
 75

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 13, Special Issue

Sofia • 2013 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2013-0039

A Negotiation Framework for Managing
the Requirements Changes

Yirui Zhang, Ying Jin, Jianxiu Bai, Jing Zhang

College of Computer Science and Technology, Jilin University, Changchun, 130012, China
Emails: SoNbility@163.com jinying@jlu.edu.cn baijianxiu@126.com Corresponding author:
zhangjing99@jlu.edu.cn

Abstract: The consistent system requirements set is the basis of successful software
projects. The requirements change is very usual in a software project, and it may
cause inconsistency of the requirements set, and become the key factor that affects
the quality of the requirements and the software. Aiming at the problem of
requirements inconsistencies caused by the requirements change, this paper
proposes a compromise-based negotiation framework to manage the requirements
changes, illustrates the efficiency of the proposed method by a software engineering
case, gives a contrast experiment with the current mainstream method, and finally
gives a comparison with the related work and a conclusion. The experimental
results show that the framework proposed in this paper is more flexible and
accurate than the results of the current popular framework, so it is more suitable
for the requirement changes management.

Keywords: Software engineering, requirements inconsistencies, compromise,
negotiation framework.

1. Introduction

Software requirements engineering is the most critical part of the entire software
engineering. Compared with traditional industrial engineering, a software
requirement has the following features: ambiguity, uncertainty, subjectivity and

 76

variability. In the software development process, the requirements change
throughout the entire life cycle of the software project [1]. Generally speaking,
appropriate changes of the requirements will not only improve a more perfect
system, but will enhance the quality of the software requirements specifications and
software products. However, many uncontrolled changes will cause many fatal
problems in the software development process [2]. Therefore, it is urgent and
necessary to provide a flexible and efficient management strategy to eliminate the
inconsistencies caused by the requirements changes.

At present the logic-based technology is widely recognized to eliminate the
requirements inconsistencies [3]. A l c h o u r r o n, G ä a r d e n f o r s, and
M a k i n s o n [4] proposed that the priority-based idea could eliminate the
requirements inconsistencies [4]: the new requirements always have higher priority
than the old ones, using new requirements to replace the old ones could eliminate
inconsistencies. G a r c e z et al. [5, 6] proposed using the combination of the cycle
reductive inference and inductive learning to eliminate the inconsistencies of the
requirements specification. They believe that the development of requirements
specifications must include revision and deduction: and using the cycle two-stage
model represented by two phases that are composed of analysis and revision can
eliminate the inconsistencies of the requirements and remain the main requirements
goal and nature. B o o t h [7] proposed the use of a negotiation-based framework to
eliminate the requirements inconsistencies.The introduction of the negotiation can
help adjust the process flexibly, and ensures the elimination of the inconsistencies.
K e-D i a n [8], M u et al. [12] proposed a series of activities to manage the
changes of the software requirements. In [8] they used the belief revision-based
negotiation framework to eliminate the inconsistencies. In the negotiation
framework, there are three schemes to deal with the requirements changes request:
fully accept the request, give up the requirements request and partly accept the
request. Their framework as a newer method for managing the requirements
changes, has been widely recognized.

However, the current scheme and framework cannot manage the requirements
changes flexibly and eliminate the requirements inconsistencies accurately. The
project proposed in [4] by A l c h o u r r o n, G ä a r d e n f o r s, M a k i n s o n can
always eliminate the inconsistencies, but the method cannot ensure that the new
requirements are more reliable than the old ones, it has to replace the old ones with
the new requirements, it cannot retain the old requirements and abandon the new
ones, this method does not have flexible managing tools. The project proposed in
[5, 6] by G a r c e z can eliminate the inconsistencies. But the process that combines
the cycle reductive inference and the inductive learning is too long, and some
correct requirements may be abandoned because of the different reasoning and
learning methods, so this project cannot eliminate the inconsistencies accurately.
The negotiation-based framework [7] proposed by B o o t h can manage the
requirements changes flexibly, but the framework is a processing idea, it does not
have a specific implementation scheme. The belief revision-based negotiation
framework proposed in [8] by K e-D i a n et al. can adjust the negotiation process
flexibly, but the framework can only handle the inconsistency caused by the single

 77

atom change, it cannot handle the complicated situation caused by multi-atom
changes when changing the requirements and ensure the eliminating of the
inconsistencies accurately.

