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Abstract: This paper concerns high precision numerical computing of definite 
integrals in a specific environment, namely .NET Framework. The work is a part of 
a series, tracing the progress of creating tools for high precision computations in 
this environment and may be considered as a continuation, in this direction, of the 
beginning, described in [15], that includes special function calculations with 
arbitrary precision. Some of the methods used are described. The results are clearly 
illustrated with the help of an application, purposefully created, using the current 
state-of-the-art library being created for realization of functions and numerical 
methods of arbitrary precision in a given environment. 
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1. Introduction 

Arbitrary precision computations are not a self-purpose. They are related to 
receiving precise values when solving mathematical models in different areas, 
including, for instance, integer relation detection to identify some definite integrals 
as an analytic expression of mathematical constants (“closed form”). In [15] a high 
precision computational library is considered in the environment of .Net Framework 
and some numerical analysis tools are described, as well as an auxiliary and 
illustrative application, based on this library. 
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One of the goals is to demonstrate that useful and quite powerful mutually 
supporting computational instruments for solving non-trivial problems may be 
realized in a certain environment, which is sufficiently wide spread on personal 
desktops or portable computers, but not enough rated by authors creating software 
for scientific applications. 

The choice of the method for the particular problem is very important in the 
case considered (numerical integration of definite integrals), that is the so called 
double exponential transformation. It is not supposed to be the only appropriate 
method in all the cases. A given scheme may be applied for a given class of 
problems (specific features of the functions being integrated), maximally utilizing 
the specifics of the class. At present the library has all tools for realization of 
Gaussian quadrature (tested for classical orthogonal polynomial roots to degree up 
to 25 000 and precision up to 10−200) and they are really used in other areas, e.g., 
systems of ordinary differential equations according to the implicit Runge-Kutta 
scheme. This selection is partially implied by the fact that “Tanh-sinh quadrature is 
the best integration scheme for functions with vertical derivatives or blow-up 
singularities at endpoints, or for any function at very high precision (> 1000 digits)” 
[16], although Gaussian quadrature also deserves attention in the cases when the 
function being integrated is of “good behavior” (with the necessary number of 
derivatives, for instance) in the whole closed interval. The cost of computing the 
abscissas and the weights of Tanh-sinh quadrature scheme when very high precision 
is required, grows linearly with the required precision, while in the Gaussian 
scheme it grows in a quadratic way. This is namely what makes the Tanh-sinh 
quadrature a more appropriate candidate under the requirement for precision of 
hundreds and thousands of decimal digits. Comparative analysis of three numerical 
quadrature schemes is given in [7]. 

2. Using double-exponential transformation for numerical computing 
of definite integrals 

2.1.  Euler-Maclaurin formula and the Tanh-sinh transformation 

In order to introduce the method used, some preliminary explanations are needed. 
Let a finite interval ( , )a b  be given, as well as the positive integer numbers m and 
n. We set ( )h b a n= −  and jh a jh= +  (and 2iB  for Bernoulli numbers). From 
Euler-Maclaurin formula, assuming that the function has at least 2m+2 continuous 
derivatives, it follows 
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for some ( , )a bξ ∈ , and one can see that if the function f  has derivatives of any 
order and all of its derivatives are zero at a and b (as in a bell curve), the error 
member ( , )E h m  tends to zero faster than any power of h (Fig. 1). 

  
Fig. 1. A trapeze rule for the bell curve 

The Euler-Maclaurin formula may be considered as giving correction of higher 
order for the trapeze rule. 

Let for a given function f , defined in ( 1,1)− , we set 

( ) tanh sinh( )
2

g t tπ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 with ( )x g t= . Then 

(3) ( )
1

1

( ) ( ) ( ) ( )
N

N
j j h

j N
I f x dx f g t g t dt h w f x I

∞

=−− −∞

′= = ≈ =∑∫ ∫ , 

where ( ), ( )j jx g hj w g hj′= = . Since ( )g t′  tends to zero very fast with the 

