
 5 

BULGARIAN ACADEMY OF SCIENCES 
 
 
CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 13, Special Issue 
 
Sofia • 2013  Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2013-0033 
 
 
 
 
 
 
 
 
 
 
 
 
Research of the Optimization of a Data Mining Algorithm  
Based on an Embedded Data Mining System  

Xindi Wang*, Mengfei Chen*, Li Chen** 
* Information Management Department, Beijing Jiaotong University, Beijing, CO 100044 China 
** Logistics Management Department, Beijing Jiaotong University, Beijing, CO 100044 China 
Emails: xdwang@bjtu.edu.cn     12120649@bjtu.edu.cn      lchen1@bjtu.edu.cn 

Abstract: At present most of the data mining systems are independent with respect 
to the database system, and data loading and conversion take much time. The 
running time of the algorithms in a data mining process is also long. Although some 
optimized algorithms have improved it in different aspects, they could not improve 
the efficiency to a large extent when many duplicate records are available in a 
database. Solving the problem of improving the efficiency of data mining in the 
presence of many coinciding records in a database, an Apriori optimized algorithm 
is proposed. Firstly, a new concept of duplication and use is suggested to remove 
and count the same records, in order to generate a new database of a small size. 
Secondly, the original database is compressed according to the users’ 
requirements. At last, finding the frequent item sets based on binary coding, strong 
association rules are obtained. The structure of the data mining system based on an 
embedded database has also been designed in this paper. The theoretical analysis 
and experimental verification prove that the optimized algorithm is appropriate and 
the algorithm application in an embedded data mining system can further improve 
the mining efficiency.  

Keywords: Embedded database, data mining, association rules, Apriori algorithm, 
duplication, frequent item sets. 



 6

1. Introduction 

Data mining technology has been widely used in all fields concerning data analysis 
and knowledge discovery. The implementation of a series of data mining algorithms 
is the core of a data mining system. Implementing the algorithms will treat a large 
amount of data in the implementation process, so they need a database to manage 
these data. Since the data mining systems use only some of the most basic functions 
of a database, they can use an embedded database for data management. The two 
current mainstream types of an embedded data mining system are based on 
embedded applications and embedded data source modes. This paper mainly studies 
the data source embedded mode. It is integration of a data mining platform and a 
database system. It is called a data mining system based on an embedded database.  

At the same time, it is noticed apriori that the algorithms in data mining are of 
low efficiency due to their database scanning every time and producing a large 
number of candidate item sets. In order to improve the computational speed, 
Z h a n g has proposed in [1] other algorithms optimized in different aspects 
respectively, such as reducing the data volume, reducing the times of scanning the 
database, reducing the number of candidate item sets, and so on. But these 
algorithms have a common shortcoming that they do not consider the actual 
application background. They are all operated directly on the transaction records in 
the database, and even when the algorithm efficiency is improved, they cannot 
avoid lots of duplicate records participating in the operation, so that they could not 
improve the efficiency to a large extent, when there are many duplicate records in a 
database. The mining efficiency will be further improved if the duplicate records in 
the transaction database are reasonably removed. 

Therefore, a different approach is used in this paper, considering the 
application background of the credit cards business, introducing the concept of 
record duplication. The transaction database is first scanned to remove the duplicate 
records and then the remaining different records are stored in another new database 
in the form of a two-dimensional array, a new duplication parameter is added to 
each record, so it is convenient to calculate the support and confidence of the 
association rules finally. An optimized algorithm is put forward in this paper. 
Records are removed according to the duplication to generate a new database, the 
database is compressed for the next stage data mining, binary codes conversion is 
used to find frequent item sets and then strong association rules are obtained. This 
gradually reduces the database searching time and the conversed codes length, and 
finally further improves the efficiency in data mining.   

2. Structure of an embedded data mining system  

In [2] D i n g has explained the advantage of an embedded database. It is of a small 
volume, open free, and applying it to a particular data mining system it does not 
only ensure the system’s perfect function, but also guarantees system’s good 
portability, so that the data will be better managed.  