Section 2 introduces the logical representation of the requirements
specification and the definition of the requirements inconsistencies. Section 3
explains the idea of the compromise and builds a compromise-based negotiation
framework to eliminate the requirements inconsistencies. Section 4 gives a case
study of the software engineering to prove the efficiency of the method. Section 5
gives a contrast experiment to prove the flexibility and validity of the proposed
method. Section 6 compares the relevant work done at home and abroad,
summarizes this paper and comes up with the future work.

2. Preliminaries

The requirement priority is the order to be achieved of the requirement in the
software development life cycle. Generally, the division of the priorities is based on
the property, quality, degree of importance, degree of urgency of the requirement
and the relationship between the requirements. The common division method
divides the requirements into several groups that have priority. For example: the
theory of Analytical Hierarchies (AHP) [13] and the Quality Function Deployment
(QFD) [14]. Generally, most division methods divide the requirements into three-
level priority [1, 15] and five-level priority [16]. This paper gives the concept of the
requirement priority as follows:

The priority order mL [8]: Let m be a natural number, 1 2{ , ,..., }m
mL l l l= is a

priority order, where ()il i m∈ is a priority order. Generally, (,)i j i j m< ∈ , iff

i jl l< , i jl l< means that the requirements with priority il are more preferable than

the requirements with priority jl .

For a priority order 3
1 2 3{ , , }L l l l= the meaning of each priority [1] in 3L can be

explained as follows: 1 2 3: High, : Medium, : Lowl l l , under the interpretation, for
example, that the requirements with priority 2l are more preferable than the
requirements with priority 3l . That is, the requirements with priority 2l have higher
priorities than the requirements with priority 3l .

This paper will use the priority order 3L to handle most issues, though it is not
the most flexible one, the priority order has a wide range of representation.

The definitions of requirements inconsistencies vary in software engineering
[1]. The logic-based work considers the requirements inconsistencies as logical
contradictions. This paper defines the logical contradictions as requirements
inconsistency [6]: Consider a requirements set S, if a∃ , and () ()S a S a∩¬ ¬ ,
then there is inconsistency in S. Namely, a a∧¬ is inconsistency, denoted as ⊥ .

 78

3. A compromise-based negotiation framework

In requirements engineering, the final complete set of the system is composed of the
results that classify, sort, merge and revise the requirements set proposed by the
customers and eventually form the final requirements set. Inconsistency must not
exist in the system set. The compromise is a negotiating strategy and its purpose is
to avoid a deadlock in the negotiating process, thus contributing to the success of
the negotiations.

In order to get satisfied and reasonable results, the framework proposed in this
paper completed the negotiation process, in which at least one party makes
concessions, and eliminated the inconsistencies existing in the system. Through the
following sections, this paper creates the negotiation framework.

3.1. Logical representation of users’ requirements

The classical logic-based language in the representation of the requirements is very
popular at present [3, 17]. Though different symbols and tools can be used to
express the requirements in each phase of the software development process, the
first order logic without a free variable can always indicate the inconsistencies of
the requirements set [3, 8]. This paper uses the first order logic language without
function symbols and existential quantifiers to represent the consistency of the
requirements set.

Let
0

LΦ be the set composed of a logical language, such as the classical atom

0Φ and logical connectives{ , , , }∧ ∨ ¬ → , then it can be used to express a natural
language. Thus, the negotiator 1 'C s requirement and 2 'C s requirement can be
expressed as logical symbols, and get the requirements set S and T .

