoCorrelation Function (DSACF). This parameter is computed as an orthogonal 
polynomial fit of the first-order derivative (in the correlation domain) of the spectral 
autocorrelation function. For a particular frame, the DSACF is computed utilizing 
only the frame’s spectral autocorrelation lags. For the n-th frame, the DSACF 
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where Ll ,...,0= ; L is the number of correlation lags; 1,...,0 −= Nn , N is the 
number of frames and ),(p lnR  is the biased spectral autocorrelation function 
defined with the power spectrum. The parameter Q determines the window width 
around the lag l and its effect on the accuracy of the approximation. 

For n-th frame the MD feature )(nmd  is computed as follows:  
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where ),(p lnRΔ is the DSACF in (1) for lag l , L  is the number of lags. For more 
details about MD feature, see [14]. 

Up to now the above described MD feature was not used in trajectory-based 
endpoint detection algorithm. Its vector version is utilized in a speech detection 
module as a part of speaker recognition tasks [15].   

As shown in [14, 15], MD feature estimation is based on the spectral 
autocorrelation function defined with the power spectrum. The results from 
preliminary experiments have revealed that for the endpoint detection scheme 
utilized in this study, the MD feature provides better performance when its 
estimation is based on the spectral autocorrelation function, defined not with the 
power but with the magnitude spectrum. This is due to the difficulties in endpoints 
detection of some phonemes as weak fricatives, nasals and the end, etc. In this case 
the trajectory of MD feature based on the magnitude spectrum represents more 
accurate similar low-level phonemes.  

For each frame, the magnitude-based version of the MD feature is computed as 
follows: 

• compute the magnitude spectrum )(kX of the Hamming-windowed 
speech signal via the Fast Fourier Transform (FFT) with size K; 

• compute the average magnitude spectrum − over all frames in the utterance; 
• apply mean normalization − the frame magnitude spectrum is divided by 

the average magnitude spectrum; 
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• compute the non-normalized biased spectral autocorrelation function with 
lags 4/KL =  using the mean normalized frame magnitude spectrum; 

• compute the delta spectral autocorrelation function by (1) with Q=3; 
• perform a trajectory smoothing for delta spectral autocorrelation function 

(inter-frame processing) by J-order long-term spectral envelope algorithm with J=3 
[17]; the obtained smoothed version of ),(p lnRΔ  is denoted as ),(s

p lnRΔ ; 

• compute )(d nm  by equation (2) using ),(s
p lnRΔ . 

2.2. Modified frame Teager Energy feature 

The modified frame Teager energy is computed according to the algorithm 
described in [4, 5]. In this algorithm the spectrum of the signal is used rather than 
the instantaneous energy. The algorithm for the Modified frame Teager Energy 
(MTE) feature calculation includes the following steps for each frame: 

• calculate the power spectrum; 
• weight each sample in the power spectrum with the square of the frequency; 
• take the square root of the sum of the weighted power spectrum. 
The result of the last step is the MTE feature for the particular frame. 

2.3. Energy Entropy Feature 

A feature for isolated word endpoints detection, obtained by combination of the 
energy and the spectral entropy, is proposed in [4]. This feature is similar to the one 
described in [5], but without the step of subtracting the average (over the first 10 
frames). This subtraction is done in an attempt to reduce the effect of background 
noise. In the current study the feature described in [4] is to be used. This Energy-
Entropy (EE) feature is computed for every speech frame as follows (for simplicity, 
the frame index is omitted): 

• compute the energy E  
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where I  is the number of the samples in the frame;  
• estimate the probability density function )(kP for the frequency component 
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where K is the FFT-size; 
• compute the negative entropy 
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• compute the EE feature as 
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(6)   )1(EE HE ×+= .  

In order to make correct comparisons among different features, the limitation 
of the frequency range from 250 Hz up to 3750 Hz (as done in [4]), was not applied 
in our case. 

3. Endpoints detection algorithm 

The proposed Endpoint Detection (ED) algorithm is intended for location of the 
beginning and ending frames of a word or a single phrase of a short length (few 
seconds). It is supposed that the length of a single pause between the words, within 
the phrase, is less than a second and the phrase or word starts and ends within the 
speech record. This algorithm is based on the trajectory variations for a single 
parameter and is using thresholds and detection rules to take a decision for the 
beginning and ending frames. 

3.1. Thresholds’ setting 

Usually the ED algorithms utilize two types of thresholds − fixed and adaptive [3]. 
The fixed thresholds are set beforehand and do not change during the detection, 
whereas the adaptive thresholds do change along the utterance according to some 
selected rules. Only fixed thresholds will be used in the study. 