 7 

Data mining system must import source data, pre-process data and convert 
data. It must also mine specific data, show data mining results (visualize data 
mining) and assess the model. In [3] N a v e e n has investigated the implementation 
of a lean manufacturing system. The structure framework of the embedded data 
mining system includes five parts: a visible GUI, a data mining module, a storage 
management module, a data conversion module and a file configuration module. 
The idea of embedding a database into a data mining system to constitute the 
storage management module is innovatively proposed in this paper. The specific 
frame diagram is shown in Fig. 1. 

 
Fig. 1. Frame diagram of a data mining system based on an embedded database 

In the improved system, the users can control the whole data mining platform 
through a GUI interface, the data needed for the algorithm module is extracted from 
a memory management module in the embedded database, and the data in Derby 
database is transmitted by a synchronizing/copy server from the external database 
server. The memory management module provides database interface plug-in, the 
plug-ins’ main function being to establish correlation between the data mining 
algorithm and Derby database, to store the mining algorithms’ data. The 
configuration file provides and maintains mainly basic information of data mining, 
and in [4] L i u has investigated the application of an embedded database in a data 
mining system. The data conversion module is a part of the application database, it 
can download a subset to the embedded Derby database. The new data mining 
system will save a lot of time in data conversion and further improve the efficiency 
of data mining. 



 8

3. Apriori algorithm optimization 
3.1. Apriori algorithm 
3.1.1. The concept of an apriori algorithm 
Apriori algorithm is one of the most influential classic algorithms of mining the 
Boolean association rules. The algorithm’s main job is to find frequent item sets. It 
takes advantage of the fact that a subset of frequent item sets must be frequent item 
sets. 

Set ܫ ൌ ሼ݅ଵ,  ݅ଶ, … ,  ݅ሽ as a set of items, D as the transaction database, 
transaction T as the set of items, and ܶ ك  The k-item set contains k 1-items. The .ܫ
frequency of the item sets is the number of transaction records that contain this 
item, and it is the support of the item set for short. The formula ܺ ֜ ܻ is called an 
Association rule, ܺ ك Y ,ܫ ك ܺ and ,ܫ ת ܻ ൌ ܺ) Set support . ֜ ܻ) as the support 
of rule ܺ ֜ ܻ, given in  
(1)   Support ሺܺ ֜ ܻሻ ൌ 

ൌ
|ሼܶ: ܺ  ܻ ك ܶ, ܶ א |ሽܦ

|ܦ| ൈ 100% ൌ ܵ% .     

The confidence of rule  ܺ ֜ ܻ  is confident ( ܺ ֜ ܻ), as expressed in  
(2)   confidentሺܺ ֜ ܻሻ ൌ 

ൌ
|ሼܶ: ܺ  ܻ ֜ ܶ, ܶ א |ሽܦ

|ሼܶ: ܺ ֜ ܶ, ܶ א |ሽܦ ൈ 100% ൌ     . %ܥ

The value of min_sup is responsible for a set of items meeting the minimum 
set in a statistical sense, and the value of min_conf is responsible for the minimum 
reliability of the association rules. The rules that satisfy min_sup and min_conf at 
the same time are called strong association rules. Therefore, two threshold values 
are set in the process of association rules data mining. The task of the association 
rules data mining is to find out strong association rules with min_sup and min_conf 
in the transaction database D.  

In [5] L u has explained association rule data mining, the theoretical 
foundations of which are as follows:  

Given 
(3)   confidentሺܺ ֜ ܻሻ ൌ  S୳୮୮୭୰୲ሺሻ

S୳୮୮୭୰୲ሺሻൈ
, 

so that if the first nonempty subset s of the frequent item set 1 satisfies 
(4)     S୳୮୮୭୰୲ሺଵሻൈ

S୳୮୮୭୰୲ሺ௦ሻൈ
  minୡ୭୬,   

then obtain a strong associate rule:  ݏ ֜ 1 െ  .ݏ

3.1.2. The principle and shortcomings of the Apriori algorithm 

The main content of the Apriori algorithm is as follows:  
Step 1. Use the iteration method of searching one by one. Calculate the 

support of all frequent 1-item sets by scanning the database, find the set L1 of all 
frequent 1-items and get frequent 1-item set C1.  



 9 

Step 2. Connection. Realize an “interact” operation to get the candidate 
frequent 2-item sets C2 with two frequent 1-item sets, in which only one item is 
different.  

