
 172

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 14, No 1

Sofia • 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2014-0014

High Precision Computing of Definite Integrals
with .NET Framework C# and X-MPIR

Velichko Dzhambov
Institute of Information and Communication Technologies, 1113 Sofia
E-mail: vili_jambov@abv.bg

Abstract: This paper concerns high precision numerical computing of definite
integrals in a specific environment, namely .NET Framework. The work is a part of
a series, tracing the progress of creating tools for high precision computations in
this environment and may be considered as a continuation, in this direction, of the
beginning, described in [15], that includes special function calculations with
arbitrary precision. Some of the methods used are described. The results are clearly
illustrated with the help of an application, purposefully created, using the current
state-of-the-art library being created for realization of functions and numerical
methods of arbitrary precision in a given environment.

Keywords: High precision computation, numerical quadrature, definite integral
computation, computational mathematics, .NET Framework.

1. Introduction

Arbitrary precision computations are not a self-purpose. They are related to
receiving precise values when solving mathematical models in different areas,
including, for instance, integer relation detection to identify some definite integrals
as an analytic expression of mathematical constants (“closed form”). In [15] a high
precision computational library is considered in the environment of .Net Framework
and some numerical analysis tools are described, as well as an auxiliary and
illustrative application, based on this library.

 173

One of the goals is to demonstrate that useful and quite powerful mutually
supporting computational instruments for solving non-trivial problems may be
realized in a certain environment, which is sufficiently wide spread on personal
desktops or portable computers, but not enough rated by authors creating software
for scientific applications.

The choice of the method for the particular problem is very important in the
case considered (numerical integration of definite integrals), that is the so called
double exponential transformation. It is not supposed to be the only appropriate
method in all the cases. A given scheme may be applied for a given class of
problems (specific features of the functions being integrated), maximally utilizing
the specifics of the class. At present the library has all tools for realization of
Gaussian quadrature (tested for classical orthogonal polynomial roots to degree up
to 25 000 and precision up to 10−200) and they are really used in other areas, e.g.,
systems of ordinary differential equations according to the implicit Runge-Kutta
scheme. This selection is partially implied by the fact that “Tanh-sinh quadrature is
the best integration scheme for functions with vertical derivatives or blow-up
singularities at endpoints, or for any function at very high precision (> 1000 digits)”
[16], although Gaussian quadrature also deserves attention in the cases when the
function being integrated is of “good behavior” (with the necessary number of
derivatives, for instance) in the whole closed interval. The cost of computing the
abscissas and the weights of Tanh-sinh quadrature scheme when very high precision
is required, grows linearly with the required precision, while in the Gaussian
scheme it grows in a quadratic way. This is namely what makes the Tanh-sinh
quadrature a more appropriate candidate under the requirement for precision of
hundreds and thousands of decimal digits. Comparative analysis of three numerical
quadrature schemes is given in [7].

2. Using double-exponential transformation for numerical computing
of definite integrals

2.1. Euler-Maclaurin formula and the Tanh-sinh transformation

In order to introduce the method used, some preliminary explanations are needed.
Let a finite interval (,)a b be given, as well as the positive integer numbers m and
n. We set ()h b a n= − and jh a jh= + (and 2iB for Bernoulli numbers). From
Euler-Maclaurin formula, assuming that the function has at least 2m+2 continuous
derivatives, it follows

(1)

()
0

2
(2 1) (2 1)2

1

() () (() ())
2

() () (,) ,
(2)!

b n

j
ja

im
i ii

i

hf x dx h f x f a f b

h B f b f a E h m
i

=

− −

=

= − + −

− − −

∑∫

∑

where

 174

(2)
2 2

(2 2)
2 2(,) () ()

(2 2)!

m
m

m
hE h m b a B f
m

ξ
+

+
+= −

+

for some (,)a bξ ∈ , and one can see that if the function f has derivatives of any
order and all of its derivatives are zero at a and b (as in a bell curve), the error
member (,)E h m tends to zero faster than any power of h (Fig. 1).

Fig. 1. A trapeze rule for the bell curve

The Euler-Maclaurin formula may be considered as giving correction of higher
order for the trapeze rule.