Typically there are two ways to estimate the fixed thresholds. In the first one it 
is assumed that there are not any speech activities during the few hundred 
milliseconds from the beginning of the utterance [3]. The values of the analyzed 
parameters in this period are used to calculate the thresholds values. But, if there is 
a speech in the adaptation period, this leads to wrong thresholds setting and 
endpoints errors. In the second, the analysis is performing over the entire utterance 
in order to find the parameters values for thresholds setting. In this study the second 
approach is used. Here no assumptions are made about the place of speech and non-
speech fragments in the utterance. 

The aim of the fixed threshold is to separate the noise frames from the noise 
and speech frames based only on the value of a selected parameter. The method 
proposed in [3, 11] is based on the observation that the histograms of the log energy 
of noisy speech have a clean bimodal distribution corresponding to “noise only” 
and “noise + speech” parts of the signal. In this case the distribution can be 
approximated by two Gaussian densities that allow deriving a statistically optimal 
threshold [3, 11]. To do an accurate histogram, several seconds of speech in noise 
(4 s according to [11]) is required. It is supposed that the speech dominates the 
noise and this modeling is suitable only for cases with significant positive Signal-
to-Noise Ratio (SNR) and stationary background noise.  

In the paper a simpler algorithm for fixed thresholds settings is proposed. The 
preliminary experiments show its reliable work in moderate noise levels. The 
algorithm sets two thresholds ( lowT  and highT ) and includes the following steps: 
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• compute the values of the selected parameter ,nE ,,,1 Nn L=  where N is 
the number of frames in analyzed utterance; 

• compute mean μ and standard deviation σ values of nE ; 

• compute the base threshold baset  

(7)   σμ +=baset ; 
• compute the mean value downμ as 

(8)   };,,1,{ basedown NntEE n L=<=μ   
• compute the mean value upμ  as 

(9)   };,,1,{ baseup NntEE n L=≥=μ     

• if  downμ  is close to zero    

(10)   if γ
μ
μ

<
up

down  then updown γμμ = ;  

• compute the low threshold lowT  
(11)   )( downupdownlow μμαμ −+=T ; 

• compute the high threshold highT  

(12)   .lowhigh TT β=   
The coefficients α, β and γ are experimentally determined and their typical values 
are 03.0=α , 5.1=β  and .05.0=γ  

 
Fig. 1. An example of noisy speech: noisy speech data (a); clean speech reference (b); modified 

Teager energy contour (c); energy entropy feature contour (d); MD feature contour (e) 

For illustration Fig. 1 shows the trajectories of the described above features for 
a car noise example selected from the “Lombard Speech” section in the SpEAR 
database [26]. The example has a clean speech reference and a corresponding noisy 
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version (time-aligned). It contains speech corrupted with noise, recorded inside a 
driving car (Volvo 340). For the clean reference SNR = 27.00 dB and for its noisy 
version SNR = −14.58 dB. The clean and noisy versions are downsampled to 8 kHz. 
Figs. 1 (c), (d) and (e) demonstrate the features trajectories of the noisy example in 
Fig. 1 (a) and both thresholds estimated according to the algorithm above described. 
In Fig. 2 the histograms of the amplitudes for all features placed in Fig. 1 are 
shown. It can be seen in Figs 1 and 2 that for this noisy example the EE feature is 
not suitable for trajectory-based endpoint detection.  

3.2. Detection algorithm 

The detection algorithm used in the study is designed for end pointing of a single 
word or a short phrase. It works off-line and is an improved version of the 
algorithm developed by the author in [12]. A brief description of it is given in the 
text below. The algorithm is based on six-state automaton. The six states are: scan 
data, scan start, maybe in, scan end, maybe out and end found. The transition from 
one state to another is controlled by rules based on the feature values, two 
thresholds scheme and some duration constraints. These constraints are included in 
order to filter (to some extent) the prolonged low-level and short high-level non-
speech events before and after the speech utterance. 

In scan data the algorithm scans the values of the feature until they become 
greater than the lower threshold. If this is the case, the number of the frame is 
remembered as a beginning point candidate and the algorithm goes to the next state. 
If not, the search continues until the maximum length of the phrase is reached (in 
this version it is set to 7 s). If it is reached and there are not any values greater than 
the lower threshold, then an error occurs − for no speech message. 

In scan start the algorithm scans the feature values while they are between the 
two thresholds. If the value is smaller than the lower threshold, the algorithm 
returns to the previous state. If it is between two thresholds for a time longer than a 
pre-specified period of time, then an error occurs − for low level signal. If the value 
is over the higher threshold, the algorithm goes to the next state. 

In maybe in the algorithm estimates the period when the value is greater than 
the higher threshold. If this period is less than the prespecified period of time, the 
algorithm returns to the previous state. If it is not, then it is considered that there is 
an actual speech message. In this case the starting point of the message is estimated 
by analyzing the sequence of beginning point candidates. Then the algorithm goes 
to the next state. 