Step 3. Pruning. Get frequent sets L2 after pruning C2.  
Step 4. Scanning the database, calculate the support of each item set, delete 

the item sets which do not meet the support, then repeat Steps 2-4 through an 
iterative loop. Finally, find the maximum frequent item sets, and the algorithm 
stops. In [6] L u o  has investigated the improved Apriori algorithm.  

As the data increases, the Apriori algorithm shows two shortcomings. It needs 
to scan the database many times in order to determine whether each element in the 
candidate item sets can be an element of the frequent items. It produces a large 
number of candidate item sets, which not only occupies a lot of the main memory 
space, but also costs a long running time of the algorithms.   

3.2. The optimized algorithm 

3.2.1. Calculating the duplication 

The times of record occurrence in a database is called duplication of the record, the 
value scope of duplication are all natural numbers. The use of the records 
occurrence repeats in a database is suitable to measure the records duplication, the 
more frequently the record appears, the higher the duplication of the record is. 
There are many duplicate records in a large-scale database when the record contains 
fewer attributions of the item. Removing the duplicate records and keeping only the 
duplication parameter can save lots of operations for the next stage data mining. 

Data mining uses transaction records in a huge database, only the un-duplicate 
records can help people find out the item sets that constitute the association rules, 
the duplicate records only determine the confidence level of the association rules. 
When the amount of the duplicate records is very large in a database, the reasonable 
removing of the duplicate records is of great significance to improve the efficiency 
of data mining. Therefore, we can quantify the record duplication attributes 
according to certain rules. 

Firstly, scan the database and remove the duplicate records. Secondly, save the 
remaining different records in another new database in the form of a two-
dimensional array. For example, a record is t1= {TID, Gender, Marriage, Check 
account, Credit history}, then it  will be stored in the new database in the form of 
t[1][0]= TID, t[1][1]= Gender, t[1][2]= Marriage, t[1][3]= Check account, t[1][4]= 
Credit history. At last, add a duplication parameter to every record in the new 
database. Let Duplicate (Ti) calculates the duplication of record Ti. The duplication 
computation algorithm is as follows:   

Algorithm: Apriori_duplicate 
I n p u t: Traction database T 
O u t p u t: Database P with duplicate records removed  
A l g o r i t h m  d e s c r i p t i o n: 
Procedure Apriori_duplicate (T: traction-all-records; P: traction-removeDup-

records) 



 10

(1){int k=traction-all-records.length, n= record-item.length;  
//Set k as the number of records in the transaction database D, and set n as the 

number of the attribute item of every record. 
(2) t[i][j] is j-th item of record t[i]; 
(3) t[i][0]=tID; 
(4) for (int i=0;i<k;i++) // Loop all records 
(5) for (int j=i+1;j<k;j++) //Loop all attribute items of every record 
(6) {if((t[i][1]=t[j][1])&&(t[i][2]=t[j][2])...&&(t[i][n]=t[j][n]))   
//The other attribute values in addition to TID of record i and record j are equal 
(7) {t[i].count++; // The duplication of record i plus 1} 
(8) else {t[i].count=1; //If the two records are not duplicate, the duplication of 

t[i]=1} 
(9) add t[i] to P } 
(10) return P } 
(11) } 

3.2.2. Compressing the new database 

Scanning the new database to compress it according to the condition that records 
without k-item sets cannot contain any k+1 item sets, then delete the records, in 
which the number of items is less than the default minimum number of frequent 
item sets k, so that the unqualified item sets shall not be entitled to participate in 
coding. Recombine the records containing 1-item sets, in order to save the encoding 
and calculating time. The new database compression algorithm is as follows: 

Algorithm: Compress_database (P)  
I n p u t: Remove duplicate records database P 
O u t p u t: New Database P 
A l g o r i t h m  d e s c r i p t i o n: 
Procedure Apriori_compress_database (P: traction-removeDup-records) 
(1) { int ε=min_sup, c=min_conf, k=min_item; 
(2) for(i=0; i<P.length; i++) 
(3) {n= p[i].length;// Set p[i] as the number of items in record i in the  

database P 
(4) if (n<k) 
(5) Remove P[i]; } 
(6) return P; } 

3.2.3. Find out frequent item sets based on a binary code 
After calculating the duplication of the records and compressing the new database, 
we must encode the records, calculate the codes, find out all frequent item sets and 
finally get the strong associate rules. 