increase of t , the product ( )( ) ( )f g t g t′  is generally a function with a well 
expressed bell shape. For such functions, as mentioned in the previous paragraph, 
the Euler-Maclaurin formula ensures that the sum above is an extraordinarilly exact 
approximation. Usually dividing h by two double, the number of exact digits (if the 
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The Tanh-sinh quadrature formula is called also double exponential for an 
evident reason – the way the derivative ( )g t′  of the transformation decreases in 
infinity. This is the best integration scheme for functions with singularities at the 
ends of the interval of type explosive increasing and vertical asymptotes. Of course, 
for guaranteed good behavior of the scheme, there are requirements that the 
function must satisfy. For strict mathematical results for the function classes, 
different kinds of double exponential quadrature formulas are applied [3]. The 
original source is [1]. A very extensive overview of the story of the double 
exponential formula discovering and the further development and applications of 
the ideas in various areas may be found in [2]. The simple heuristic ground of the 
idea via Euler-Maclaurin formula is dated quite recently [8, 9]. Surprisingly, a 
constellation of eminent mathematicians of the past, who devoted time and efforts 
in the numerical quadrature area, has not come to this idea. Furthermore, many 
years have passed after this method publication, before it became acknowledged 
and used in various packages and environments for numerical analysis, which 
include numerical quadratures [2].  

2.2.  Double exponential formula variations 

The formula with the Tanh-sinh transformation cited in the previous section is for 
the case of the finite interval ( 1,1)− . The generalization for any finite interval 
( , )a b  is obvious, through the linear transformation 
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There are similar transformations for other cases, described in the table below. 
Table 1. Different cases of double-exponential transformation 

Type of integral Transformation 
1

1

( )f x dx
−
∫  tanh sinh( )

2
x tπ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

0
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∫  exp sinh( )
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∫  sinh sinh( )
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∞

−∫  ( )exp exp( )x t t= − −  

The resulting schemes have similar properties. However, the abscissas and the 
weights are different and must be calculated separately. Often this additional 
calculation may be avoided by using, for example 
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2.3. Algorithm for the Tanh-Sinh formula 

As abscissas and weights do not depend on the function and are uniformly 
distributed with a step h, an efficient implementation is possible by using several 
levels of dividing the step into halves. They are computed for the minimal provided 
step (h = 2−m for some “level” m), then they are visited by levels and a sum is 
calculated for each level by computing the function for the points with a step 2m−k. 
The sum calculated for a given level is then used for the next level. If the last two 
sums differ less than the desired accuracy, the process terminates. Of course, with 
such organization, an appropriate number of levels must be provided, that is such a 
minimal step (level m), which allows the desired accuracy. Twelve levels are 
sufficient for most integrals for precision of 1000 digits in most of the cases [4]. 

Below a basic algorithmic scheme in a pseudo code is given, see [9] for more 
details, the algorithm is described also in [6]. 

Input: number of levels m, function f . 
Output: the approximation hS 
Initialization: 

: 2 mh −=  
for k := 0 to 20 2m⋅  do 
   t := kh 
   xk := tanh( 2 sinh( ))tπ ⋅  
   wk := 22 cosh( ) cosh ( 2 sinh( ))t tπ π⋅ ⋅  
   if |xk – 1| < ε  then 
      exit do 
   end if 
end for 
nt := k (the value of  k at exit) 
 
Quadrature: 
S := 0, h := 1 
for k := 1 to m (or until the desired accuracy is obtained) do 
   h := h / 2 
   for i := 0 to nt step 2m-k do 
      if mod(i, 2m-k+1) ≠  0 or k = 1 then 
         if i = 0 then 
            0: (0)S S w f= +  
         else 
            ( ): ( ) ( )i i iS S w f x f x= + − +  
         end if 
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      end if 
   end for 
end for 
Result = hS 

This basic scheme enables some variations, in which, for example the 
termination condition for the initialization is not |xk − 1| < ε , but wk < 2ε  and at the 
same time the computations are performed with precision 2ε . This particular 
modification is used in NQTS (the illustrative application, described below – 
Numeric Quadrature with Tanh-Sinh transformation), although being slower, it 
demonstrates exclusive stability, guaranteeing the total required precision if the 
necessary number of “levels” is provided.  

2.4. Special transformations in the case of oscillatory functions  
(Fourier-type integrals) 

Transformations of the type described above do not work well for integrals of the 
type 

(6) 1
0

( )sin( )sI f x x dxω
∞

= ∫ , 

(7) 1
0

( ) cos( )cI f x x dxω
∞

= ∫  

and for other similar transformations with slow decreasing oscillatory functions, for 
example Bessel functions; see [11] for current presentation of the problem for high 
precision computing of definite integrals with oscillatory functions. 