Let for a given function f , defined in (1,1)− , we set

() tanh sinh()
2

g t tπ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 with ()x g t= . Then

(3) ()
1

1

() () () ()
N

N
j j h

j N
I f x dx f g t g t dt h w f x I

∞

=−− −∞

′= = ≈ =∑∫ ∫ ,

where (), ()j jx g hj w g hj′= = . Since ()g t′ tends to zero very fast with the

increase of t , the product ()() ()f g t g t′ is generally a function with a well
expressed bell shape. For such functions, as mentioned in the previous paragraph,
the Euler-Maclaurin formula ensures that the sum above is an extraordinarilly exact
approximation. Usually dividing h by two double, the number of exact digits (if the

function is analytic in the open interval and we set ()h h j j
j

I I h w f x
∞

∞

=−∞

= = ∑ , then

1exph
cI I
h

⎛ ⎞− ≈ −⎜ ⎟
⎝ ⎠

 and 2exp
ln

N
h

NI I c
N

⎛ ⎞− ≈ −⎜ ⎟
⎝ ⎠

.

 175

The Tanh-sinh quadrature formula is called also double exponential for an
evident reason – the way the derivative ()g t′ of the transformation decreases in
infinity. This is the best integration scheme for functions with singularities at the
ends of the interval of type explosive increasing and vertical asymptotes. Of course,
for guaranteed good behavior of the scheme, there are requirements that the
function must satisfy. For strict mathematical results for the function classes,
different kinds of double exponential quadrature formulas are applied [3]. The
original source is [1]. A very extensive overview of the story of the double
exponential formula discovering and the further development and applications of
the ideas in various areas may be found in [2]. The simple heuristic ground of the
idea via Euler-Maclaurin formula is dated quite recently [8, 9]. Surprisingly, a
constellation of eminent mathematicians of the past, who devoted time and efforts
in the numerical quadrature area, has not come to this idea. Furthermore, many
years have passed after this method publication, before it became acknowledged
and used in various packages and environments for numerical analysis, which
include numerical quadratures [2].

2.2. Double exponential formula variations

The formula with the Tanh-sinh transformation cited in the previous section is for
the case of the finite interval (1,1)− . The generalization for any finite interval
(,)a b is obvious, through the linear transformation

(4)
1

1

()
2 2 2

b

a

b a a b b af t dt f x dx
−

− + −⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ ∫ .

There are similar transformations for other cases, described in the table below.
Table 1. Different cases of double-exponential transformation

Type of integral Transformation
1

1

()f x dx
−
∫ tanh sinh()

2
x tπ⎛ ⎞= ⎜ ⎟

⎝ ⎠

0

()f x dx
∞

∫ exp sinh()
2

x tπ⎛ ⎞= ⎜ ⎟
⎝ ⎠

()f x dx
∞

−∞
∫ sinh sinh()

2
x tπ⎛ ⎞= ⎜ ⎟

⎝ ⎠

1
0

() xf x e dx
∞

−∫ ()exp exp()x t t= − −

The resulting schemes have similar properties. However, the abscissas and the
weights are different and must be calculated separately. Often this additional
calculation may be avoided by using, for example

 176

(5) ()
1

2

0 0

()d () (1) df t t f x f x x x
∞

= +∫ ∫ .

2.3. Algorithm for the Tanh-Sinh formula

As abscissas and weights do not depend on the function and are uniformly
distributed with a step h, an efficient implementation is possible by using several
levels of dividing the step into halves. They are computed for the minimal provided
step (h = 2−m for some “level” m), then they are visited by levels and a sum is
calculated for each level by computing the function for the points with a step 2m−k.
The sum calculated for a given level is then used for the next level. If the last two
sums differ less than the desired accuracy, the process terminates. Of course, with
such organization, an appropriate number of levels must be provided, that is such a
minimal step (level m), which allows the desired accuracy. Twelve levels are
sufficient for most integrals for precision of 1000 digits in most of the cases [4].

Below a basic algorithmic scheme in a pseudo code is given, see [9] for more
details, the algorithm is described also in [6].

Input: number of levels m, function f .
Output: the approximation hS
Initialization:

: 2 mh −=
for k := 0 to 20 2m⋅ do
 t := kh
 xk := tanh(2 sinh())tπ ⋅
 wk := 22 cosh() cosh (2 sinh())t tπ π⋅ ⋅
 if |xk – 1| < ε then
 exit do
 end if
end for
nt := k (the value of k at exit)

Quadrature:
S := 0, h := 1
for k := 1 to m (or until the desired accuracy is obtained) do
 h := h / 2
 for i := 0 to nt step 2m-k do
 if mod(i, 2m-k+1) ≠ 0 or k = 1 then
 if i = 0 then
 0: (0)S S w f= +
 else
 (): () ()i i iS S w f x f x= + − +
 end if

 177

 end if
 end for
end for
Result = hS

This basic scheme enables some variations, in which, for example the
termination condition for the initialization is not |xk − 1| < ε , but wk < 2ε and at the
same time the computations are performed with precision 2ε . This particular
modification is used in NQTS (the illustrative application, described below –
Numeric Quadrature with Tanh-Sinh transformation), although being slower, it
demonstrates exclusive stability, guaranteeing the total required precision if the
necessary number of “levels” is provided.