(1) The principle of coding 
Item sets coding plays a very important role in the algorithm, the coding 

principle is: first of all, decide the length of codes according to the number of  
1-items existing in the database, then order the 1-item sets, each item corresponds to 
a position in the item codes, if a 1-item exists in the item sets, then the 
corresponding position is set as “1”, otherwise set as “0”. For example, if a database 



 11

has 6 kinds of 1-item sets (I1, I2, I3, I4, I5, I6), the record is I1I3I4I6, according to the 
encoding principle, the transaction code is (101101). 

(2) Coding operation and calculation of the item sets support  
“Interact” operation is similar to the “JOIN” operation of common sets, it can 

find out frequent item sets rapidly without any candidate item sets in the process. In 
[7] Y e  has investigated a kind of a searching frequent item sets algorithm based on 
the binary code, each record corresponding to an item set. We will get the records’ 
public item sets after operation, and then translate the public item sets. In order to 
avoid many item set codes being repeatedly executed, the algorithm will begin with 
the 1-item sets of minimum support. Delete the code from every item set after 
operation.  

The number, indicating how many items are contained in a database is called 
records’ support. The calculation principle of the support is: get the public item set 
after operation of few item sets, let the number of the item sets multiplied by the 
duplication, and set the result as support of this public item set. Thus finding out the 
support of several different item sets by an “interact” operation is done quickly and 
precisely.  

3.2.4. Finding out strong association rules  

The final step is to get strong association rules after finding out all frequent item 
sets according to (3)-(4). The steps of generating association rules are two.  

Step 1. Produce all nonempty subsets for each frequent item sets. 
Step 2. For each nonempty subset ݏ, if  S୳୮୮୭୰୲_ୡ୭୳୬୲ሺଵሻ

S୳୮୮୭୰୲_ୡ୭୳୬୲ሺ௦ሻ
 min _conf, then output 

ݏ ֜ 1 െ  .ݏ

3.3. Implementation steps of the optimized algorithm  

3.3.1. Mining process of the algorithm  

The related knowledge of the optimized algorithm has expatiated, the 
implementation steps of the optimized algorithm are seven. 

Step 1. Set k as the minimum number of frequent item sets and ε as the 
support threshold of frequent item sets.  

Step 2. Compress the transaction databases and delete all items sets, in which 
the number of 1-item is less than k in the database. Set i as the number of 1-item in 
the current database, i being greater than k.  

Step 3. Encode each item set in the database after pruning, compute the 
support of each 1-item sets and rank the supports from small to big.  

Step 4. Delete the 1-item set whose support is less than ε. Set n as the number 
of deleted 1-item, then i = i − n. Record all codes of the item containing the 
remaining 1 -item set which has the smallest sets support. 

Step 5. Do “interact” operation with all item sets codes produced by Step 4, 
and get the public item set. Set the number of the item sets which have the same 
public item set as support of the public item set. Set the item set as a frequent item 
set when the threshold is greater than the corresponding threshold and record the 



 12

support, otherwise delete the item set. Delete the 1-item after operation directly 
from all item sets.  

Step 6. Check if the length of the left codes i is equal to k, if i =  k, record all 
item codes of 1-item sets directly, and turn to Step 7. If i > k, compress the 
transaction database and return to Step 4.  

Step 7. Output all frequent item sets, and the algorithm is ended.  
The above algorithm steps do not include the use of the candidate item sets 

and a threshold, the threshold setting is only associated with frequent item sets, the 
users can set it according to the specific circumstances. The optimized algorithm 
efficiency has been greatly improved. It has saved the computation and quantity of 
the data input and output of the association rule data mining compared to the  
Apriori algorithm.  

The optimized algorithm running flow is shown in Fig. 2. 