In scan end the algorithm searches a frame when the feature value becomes 
smaller than the lower threshold for a prespecified period of time. The frame when 
this is fulfilled is remembered and this is the first endpoint candidate. Then the 
algorithm goes to the next state. 

In maybe out the algorithm analyzes the features values and the periods when 
they are located above/below the thresholds and generates a sequence of endpoints 
candidates. Then based on specific rules the actual endpoint is estimated. 

In end found the algorithm checks whether the length of the speech message 
(estimated between the beginning and ending points) is within acceptable limits. If 
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this is the case, the algorithm ends successfully and sends endpoints for further 
processing. If not, it generates an error − for a very short or very long speech 
message. 

 
Fig. 2. Histograms and thresholds for the features shown in Fig. 1 

4. Experiments and discussion 

In the study three endpoint detection algorithms based on the described above 
features are experimentally evaluated. To validate the performance of the proposed 
endpoint detection algorithms, two experiments were carried out. In the first one the 
accuracy was evaluated in terms of the frame difference between manually labelled 
and detected endpoints. The second experiment was conducted to evaluate the 
endpoint algorithms in terms of the speaker verification performance.  

The speech data used in the experiments are selected from the BG-SRDat 
corpus [13]. This corpus is in Bulgarian language and it is recorded over noisy 
telephone channels and intended for speaker recognition. The speech data is 
collected from different types of telephone calls and various acoustical 
environments. The data are sampled with a frequency of 8 kHz at 16 bits, PCM 
format, and mono mode. The telephone speech data used in this study are recorded 
in real-world environment. Most of the speech records are obtained from street pay 
phones and they are noisy. The length of the phrase is about 2 s and the length of 
the single record is about 2.5-3 s.  

It is worth to make some clarifications about the used phrase in Bulgarian 
language. It starts with voiced fricative “z” and ends with unvoiced fricative ”s”. 
The phrase is: „Zdravei Manolov. Kak se chuvstvash dnes?”. Its English meaning is 
“Hello Manolov! How are you today?”. The pronunciation (roughly) is – 
“[zdra`vei:] [ma`nolov]! [kak] [se] [`t∫uvstva∫] [dnes]?”[13]. In addition, the 
manual labelling of the endpoints of all speech data is done in order to have 
reference endpoints for comparative purposes. 
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4.1. Endpoint accuracy  
In this experiment the endpoints accuracy was evaluated in terms of frames 
difference between manually labelled and detected endpoints [22]. 

The histograms of the differences for beginning and ending points are shown 
in Fig. 3. Table 1 presents the statistical information of these histograms. Each 
value in the table shows the rate of the distribution (in %) for less than 10-frames 
and 20-frames difference, respectively. The phrase used begins with the following 
two phonemes “z” and “d” (it is the Bulgarian word “zdravei”). The histogram in  
Fig. 3 (a) has two modes. This is due to the fact that for some records all algorithms 
miss the voiced fricative “z” and set the beginning point at the voiced stop 
consonant “d” (after the voice bar). These errors correspond to the left mode with a 
mean value of the difference of about –12 frames, whereas the right mode 
corresponds to the correct beginning points. As seen in Table 1, for beginning 
points the rate is highest for the MD feature. The histogram in Fig. 3 (b) indicates 
that for most files the algorithms set endpoints about 15 frames before the manual 
label. The phrase ended with unvoiced fricative “s” which is difficult to detect in 
noise due to its noise-like characteristics. According to Table 1, the maximum rate 
belongs to the MTE feature.   
 

  
(a)                                                                            (b) 

Fig. 3. Histograms of the differences (number of frames) between manually labeled and detected 
points: beginning points (a); endpoints (b) 

 
Table 1. The rate of distribution in % 

Features 
The differences (number of frames) 

Beginning points Endpoints 
≤ 10 ≤ 20 ≤ 10 ≤20 

1. MTE 54.19 95.80 28.62 88.54 
2. EE 55.34 96.56 18.32 82.06 
3. MD 61.45 95.80 17.55 82.44 
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4.2. Speaker verification performance 

The proposed endpoint detector is examined as a part of the fixed-text DTW-based 
speaker verification system. Since the detailed analysis of this system is out of the 
scope of this paper, only a brief description of the speaker verification scheme is 
included in the text below. 

The speech data used in the study includes 262 records of a phrase collected 
from 12 male speakers. Each speaker utters the phrase at least 16 times. As the 
speech corpus is not large enough, we cannot use two separate data sets in a training 
mode – one for the reference template creation (a training set) and another for 
thresholds settings (a validation set). So in the study the training set is used directly 
as a validation set. There are two limitations, which must be taken into account, 
when using available speech data in the verification task. First, there are different 
numbers of records per a speaker – from 16 up to 34. Second, it is necessary to use 
an equal number of records for speaker’s reference creation [23]. Considering these 
limitations in the study 10 records [16] per a speaker are randomly selected from 
speaker’s data for reference creation, while the rest of his data are used for testing. 
This procedure is repeated 5 times. In the verification mode each time there are 142 
client accesses or false rejection tests and 1562 impostor accesses or false 
acceptance tests. After 5 repeats, the total tests are: for false rejection − 710, and for 
false acceptance − 7810.  