Example 1. The Access Control System is widely used and known. Literature
[8] gave the requirements text of a small Access Control System, the requirements
text is very normative and has already been used many times as a requirements
instance. The specific description is as follows:

a. The requirements specification of the Access Control System of an area
which manages parking is as follows: The car is not allowed to enter the residential
area without a specific permission. The car is allowed to enter the residential area
with a specific permission. The situation when a car tries to enter the residential
area without a specific permission will trigger the alarm. If the alarm is triggered,
the owner of the car will not be able to press the button for entering the residential
area again.

b. The requirements specification of the Access Control System of an area
which manages the fire engines is as follows: The fire engines are regarded as
emergency vehicles. The emergency engine is allowed to enter the residential area
without a specific permission. In addition to the emergency engines, the others are
not allowed to enter the residential area without a specific permission.

The following symbols used to indicate the natural language and the logical
representation of the requirements set are given in Table 1.

 79

Table 1. Symbols used to indicate the natural language
(1) Use a predicate symbol Aut()x to
denote x is awarded a special license. (2)
Use a predicate symbol Ent()x to denote
x can enter the residential area. (3) Use a
predicate symbol Ala()x to denote that if
x tries to enter the residential area, the
alarm will be triggered. (4) Use a predicate
symbol Push(,)x y to denote x pushes the
button y . (5) Use a predicate symbol
Eme()x to denote x is the emergency
engine. (6) Use constant entr to denote the
button for entering the residential area. (7)
Use constant fire_e to denote the fire
engines

a. The requirements specification of the Access
Control System of an area which manages the
parking:

{ Aut(fire_) Ent(fire_),
Aut(fire_) Ent(fire_),

Aut(fire_) Ala(fire_),
Ala(fire_) Push(fire_ ,entr)}

S e e
e e

e e
e e

= ¬ →¬
→

¬ →¬
→¬

b. The requirements specification of the Access
Control System of an area which manages the
fire engines:

{Eme(fire _),
Eme(fire _)
Ent(fire _) Aut(fire _),

Aut(fire _) Eme(fire _)
Ent(fire _)}

T e
e

e e
e e
e

=
→
∧¬

¬ ∧ ¬ →
¬

3.2. Use the priority order to divide the requirements set

The priority equivalence relation is necessary when dividing the set. In this paper
the priority equivalence relation R is defined as follows:

Definition 1. There is given the priority order 1 2{ , ,..., }m
mL l l l= and the set

1{ ,..., }()nS a a n N= ∈ , to any element ia and ja , (,)i ja a R∈ iff they have the same

priority kl , and R is called the priority equivalence relation.
According to this equivalence relation, the elements of the set S form a

different set of priorities ()k k mΔ ∈ . Then we define the set { | ()}kS k mΔ = Δ ∈ as
the equivalence class set. The requirements users 1C and 2C can divide the
equivalence classes set according to the priority equivalence relation R .

According to the above definition, divide S and T by the use of the priority
order mL , and get the equivalence classes set SΔ and T∇ . This paper will use the
priority order 3L to divide the requirements set, and get the equivalence classes set:

1 2 3 1 2 3{ , , }, { , , }S TΔ ∇= Δ Δ Δ = ∇ ∇ ∇ .

Example 2. Set the requirements set { , , , }S a b a b a c c d= ∨¬ ¬ ∨ ∨¬ ¬ ∨¬
and the requirements set { , (), }T e e a b a b e= ¬ ∨ ¬ ∧ ∨¬ ∨ , then use the priority
order 3L to divide the requirements set:

The equivalence classes set for S is: 1 2 3{ , , }SΔ = Δ Δ Δ , and a possible division
is: 1 2 3{ , }, { }, { }a b a b a c c dΔ = ∨¬ ¬ ∨ Δ = ∨¬ Δ = ¬ ∨¬ .