 
Fig. 2. Running flow of the optimized algorithm 

3.3.2. Algorithm description 

Algorithm. Find_frequent_itemsets(P);//find out all frequent item sets in  
database P  
I n p u t: Remove duplicate records database P 
O u t p u t: Strong association rules 



 13

A l g o r i t h m  d e s c r i p t i o n: 
Procedure Apriori_encode_records() 
(1) {for(j=0; j<P.length; j++) 
(2) for(p=1; p<P[j].length; p++) 
(3) {if P[j][p] not null 
(4) P[j][p]=1; 
(5) else  P[j][p]=0; } 
(6) return P; } 
Procedure Apriori_ interact _operation(P:public_itemsets) 
(1) {for(q=1; q< P.length; q++) 
(2) if(R[q][1]=P) 
(3) Return P; } 

3.4. Optimized algorithm analysis 

3.4.1. Qualitative analysis of time complexity 

Compared with Apriori algorithm, the optimized algorithm scans the database just 
twice. Scanning the database to remove the duplicate records in the transaction 
database and getting a new database R at the first time. The more duplicate records 
in the transaction database, the greater time is saved when encoding each item set in 
database R, since the duplicate records have been removed. 

The second scanning database is to encode each item set in database R. The 
size of database R is smaller than T because many duplicate records have been 
removed, so the time of finding frequent item sets has been also reduced. Therefore, 
reducing the running time of the algorithm is feasible. 

3.4.2. Qualitative analysis of space complexity 

The traditional Apriori algorithm mainly stores the trading records data, these data 
take up a lot of memory space. While the optimized algorithm stores the records 
only after removing duplicate records, and these records are translated into codes 
before storing in memory space, the codes are composed of a Boolean value, so the 
optimized algorithm can save a lot of storage space. Therefore, reducing the storage 
space is feasible for the optimized algorithm. 

4. Example analysis  

4.1. Data mining in the management of a credit card fraud  

At present many commercial banks use data mining techniques for customer credit 
rating, fraud detection of customer's trading actions in order to reduce the credit 
risk. We use the personal trading information data of bad cardholders collected by a 
domestic commercial bank to analyze the specific features of a cardholder, then 
explain the association rules in simple applications of the credit card.  
 
 



 14

4.2. The modelling process 

4.2.1. Data cleaning and selection 

Data cleaning. Data cleaning is eliminating noise and inconsistent data. Given the 
original data involves privacy and only certain attribute values that can affect the 
results of data mining, so it is necessary to delete the noise and inconsistent 
attributes of the records, such as name, telephone, address and so on. We only use 
the resulting data after deleting irrelevant variables or discrete appropriate data. In 
[8] S u n has done an experiment of association rules analysis in a credit card fraud. 
This experiment adopts a single data source, so we just need to put the data in a 
table of Derby database.  
Data selection. Select 20 000 sample records from the transaction database of the 
bank credit card center, each sample record has 7 attributes, corresponding to the  
I1-I7 1-item, each specific data attributes can be described by the corresponding item 
sets as shown in Table 1. 
Table 1. Attributes and corresponding item sets of a credit card 

No Gender 
I1 

Marriage 
I2 

Check 
account I3 

Bank 
deposit I4 

Bank loan 
I5 

Bondsman 
I6 

Credit 
history I7 

1 Male Married Small Small  Small No Timely  

2 Female Unmarried Large Large Large Have Delayed  

4.2.2. Association rules data mining 

Data mining system is running in Lenovo PC Y330 series, Intel core duo, 2.13 GHz 
CPU, 2 GB memory environment. Data mining tool is SAS Enterprise Miner. 

With the personal trading information data of bad cardholders, we use the 
traditional Apriori algorithm and the optimized Apriori algorithm to mine frequent 
item sets in the transaction database. There are 6 item sets, in order not to lose 
significant association rules and get all frequent item sets, we initialize the number 
of the frequent item sets to k = 3, the support threshold of the frequent item sets  
ε = 2.  

Firstly, delete the duplicate records and calculate the duplication, then every 
record has a duplication parameter, for example, if there are 8 records I1I2I3I5I7 in 
a database, the record will be described as I1I2I3I5I7 (8) in the new database. 
Secondly, compress the database and delete all item sets, in which the number of  
1-item is less than k in the database. At last, encode each set in the database after 
pruning, compute the support of each 1-item and order the supports from small to 
big, the process being shown in Fig. 3. 

In Fig. 3, after database compression, the 6 item sets becomes 4, so you can 
see the importance of the database compression. Do “interact” operation with all 
item codes, the running process of the optimized algorithm is shown in Fig. 4. In [9] 
Z h o u has proposed a new algorithm with no candidate sets of mining frequent 
item sets. 