In the preprocessing step the Hamming-windowed frames of 30 milliseconds 
are utilized, with a frame rate of 10 milliseconds. The number of Mel-Frequency 
Cepstral Coefficients (MFCC) is 14. These cepstral coefficients are calculated using 
24 Mel-frequency spaced filters. The 0-th cepstral coefficient is not used. In 
addition, cepstral mean subtraction is applied (for each file separately) to obtain the 
MFCC feature. For endpoint detection features, FFT-size of 512 points is chosen 
[16]. 

In the study, the DTW algorithm, named as the normalize-wrap method is 
applied [10]. In this algorithm, the length normalization of both the reference and 
the test pattern are used before performing the actual DTW algorithm. In the DTW, 
the relaxed endpoints constraints, Itakura’s form of local constraints and the root 
power sum − the cepstral distance as a local distance are implemented. The 
speaker’s reference is obtained by averaging (after dynamic time warping 
alignment) of his training utterances [23]. The individual speakers’ verification 
thresholds are estimated by using the cohort normalization method [2]. 

For each ED algorithm in the study, a separate speaker verification task is 
carried out, i.e., a single classifier is considered. An additional verification task is 
performed with manually labelled endpoints. Actually, the efficiency of various 
endpoints detection features are compared via the verification results.  

It is known that the single error value is not a reliable estimation of the 
speaker’s verification performance [1]. This is true especially for real-world tasks 
where the available data are limited and the error value can depend on the data size. 
Since this is our case, it was decided to apply the methodology for performance 
estimation of the speaker verification proposed in [1]. The verification results are 
presented as rate ratios − False Rejection Rate (FRR), False Acceptance Rate (FAR) 
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and Half Total Error Rate (HTER) [1]. Besides, the 95% Confidence Interval (CI) 
for the HTER is shown computed according to [1]. The HTERZ -test method 
proposed in [1] is applied to verify whether the given classifier (i.e., ED feature in 
our case) is statistically significantly different than another. Table 2 presents the 
speaker verification results in rates and a confidence interval for the HTERs. These 
rates are obtained for each feature and also for the manual end pointing. As seen 
from the table, MD feature performs best among the feature set.  

Table 2. Speaker verification results 

No Features FRR (%) FAR (%) HTER (%) 95% CI 

1 Manual 8.30 4.94 6.62 ±0.010 
2 MD 7.04 10.57 8.80 ±0.010 
3 EE 10.84 11.61 11.22 ±0.011 
4 MTE 13.94 10.62 12.28 ±0.013 

 
Table 3. Confidence values 

Value [MD, EE] [MD, MTE] 
δ 99.76% 99.72% 
σ 0.0079 0.0090 

Table 3 shows the confidence values δ and the standard deviations σ obtained 
from the HTERZ -tests (independent case) [1]. [A, B] denotes the two endpoints 
detection features A and B being tested. As seen from the table, the MD feature is 
statistically significantly different from the EE and MTE features. For both tests the 
confidence value δ on their HTERs difference is greater than 95%.  

The average ROC curves are plotted in Fig. 4 to show the verification 
performance for each ED feature. Each curve is a vertical average of the five ROC 
curves of the five tests for 12 speakers. It is clearly seen that the MD feature curve 
is closer to the reference curve (manual ED) than the other two. 

 
Fig. 4. ROC curves for different ED features 
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It can be seen in Table 1 that MD feature possesses the maximal rate for 10-
frames difference for beginning points, but not for ending ones. Nevertheless, this 
feature provides the best verification rate as seen in Tables 2 and 3 and Fig. 4. For 
most files, as seen from Fig. 3(b), all algorithms set endpoints about 15 frames 
before the manual label of the end of the unvoiced fricative “s”. In fact the ED 
algorithms fail to detect the correct ending point of the phrase. It turns out, that 
these endpoint errors have a little impact on the recognition rate of the speaker 
verification scheme used in the present study. 

5. Conclusions 

The efficiency of three spectrum-based features for endpoint detection is 
experimentally evaluated in the fixed-text DTW-based speaker verification task 
with short phrases of telephone speech. As seen from Tables 2 and 3, and Fig. 4 the 
MD feature demonstrates the best performance in endpoint detection tests in terms 
of the verification rate. 

The future research in this area will be focused on two main objectives –
developing of a trajectory-based feature, which in combination with the MD feature 
will improve the endpoint detection accuracy for weak phonemes and examination 
of the developed endpoint detector in the hidden Markov models framework for 
short phrases. 
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