The equivalence classes set for T is: 1 2 3{ , , }T∇ = ∇ ∇ ∇ , and a possible division
is: 1 2 3{ }, { (), }, { }e e a b a b e∇ = ∇ = ¬ ∨ ¬ ∧ ∨¬ ∨ ∇ = ∅ .

3.3. Set the system set and the problem domain set
The problem domain refers to the scope of the problem, the internal relation among
the problems and the logical possible space [18]. In this paper the interpretation set

 80

of the system set is the problem domain set. Here the interpretation set of the
formulas set is given as follows:

Definition 2. R is a formulas set, then the atoms set ()G R is the union of the
atoms sets of all the atoms in R , and the interpretation set ()A R is

() { | , }A R a U R a U= ∃ ∈ , where a is an interpretation, U is a formula.
Example 3. A formulas set { , }R a a b= ¬ → , then the atoms set ()G R is

{ , }a b , the interpretation set ()A R is {00,01}.
Thus, this paper sets up the system set Sys, its interpretation set as the problem

domain set ESys. Set the initial value of the system set Sys as all the atoms
appeared in the negotiation, and the initial value of the problem domain set ESys as
the interpretation set of the system set Sys.

3.4. Set the negotiation order and define the solution set
The compromise ideology refers to one or two making concessions to come to an
agreement. According to the compromise ideology, both of the negotiators can
extend their own solution set in the problem domain, and get an agreement after
concessions, finally complete the negotiation.

1. Set the negotiation order: As mentioned in 2.1, the requirements with higher
priority are more preferable than the requirements with a lower priority. If the
negotiators use the dynamic division method: they need to divide their own
requirements priorities once again when negotiating, use a more reliable negotiation
method: choose their own highest priority requirement to negotiate. So the
negotiation process will be more flexible, the negotiation result will be more
reasonable.

Thus in this paper, both negotiators re-divide their own requirements priorities
when facing each negotiation, and the equivalence classes 1Δ and 1∇ are selected to
be negotiated.

2. Define the solution set: In this paper we define the formulas set which meets
the interpretation set, the relation (,)= > on interpretation, division operation ()•
and the result set as follows:

Definition 4. R is a formulas set, ()A R is the interpretation set, then the
formulas set ()R A R which meets the interpretation set ()A R is:

() { | (), }R A R U R a A R a U= ∈ ∃ ∈ , where U is a formula, a is an
interpretation.

Definition 5. R is a formulas set, then the elation = and > on interpretation

are: To , ,a b a b∀ = , iff { } { }R a R b= , a b> iff { } { }R a R b> , where
,a b is an interpretation respectively.

Definition 6. Given a formulas set R and an interpretation set E , then the
division operation • of R to E is

1{ ,..., }nR E k k• = , where 1,..., nk k is a division of E which meets
, , ,(1)ia b k a b i n∀ ∈ = ≤ ≤ , ,i ja k b k∀ ∈ ∀ ∈ , ,(1)a b i j n> ≤ < ≤ .

 81

Example 4. R is a formulas set, { , , }R a a b a b= ¬ → ∧ , () {00,01,11}A R =
then:

(a) {00} { , }, {01} { }, {11} { , }R a a b R a R a b a b= ¬ → = ¬ = → ∧ ;
(b) 00 11,00 01,11 01= > > . (c) () {{00,11},{01}}R A R• = .

Definition 7. Given the equivalence classes set (1,2,3)m mΔ ∈ , (1,2,3)n n∇ ∈ ,
and the problem domain set ESys, then the result got by the use of the division
operation ESysmΔ • is the result set under mΔ , denoted as []()mS i i N∈ . And the
result got by the use of the division operation Esysn∇ • is the result set under n∇ ,
denoted as []()nT j j N∈ .