 15

 
Fig. 3. Diagram of compressing a database and calculating codes and support 

Fig. 4 shows the process of operation of finding out frequent item sets, it 
describes the steps of the optimized algorithm explicitly through a series of charts. 
Thus making the optimized Apriori algorithm more specific, the people understand 
the various steps more clearly. 

Finally, find out all strong associate rules according to formulas (3)-(4). 

 
Fig. 4. Running process of the optimized Apriori algorithm 

4.3. Model evaluation and presentation 

Under the condition of the same min_sup threshold, we use the traditional Apriori 
algorithm and the optimized Apriori algorithm in an embedded and un-embedded 
data mining system for association rules data mining respectively, and then 



 16

compare the running time of both algorithms, the efficiency diagram of the two 
algorithms in un-embedded system being shown in Fig. 5: 

 
Fig. 5. The efficiency diagram of the two algorithms in un-embedded system 

The efficiency diagram of the two algorithms in an embedded system is shown 
in Fig. 6. 

 
Fig. 6. The efficiency diagram of the two algorithms in an embedded system 

From the above comparison we can see that with the optimized algorithm in 
association rules data mining, for two different data mining systems, the mining 
efficiency has been significantly improved. As seen, the efficiency has increased 
one to two times. From the experiment we can also see that increasing the amount 
of the business data, the optimization efficiency of the algorithm can become larger, 
and the embedded data mining system can further save time. Therefore, the 
optimized algorithm is very efficient. 

5. Conclusion 

Although many other optimized algorithms have been proposed with respect to 
different aspects, these algorithms have a common shortcoming that they do not 
consider the actual application background and cannot improve the efficiency to a 
large extent when there are many duplicate records in the database. Therefore, a 



 17

new optimized algorithm has been suggested with a new concept of duplication 
proposed. The optimized algorithm generates a new database of a small size and 
compresses the database according to users’ requirements. At last, it finds frequent 
item sets based on binary coding, and then gets strong association rules. 

The view of embedding a database into a data mining system has also been 
proposed and the embedded data mining system has been introduced. The specific 
conditions of management of a credit card fraud confirm the efficiency of the 
optimized algorithm by using two kinds of a data mining system in association rules 
data mining. The theoretical analysis and experimental results show that the 
algorithm has obviously improved the efficiency and that the efficiency can be 
better improved in an embedded data mining system. 

Acknowledgment: This work has been supported by basic scientific research funds  
No B11JB00500. 

R e f e r e n c e s 

1. Z h a n g, G. L., J. S. L e i, X. H. W u. An Improved Apriori Algorithm for Mining Association 
Rules. – Computer Technology and Development, Vol. 20, 2010, No 6, 84-89. 

2. D i n g, R. Embedded Database Technology. Xi’an, Northwest Industry University Press, 2001, 
65-91. 

3. N a v e e n K u m a r, S a n j a y K u m a r, A b i d H a l e e m, P a r d e e p G a h l o t. Implementing 
Lean Manufacturing System: ISM Approach. – Journal of Industrial Engineering and 
Management, Vol. 6, 2013, No 4, 996-1012. 

4. L i u, Y., C. Y. Y u, X. J. Z h a n g. The Application of Embedded Database in Data Mining 
System. – Journal of Liaoning University of Petroleum and Chemical, Vol. 30, 2010, No 4, 
63-65. 

5. L u, Q. C., P. Z o u. Research and Application Development of Data Mining. – Journal of 
Kunming University of Science and Technology, Vol. 27, 2002, No 5, 62-66. 

6. L u o, X. L. Research of Improved Apriori Algorithm – Journal of Yangtze University (Natural 
Science Edition), Vol. 8, 2011, No 3, 75-77.  

7. Y e, X. B. A Kind of Searching Frequent Item Sets Algorithm Based on Binary Code. – Journal of 
Chuxiong Normal University, Vol. 24, 2009, No 3, 13-19. 

8. S u n, D. L. Association Rules Analysis and its Application in Credit Card Fraud. – China’s Credit 
Card, Vol. 11, 2007, 36-37. 

9. Z h o u, H. Y., Y. Z h a n g, P. L i n. A New Algorithm With no Candidate Sets of Mining Frequent 
Item Sets. – Computer Engineering and Applications, Vol. 40, 2004, No 15,182-185. 

 