2.4. Special transformations in the case of oscillatory functions
(Fourier-type integrals)

Transformations of the type described above do not work well for integrals of the
type

(6) 1
0

()sin()sI f x x dxω
∞

= ∫ ,

(7) 1
0

() cos()cI f x x dxω
∞

= ∫

and for other similar transformations with slow decreasing oscillatory functions, for
example Bessel functions; see [11] for current presentation of the problem for high
precision computing of definite integrals with oscillatory functions.

In [12] a transformation of the variable is proposed, which is appropriate for
integrals of this type. A function g(t) is chosen with the following properties
(8) lim () 0, lim ()

t t
g t g t

→−∞ →∞
= = ∞ ,

and

(9)
() 0,

() ,
t

t

g t

g t t
→−∞

→∞

′ =⎧
⎪
⎨ =⎪⎩

where in the last two conditions the process converges as a double exponent. The
transformation is respectively
(10) ()x Mg t ω= for Is,

(11)
2

x Mg t
M
π ω⎛ ⎞= −⎜ ⎟

⎝ ⎠
 for Ic,

M is a constant, defined below in an appropriate way: by increasing x in the positive
direction, the points of the formula tend to the zeroes of sin()xω or cos()xω ,

 178

respectively as a double exponent, so that it is not necessary to compute the
function values for large x.

The transformation proposed in [12] satisfies the conditions above mentioned
and is of the form

(12) 1()
1 exp(sinh)

g t
k t

=
− −

.

A more efficient transformation is proposed in [13]:

(13)
() ,

1 exp(2 (1) (1))
1 , 1 ln(1) 4 .
4

t t
tg t

t e e

M M

α β

β α β π

−
⎧ =⎪ − − − − − −⎪
⎨
⎪ = = + +
⎪⎩

Applying the transformation g(t) for Is, we get

(14) 1(())sin(()) ()sI f Mg t Mg t g t dtω ω
∞

−∞

′= ∫ .

Then we apply the trapeze rule with a uniform step h and obtain

(15) , 1(())sin(()) ()
N

N
s h

k N
I Mh f Mg kh Mg kh g khω ω

+

−=

′= ∑ .

Similar operations are done for Ic . We choose M and h satisfying the condition
(16) Mh π=
and we get for Is and Ic ,respectively for large k

(17)

sin(()) sin() sin() 0,

cos cos cos 0,
2 2 2

Mg kh Mkh k

Mg kh Mkh k
M

π

π π ππ

≈ = =⎧
⎪

⎛ ⎞⎨ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ≈ − = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩

so that with the increase of k, the points tend to the zeroes of sin()xω or cos()xω
as a double exponent.

3. Why is it necessary to compute definite integrals with high
precision?

In the last decades the high precision computation of definite integrals promises to
become very useful in the experimental mathematics area. In many cases it is
possible to recognize in an analytic form the value of a given definite integral under
the condition that this value can be computed with high precision. Usually to do
this, an integer relation detection algorithm is used. Integer relation detection
algorithm is a numerical algorithm, in which, given the condition

1 1 2 2 0n na x a x a x+ + + =… with certain real numbers xi can recover the integer
coefficients ak, (not all zeros) or else determine that there are not any integers less
than a certain size. The most frequently used algorithm for integer relation detection

 179

is “PSLQ” algorithm (named one of the ten “algorithms of the century” by
Computing in Science and Engineering). The name comes from using “Partial
Sums” and ”LQ factorization”; see [10] for description of the algorithm and its
various modifications and applications. The algorithms require the computations to
be carried out with at least d × n digits, where d is the size in digits of the largest of
integers ak. Here a simple illustrative example [6] is given. The integral

 (18)
1 2

2 4
0

ln
(1)(1)

t t dt
t t− +∫

is considered. Its value with precision of 101 digits is
0.180671262590654942792308128981671615337114571018296766266240794293
7585662241330017708982541504837997.