Example 5. Given the problem domain set:
ESys {111,110,101,100,011,010,001,000}= , and the equivalence classes set

1 { , , }a b a bΔ = ∨¬ , 2 { }a bΔ = ¬ ∨ , 3 { }b cΔ = ∧ , 1 { , , }a b c∇ = ¬ ¬ , 2 { },a r∇ = ¬ ∨
3 { , }a r b r∇ = ∨¬ ∨ .

Then get the result set under 1Δ by the use of the division operation 1 EsysΔ •
is 1[0] {111,110}S = , 1[1] {101,100}S = , 1[2] {011,010,001,000}S = .

And the result set under 1∇ by the use of the division operation 3 ESys∇ • is
3[0] {111,110,101,010}T = , 3[1] {100,011,001,000}T = .

3.5. Structure of the compromise algorithm
Based on the idea of compromise, under the premise that the system set Sys and the
problem domain set ESys are known, the result set []mS i and []nT j under the
equivalence classes set mΔ and n∇ are selected to be negotiated to eliminate the
inconsistencies possibly existing in the result set of the negotiators. The algorithm
and chart (Fig. 1) is as follows:

................... lg
0, 0,

(([]) ([]))
{

([] [])
{

()
{ , []

//

//

m n

m n

m

If

Compromise A orithm
a b tr true initialization

loop the alternant compromise proc

S i T j

While S i T j

If tr true
a S i

ess

≠ ∅ ∩ ≠ ∅

∩ =∅

=
+ +

−
= = =

//

//

[1] [], }

{ , [] [1] [], }
}

[] [], () ()
}

(

) ()

m m

n n n

m n m n

m n

S makes compromise

T mak

S i S i tr false
else
b T j T j T j tr true

W S i T j Sys

es compromise

Sys W W

Sys Sys ESys ESys

= − ∪ =

+ + = − ∪ =

= ∩ = ∪ Δ ∪ ∇

= ∪ Δ ∪ ∇

 82

0, 0,a b tr ture= = =

[] []m nS i T j∩ =∅
[] []m nW S i T j= ∩

() ()m nSys Sys W W= ∪ Δ ∪ ∇

([]) ([])m nS i T j≠ ∅ ∩ ≠∅ () ()m nSys Sys ESys ESys= ∪ Δ ∪ ∇

,a tr falses+ + =
[] [1] []m m mS i S i S i= − ∪

,b tr true+ + =
[] [1] []n n nT j T j T j= − ∪

tr true=

Fig. 1. The compromise algorithm

3.6. Structure of the compromise-based negotiation framework

Based on the above steps, this paper structures the compromise-based negotiation
framework. This framework can help achieve a flexible negotiation process, and get
accurate negotiation results. The frame chart is shown in Fig. 2.

1C s′ 2C s′

S T

mL
S

mL
T

Sys ESys

Sys

Fig. 2. The compromise-based negotiating framework

 83

4. A case study
Automated Clearing System is a management system for clearing the goods in a
mall with computer-aided control. At present, most of the exits in the shopping mall
in our country are installed with an Automated Clearing System. Among them, the
requirements of the mall managers and the requirements of the customer are shown
in Table 2.

Table 2. The Requirements of the mall managers

(1) Customers are required to use cash and be
line up
(2) If customers do not line up, there will be
no discount
(3) If customers use a card to checkout, they
could enjoy the discount

(1)Customers are required to use a card and
enjoy the discount
(2) If customers line up, then they get the
chance of a discount
(3) If customers use a cash checkout, then
they enjoy the discount
(4) If customers use cash, then they do not
have to line up

Using logic symbols express the problem: 1. cash checkout expressed as a ;
credit card checkout expressed as a¬ ; line up checkout expressed as b ; a discount
expressed as c . The functional logic symbols that the shopping mall managers and
consumers need to implement are shown in Table 3.

Table 3. The logical requirements

Manager’s requirement S Consumer’s requirement T

a b∧
b c¬ →¬
a c¬ →

a c→
b c→

a b→¬
a c¬ ∧

From the above, the requirements set S T∪ contains a a∧¬ , so S T∪ ⊥ . So
we use this negotiation framework to eliminate inconsistencies, get a new collection
of the system.