In [12] a transformation of the variable is proposed, which is appropriate for 
integrals of this type. A function g(t) is chosen with the following properties 
(8) lim ( ) 0, lim ( )
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where in the last two conditions the process converges as a double exponent. The 
transformation is respectively 
(10) ( )x Mg t ω=  for Is, 

(11) 
2

x Mg t
M
π ω⎛ ⎞= −⎜ ⎟

⎝ ⎠
 for Ic, 

M is a constant, defined below in an appropriate way: by increasing x in the positive 
direction, the points of the formula tend to the zeroes of sin( )xω  or cos( )xω , 
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respectively as a double exponent, so that it is not necessary to compute the 
function values for large x. 

The transformation proposed in [12] satisfies the conditions above mentioned 
and is of the form 

(12) 1( )
1 exp( sinh )

g t
k t

=
− −

. 

A more efficient transformation is proposed in [13]: 
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Applying the transformation g(t) for Is, we get 
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Then we apply the trapeze rule with a uniform step h and obtain 
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Similar operations are done for Ic . We choose M and h satisfying the condition 
(16) Mh π=  
and we get for Is and Ic ,respectively for large k 
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so that with the increase of k, the points tend to the zeroes of sin( )xω  or cos( )xω  
as a double exponent. 

3. Why is it necessary to compute definite integrals with high 
precision? 

In the last decades the high precision computation of definite integrals promises to 
become very useful in the experimental mathematics area. In many cases it is 
possible to recognize in an analytic form the value of a given definite integral under 
the condition that this value can be computed with high precision. Usually to do 
this, an integer relation detection algorithm is used. Integer relation detection 
algorithm is a numerical algorithm, in which, given the condition 

1 1 2 2 0n na x a x a x+ + + =…  with certain real numbers xi can recover the integer 
coefficients ak, (not all zeros) or else determine that there are not any integers less 
than a certain size. The most frequently used algorithm for integer relation detection 
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is “PSLQ” algorithm (named one of the ten “algorithms of the century” by 
Computing in Science and Engineering). The name comes from using “Partial 
Sums” and ”LQ factorization”; see [10] for description of the algorithm and its 
various modifications and applications. The algorithms require the computations to 
be carried out with at least d × n digits, where d is the size in digits of the largest of 
integers ak.  Here a simple illustrative example [6] is given. The integral 

 (18) 
1 2

2 4
0

ln
( 1)( 1)

t t dt
t t− +∫  

is considered. Its value with precision of 101 digits is 
0.180671262590654942792308128981671615337114571018296766266240794293
7585662241330017708982541504837997. 

Then it is possible to apply a scheme for integer relation detection (with 
PSLQ), which gives the result in a “closed-form” 

(19) 
1 2 2

2 4
0

ln (2 2)
( 1)( 1) 32

t t dt
t t

π −
=

− +∫ . 

Below it is shown how the result looks like in NQTS in several seconds. 

 
Fig. 2. View of NQTS application  

As above mentioned, this is a necessary step for creating an implementation of 
a scheme for recognition based on PSLQ in the specific environment. 

4. Purpose and capabilities of NQTS application  
NQTS application is designed for numerical computing of definite integrals with 
high precision. The domain of the integration can be a finite or infinite interval. The 
infinite interval can be of the type ( , )a ∞  with an arbitrary real number a or 
( , )−∞ ∞ . The calculations are done with an arbitrary (given by the user) precision. 
The expression of the function to be integrated is given in a text form and may 
include algebraic operations and functions (elementary and special). Additional 
parameters are allowed in the expression. 
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4.1. Resources and methods used 

The arbitrary precision of the calculations (with real numbers) is provided by  
X-MPIR library. X-MPIR ensures the link from C# to MPIR (for details search the 
Web, there is no separate site, devoted to X-MPIR at this moment). On the basis of 
X-MPIR, which provides the basic arithmetic operations only, a library of 
elementary and special functions with arbitrary precision is implemented. The 
problem is solved with the so called double-exponential transformation – see the 
previous Section 2. The user chooses the desired result precision. For computation 
of the function to integrate, an interpreter is provided. The interpreter recognizes the 
mathematical expressions which include the functions in the specially created 
library. The interpreter accepts any number of variables, but the ones that are 
different from the main variable of the problem (x) are considered as parameters, 
for whose initialization a separate setting is required from the user. 