Then it is possible to apply a scheme for integer relation detection (with
PSLQ), which gives the result in a “closed-form”

(19)
1 2 2

2 4
0

ln (2 2)
(1)(1) 32

t t dt
t t

π −
=

− +∫ .

Below it is shown how the result looks like in NQTS in several seconds.

Fig. 2. View of NQTS application

As above mentioned, this is a necessary step for creating an implementation of
a scheme for recognition based on PSLQ in the specific environment.

4. Purpose and capabilities of NQTS application
NQTS application is designed for numerical computing of definite integrals with
high precision. The domain of the integration can be a finite or infinite interval. The
infinite interval can be of the type (,)a ∞ with an arbitrary real number a or
(,)−∞ ∞ . The calculations are done with an arbitrary (given by the user) precision.
The expression of the function to be integrated is given in a text form and may
include algebraic operations and functions (elementary and special). Additional
parameters are allowed in the expression.

 180

4.1. Resources and methods used

The arbitrary precision of the calculations (with real numbers) is provided by
X-MPIR library. X-MPIR ensures the link from C# to MPIR (for details search the
Web, there is no separate site, devoted to X-MPIR at this moment). On the basis of
X-MPIR, which provides the basic arithmetic operations only, a library of
elementary and special functions with arbitrary precision is implemented. The
problem is solved with the so called double-exponential transformation – see the
previous Section 2. The user chooses the desired result precision. For computation
of the function to integrate, an interpreter is provided. The interpreter recognizes the
mathematical expressions which include the functions in the specially created
library. The interpreter accepts any number of variables, but the ones that are
different from the main variable of the problem (x) are considered as parameters,
for whose initialization a separate setting is required from the user.

4.2. Functional properties, special features and limitations

The program is implemented using C# in .Net Framework. It is built, targeting the
maximal possible portability (32- or 64-bit Windows systems). No installation is
needed. The necessary files are copied in a separate folder. Any intermediate
calculations are done with the given current precision, which is the double of the
desired precision for the result. For all apriori needed data concerning the problem
solving, the corresponding elements of the interface are provided. The formal
correctness is verified. The variable name for the variable of the function to be
integrated is fixed (x) to avoid useless complications while formulating the
problem. Besides this variable however, other variables can be present in the
expression (parameters). When parameters are present, the program requires from
the user to initialize them separately. The basic limitation is the type of the problem
being solved. It is for a real valuated function, defined within an interval of the real
line. This version of the program does not include calculation of definite integrals
with slowly decreasing oscillatory functions in infinite intervals. At the moment it is
possible to include solving of a particular kind of such problems

1() ()sin()f x f x xω= or 1() ()cos()f x f x xω= , where 1()f x is not an oscillatory
function with a transformation, proposed by Ooura (see Section 2). Furthermore, no
optimizations are implemented for parallel computations, using the eventual
multiple core processor architecture. This is a task that requires a change in the
scheme of the algorithm and is expected to be done. One scheme is described in [5],
but different tools for parallel computing must be used in the present environment.
Putting aside the fact that the calculation of certain types of definite integrals is an
alternative way to compute specific functions, probably the most important reason
to compute definite integrals with high precision consists in the possibility to use
the result from the algorithm, recognizing mathematical constants, for example
PSLQ [10], and the related with this discovery still unknown relations.

The program was tested on various examples of moderate precision, up to
several hundred digits, including the 14 examples, listed in [5].

 181

At the end an interesting example from [16] will be considered, whose exact
analytical value is known, but it is not easy to receive it automatically even in some
special environments for mathematical computations.

The integral

(20)
()2

2
0

arcsin 2 2 sin sin 2 ln 2
84 2sin

x x
dx

x

π π⋅
=

−
∫

calculated with the help of NQTS for the required precision of 1000 decimal digits,
the calculations being carried out with 2000 digits precision gives

0.384946472767794677379733634534350939378637085633991860421625207172
2155289419475363258040486088668527849321533238317957707772370370640
0451929328242514575287363486659506318235099222393498461771298463493
7681407456606866665968509067105927912880183567407778563320465282410
9952428771786610512920439581653519156195102556497776860544330775431
4265359281054304361719941189175543827981821393612499980288494758216
7064012787798601005035854100498167221090087112894445471983860344368
6499910705162326611452735512702315464583904440393945540594884805271
5407306212911184314006047342845191174222889436483558914806201104774
4826497012315460390176212065004650259937836874158972937657019886136
0209151184033890049526310679062670026994172287471826121567944111315
2024552082172493816607353874289134054572981974632268300609905848073
7965638940572965700568612722159740260453198791929319353396882047166
5372124202389939690157287517527610194101982354558310839848826715879
960306667055889614053090753005875188213529520407071003093521683.