(a) First, according to the sequence of 3L ,we divide S and T for the first
time, and they are divided as follows:

1 2 3{ , }, { }, { }a b b c a cΔ = ∧ ∨¬ Δ = ∨ Δ = ∅ ，
1 2 3{ , }, { }, { }a c b c a c a b∇ = ¬ ∧ ¬ ∨ ∇ = ¬ ∨ ∇ = ¬ ∨¬ .

Set Sys { }, set ESys {111,110,101,100,011,010,001,000}= ∅ = . Then the
negotiation is as follows:

With the use of 1 ESysΔ • we get:
1 1 1 1[0] {111,110}, [1] {100,011,010,000}, [2] {101,001}, [3] { }S S S S= = = = ∅ .

With the use of 1 ESys∇ • we get:
1 1 1 1[0] {011,001}, [1] {111,101,100,000}, [2] {110,010}, [3] { }T T T T= = = = ∅ .

 84

1 1[0] [0]S T∩ =∅ , so S first makes concessions, then 1 1 1[1] [0] [1]S S S= ∪ .
Rejudge, 1 1[1] [0] {011}S T∩ = ≠∅ , then the two reach a compromise.

1 1{011}, Sys Sys () () { , , }.W W W b c a c b c= = ∪ Δ ∪ ∇ = ∨¬ ¬ ∧ ¬ ∨
(b) According to the priority order 3L ,divide 1S − Δ and 1T −∇ again, the

division result is:
1 2 3{ }, { }, { }a c′ ′ ′Δ = ∨ Δ = ∅ Δ = ∅ , 1 2 3{ , }, { }, { }a c a b′ ′ ′∇ = ¬ ∨ ¬ ∨¬ ∇ = ∅ ∇ = ∅ .

Then Sys { , , }, ESys {011}b c a c b c= ∨¬ ¬ ∧ ¬ ∨ = , negotiate between 1′Δ and
1′∇ :

With the use of 1 ESys′Δ • and 1 ESys′∇ • we get:
1 1[0] {011}, [1] { }S S′ ′= = ∅ , 1 1[0] {011}, [1] { }T T′ ′= = ∅ .
1 1[0] [0] {011}S T′ ′∩ = ≠ ∅ , then the two can reach an agreement without

concessions:
1 1{011}, Sys Sys () ()

{ , , , , , }.
W W W

b c a c b c a c a c a b

′ ′= = ∪ Δ ∪ ∇ =
= ∨¬ ¬ ∧ ¬ ∨ ∨ ¬ ∨ ¬ ∨¬

At this point the requirements specification is changed as:
{ , , , , , }b c a c b c a c a c a b∨¬ ¬ ∧ ¬ ∨ ∨ ¬ ∨ ¬ ∨¬ , there is no inconsistency.
The entire requirements specification can be translated from a logical language

into natural language descriptions as shown in Table 4.
Table 4. The requirements of Mall Automated Clearing System

The
Automated
Clearing
System

(1) customers are required to use a card and enjoy a discount
(2) if customers line up, then they get the chance of a discount
(3) if customers do not line up, then they do not get the chance of a
discount
(4) If customers use a cash checkout, then they enjoy the discount
(5) if customers use a card checkout, then they enjoy the discount
(6) If customers use a cash, then they do not have to line up

As we can see from Table 4, after negotiations, in Mall Automated Clearing
System requirements there does not exist any inconsistency, which proves the
efficiency of the method proposed.

5. Contrast experiment

In order to verify the proposed processing architecture flexibility and accuracy, we
designed experiments and compared them with a framework of eliminating
inconsistencies processing proposed by [4] and [8].

The experimental environment is restricted so that the two parts of negotiating
are the same, our method selects a different inconsistencies problems, using the
framework proposed in this paper and the architecture proposed in [4] and [8] to
test.