4.2. Functional properties, special features and limitations 

The program is implemented using C# in .Net Framework. It is built, targeting the 
maximal possible portability (32- or 64-bit Windows systems). No installation is 
needed. The necessary files are copied in a separate folder. Any intermediate 
calculations are done with the given current precision, which is the double of the 
desired precision for the result. For all apriori needed data concerning the problem 
solving, the corresponding elements of the interface are provided. The formal 
correctness is verified. The variable name for the variable of the function to be 
integrated is fixed (x) to avoid useless complications while formulating the 
problem. Besides this variable however, other variables can be present in the 
expression (parameters). When parameters are present, the program requires from 
the user to initialize them separately. The basic limitation is the type of the problem 
being solved. It is for a real valuated function, defined within an interval of the real 
line. This version of the program does not include calculation of definite integrals 
with slowly decreasing oscillatory functions in infinite intervals. At the moment it is 
possible to include solving of a particular kind of such problems 

1( ) ( )sin( )f x f x xω=  or 1( ) ( )cos( )f x f x xω= , where 1( )f x  is not an oscillatory 
function with a transformation, proposed by Ooura (see Section 2). Furthermore, no 
optimizations are implemented for parallel computations, using the eventual 
multiple core processor architecture. This is a task that requires a change in the 
scheme of the algorithm and is expected to be done. One scheme is described in [5], 
but different tools for parallel computing must be used in the present environment. 
Putting aside the fact that the calculation of certain types of definite integrals is an 
alternative way to compute specific functions, probably the most important reason 
to compute definite integrals with high precision consists in the possibility to use 
the result from the algorithm, recognizing mathematical constants, for example 
PSLQ [10], and the related with this discovery still unknown relations. 

The program was tested on various examples of moderate precision, up to 
several hundred digits, including the 14 examples, listed in [5].  
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At the end an interesting example from [16] will be considered, whose exact 
analytical value is known, but it is not easy to receive it automatically even in some 
special environments for mathematical computations. 

The integral  

(20)  
( )2

2
0

arcsin 2 2 sin sin 2 ln 2
84 2sin

x x
dx

x

π π⋅
=

−
∫  

calculated with the help of NQTS for the required precision of 1000 decimal digits, 
the calculations being carried out with 2000 digits precision gives  

0.384946472767794677379733634534350939378637085633991860421625207172
2155289419475363258040486088668527849321533238317957707772370370640
0451929328242514575287363486659506318235099222393498461771298463493
7681407456606866665968509067105927912880183567407778563320465282410
9952428771786610512920439581653519156195102556497776860544330775431
4265359281054304361719941189175543827981821393612499980288494758216
7064012787798601005035854100498167221090087112894445471983860344368
6499910705162326611452735512702315464583904440393945540594884805271
5407306212911184314006047342845191174222889436483558914806201104774
4826497012315460390176212065004650259937836874158972937657019886136
0209151184033890049526310679062670026994172287471826121567944111315
2024552082172493816607353874289134054572981974632268300609905848073
7965638940572965700568612722159740260453198791929319353396882047166
5372124202389939690157287517527610194101982354558310839848826715879
960306667055889614053090753005875188213529520407071003093521683. 

NQTS shows one digit more than the required precision. The value calculated 
from the right hand side of the expression in (20) with SFCALC, precision of 1001 
digits, differs in the last decimal digit – 2 instead of 3. The calculation took more 
than 4 and a half hours, including the primary initialization of about 55 minutes on 
the author’s laptop. 

5. Conclusion 

A limited but representative part, concerning the numerical quadrature of high 
precision is presented as part of the realization of computational tools and a library 
for calculations of arbitrary precision in a non-typical environment, namely .Net 
Framework. The combination of well-considered methods plus the excellent 
possibilities for visualization and the human interaction in this environment is worth 
the efforts and provides the possibility to achieve non-trivial results in home 
conditions. Possibilities exist for further improvements in various directions, 
including the usage of the multi-core architecture of modern processors for parallel 
processing. In this way a wider audience would be interested, since traditionally 
similar software products are developed under Unix-like systems equipped with 
specialized hardware. 
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