NQTS shows one digit more than the required precision. The value calculated
from the right hand side of the expression in (20) with SFCALC, precision of 1001
digits, differs in the last decimal digit – 2 instead of 3. The calculation took more
than 4 and a half hours, including the primary initialization of about 55 minutes on
the author’s laptop.

5. Conclusion

A limited but representative part, concerning the numerical quadrature of high
precision is presented as part of the realization of computational tools and a library
for calculations of arbitrary precision in a non-typical environment, namely .Net
Framework. The combination of well-considered methods plus the excellent
possibilities for visualization and the human interaction in this environment is worth
the efforts and provides the possibility to achieve non-trivial results in home
conditions. Possibilities exist for further improvements in various directions,
including the usage of the multi-core architecture of modern processors for parallel
processing. In this way a wider audience would be interested, since traditionally
similar software products are developed under Unix-like systems equipped with
specialized hardware.

 182

Acknowledgments: The research work reported in the paper is partly supported by the project AComIn
“Advanced Computing for Innovation”, Grant 316087, funded by FP7 Capacity Programme (Research
Potential of Convergence Regions).

R e f e r e n c e s

1. T a k a h a s i, H., M. M o r i. Double Exponential Formulas for Numerical Intergration. –
Publications of RIMS, Kyoto University, Vol. 9, 1974, 721-741.

2. M o r i, M. Discovery of Double Exponential Transformation and its Developments. – Publications
of RIMS, Kyoto University, Vol. 41, 2004, 897-935.

3. T a n a k a, K., M. S u g i h a r a, K. M u r o t a, M. M o r i. Function Classes for Double
Exponential Integration Formulas. Methematical Engineerong Technical Reports, Tokyo
University, 2007.

4. B a i l e y, D. Tanh-Sinh High-Precision Quadrature. 2006.
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf

5. B a i l e y, D., J. B o r w e n. Highly Paralell, Highly-Precision Numerical Integration. 2008.
http://crd.lbl.gov/∼dhbailey/dhbpapers/quadparallel.pdf

6. Y e, L. Numerical Quadrature: Theory and Computation. Submitted in Partial Fulfillment of the
Requirements for the Degree of Master of Computer Science at Dalhousie University
Halifax, Nova Scotia, August 2006.

7. B a i l e y, D., K. J e y a b a l a n, X. L i. A Comparison of Three High-Precision Quadrature
Schemas. – Experimental Mathematics, Vol. 3, 2005, 317-329.

8. B a i l e y, D. H., J. M. B o r w e i n, N. J. C a l k i n, R. G i r g e n s o h n, D. R. L u k e, V. H.
M o l l. Experimental Mathematics in Action. Wellesley, MA, A. K. Peters, Ltd., 2007.

9. B o r w e i n, J., D. B a i l e y, R. G i r g e n s o h n. Experimentation in Mathematics,
Computational Paths to Discivery. A. K. Peters, Ltd., 2004.

10. B a i l e y, D., D. B r o a d h u r s t. Parallell Integer Relation Detection: Techniques and
Applications. – Mathematics in Computation, Vol. 70, 2000, No 236, 1719-1736.

11. B a i l e y, D., J. B o r w e i n. Hand-on-Hand Combat with Thousand-Digit Integrals. – Journal of
Computational Science, Vol. 3, May 2012, Issue 3, 77-86.

12. O o u r a, T., M. M o r i. The Double Exponential Formula for Oscillatory Functions over Half
Infinite Interval. – J. Comp. Apl. Math., Vol. 38, 1991, 353-360.

13. O o u r a, T. A Double Exponential Formula for Fourier Transforms. – Publications of RIMS,
Kyoto University, Vol. 41, 2005, 971-977.

14. B a i l e y, D. H. Experimental Mathematics and Optimization. Invited Short Course Presentation,
McMaster University, Canada, August 2007.

15. D z h a m b o v, V., S. D r a n g a j o v. Computing of Special Functions with Arbitrary Precision in
the Environment of .NET Framework. – Cybernetics and Information Technologies, Vol. 11,
2011, No 2, 32-45.

16. B a i l e y, D. H., P. B o r w e i n. High-Performance Computing.
http://crd-legacy.lbl.gov/~dhbailey/dhbtalks/dhb-peter-borwein.pdf