 85

According to [8], Table 5 gives two groups of problems to be processed, Table
6 shows the comparison of results of three different processing architectures. The
experimental results show that the proposed architecture can flexibly give all
solutions for all types of inconsistencies (questions 1, 2). The architecture proposed
by [4] can only give a solution for all types of inconsistencies (questions 1, 2).
Although the architecture proposed by [8] can give some solutions for
inconsistencies (question 1), it cannot accurately resolve all types of inconsistencies
(question 2).

Considering the results of the process, the proposed processing architecture
based on a compromise and negotiation framework is flexible in eliminating an
inconsistency and can lead to a complete result, and keep accuracy.

Therefore, the experiment proved that the compromise ideas based framework
is more flexible compared to priority-based processing architecture proposed in [4],
and more accurate compared to the negotiating framework based on belief revision
proposed in [8].

Table 5. Two pending issues

Set Problem 1 Problem 2

A set of two parts of
negotiation

{ , , }
{ , }

S a b c
T b c
=
= ¬ ¬

{ , , , , }
{{ } { }}

S a a b c b d
T d b
= ¬ ∨
= ¬

Table 6. The comparison of three treatment options' processing results

Problem
Result using the
architecture in
document [4]

Result using the
architecture in
document [8]

Result using the
architecture in this

paper

Problem 1 { , , }a b c¬ ¬

{ , , }a b c
or{ , , }a b c¬
or { , , }a b c¬

or { , , }a b c¬ ¬

{ , , }a b c
or { , , }a b c¬
or { , , }a b c¬

or { , , }a b c¬ ¬

Problem 2 { , , , }a a d c d¬ ∨¬ ¬
{ , , , , }a a b c b d¬ ∨

or
{ , , , }a a b c d¬ ∨ ¬

{ , , , }a a d c d¬ ∨¬ ¬
or

{ , , }a d c d¬ ∨¬
or

{ , , }a c d

6. Conclusion and comparison

The requirements inconsistencies issue is one of the hot issues, many researchers
have done extensive and in-depth work connected with this problem [1, 17].
Applying the use of the logical language, this paper uses the idea of a compromise
negotiation to solve such problems, and describes the related work.

The process towards requirements inconsistencies is usually based on logical
language. The basic built in ideas of the processing framework can be divided into
priority-based and non-priority based. A l c h o u r r o n, G ä a r d e n f o r s and

 86

M a k i n s o n [4] proposed a priority-based idea to eliminate inconsistencies. This
method did not take into consideration the situation that the new requirements may
be wrong and the old be more reasonable. Booth proposed that a non-priority based
negotiating framework can be used to eliminate the requirements inconsistencies in
[7]. But this scheme proposed a processing thought and a processing framework, it
did not realize a specific flow. K e-D i a n et al. [8] proposed a complete framework
based on the negotiation revision to manage the requirements changes. However,
the framework may not be used to deal with the inconsistencies arising from
complex requirements, it has great limitations when facing the actual requirements
inconsistency problems in software engineering.

Aiming at the requirements inconsistencies problems, this paper proposed a
compromise-based negotiation framework to eliminate the requirements
inconsistencies: First the software requirements are expressed by a logical language,
then the scope of the problem domain is confirmed by the use of a system set
according to the priority order, finally the requirements inconsistencies are
eliminated. It presented the complete process of handling a case and proved the
flexibility and accuracy of the proposed framework through a contrast experiment.
In future studies we will consider joining a reasonable method for dividing the
priority orders and a better scheme for managing the requirements changes.

Acknowledgements: This work is supported by the Program for New Century Excellent Talents in
University (No NECT-10-0436).

R e f e r e n c e s

1. S i k o r a, E., B. T e n b e r g e n, K. P o h l. Industry Needs and Research Directions in Equirements
Engineering for Embedded Systems [J]. – Requirements Engineering, Vol. 17, 2012, No 1,
57-78.

2. J i n, Z., L. L i u, Y. J i n. Software Requirements Engineering: Principles and Methods [M]. Bei
Jing, Science Press, 2008 (in Chinese).

3. H u n t e r, A., B. N u s e i b e h. Managing Inconsistent Specification: Reasoning, Analysis, and
Action. – ACM Transactions on Software Engineering and Methodology, Vol. 7, 1998,
No 4, 335-367.

4. A l c h o u r r o n, C., P. G ä a r d e n f o r s, D. M a k i n s o n. On the Logic of Theory Change:
Partial Meeting Contraction and Revision Functions [J]. – Journal of Symbolic Logic,
Vol. 50, 1985, No 2, 510-530.

5. G a r c e z, A. S., A. R u s s o, B. N u s e i b e h, J. K r a m e r. An Analysis-Revision Cycle to Evolve
Requirements Specifications [C]. – In: Proceedings of the 16th IEEE Conference on
Automated Software Engineering (ASE’2001), Coronado, USA, 26-29 November 2001,
354-358.

6. G a r c e z, A. S., A. R u s s o, B. N u s e i b e h, J. K r a m e r. Combining Abductive Reasoning and
Inductive Learning to Evolve Requirements Specifications [J]. – IEEE Proceedings of
Software, Vol. 150, 2003, No 1, 25-38.

7. B o o t h, R. A. Negotiation-Style Framework for Non-Prioritised Revision [C]. – In: Proceedings
of the 8th Conference on Theoretical Aspects of Rationality and Knowledge (TARK’2001),
Siena, Italy, 8-10 July 2001, 137-150.

8. K e-D i a n, M., L. W e i r u, J. Z h i, H. J u n, D. B e l l. Managing Software Requirements Changes
Based on Negotiation-Style Revision [J]. – Journal of Computer Science and Technology,
Vol. 26, 2011, No 5, 890-907.

 87

9. M u, K., Z. J i n, R. L u, Y. P e n g. Handling Non-Canonical Software Requirements Based on
Annotated Predicate Calculus [J]. – Knowledge and Information System, Vol. 11, 2007,
No 1, 85-104.

10. M u, K., Z. J i n, R. L u. Inconsistency-Based Strategy for Clarifying Vague Software
Requirements [C]. – In: Proceedings of AI2005, LNCS3809, 2005, 39-48.

11. M u, K., W. L i u, Z. J i n, R. L u, A. Y u e, D. A. B e l l. Handling Inconsistency in Distributed
Software Requirements Specifications Based on Prioritized Merging [J]. – Fundam. Inform.,
Vol. 91, 2009, No 3-4, 631-670.

12. M u, K., Z. J i n, R. L u, W. L i u. Measuring Inconsistency in Requirements Specifications [C]. –
In: Proceedings of ECSQARU’2005, LNAI3571, 2005, 440-451.

13. S a a t y, T. L. Modeling Unstructured Decision Problems – the Theory of Analytical Hierarchies
[J]. – Mathematics and Computers in Simulation, Vol. 20, 1978, No 3, 147-158.

14. P a r d e e, W. J. To Satisfy and Delight Your Customer: How to Manage for Customer Value [M].
New York, Dorset House Publishing, 1996.

15. W i e g e r s, K. E. Software Requirements [M]. 2nd Ed. Portland, Microsoft Press, USA, 2003.
16. D a v i s, A. Just Enough Requirements Management: Where Software Development Meets

Marking [M]. New York, Dorset House Publishing, 2005.
17. A l-K h a l d i, R. Inconsistency Management in Software Functional Requirements: A Machine

Learning System [J]. LAP Lambert Academic Publishing, Germany, 2012.
18. B o n o m a, T. V. Case Research in Marketing: Opportunities, Problems, and a Process. – Journal

of Marketing Research, Vol. 12, 1985, No 1, 199-208.

