
 104

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 13, No 4

Sofia • 2013 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2013-0057

A Mobile Agent-Based System for Server Resource Monitoring

Zhixin Tie
School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, P. R. China
Email: tiezx@zstu.edu.cn

Abstract: Mobile agent technology has become an important approach for the
design and development of distributed systems. Currently, there is little research
regarding the efficiency of mobile agent-based monitoring of the server resource.
Based on the Mobile-C library, a mobile agent-based system called Mobile Agent-
Based Server Resource Monitoring System (MABSRMS) is presented. In MABSRMS
mobile agents can call low level functions in binary dynamic or static libraries, and
thus can monitor server resource conveniently and efficiently. The experiment was
conducted in a university computer center with hundreds of computer workstations
and 15 server machines. The experiment uses the MABSRMS to detect system
resources, such as available hard disk space, CPU usage and main memory usage.
The experiment shows that the mobile agent-based monitoring system is a practical
way to monitor server resources in large scale distributed computer centers.

Keywords: Mobile-C library, mobile agents, computer laboratories, server resource
monitoring.

1. Introduction

A server is a physical computer or a computer hardware system that makes
available files, database, printing, email, communications or other services to client
terminals/stations with access to the network where the server is located. Depending
on the computing service that it offers, it could be a database server, a file server, a

 105

mail server, a print server, a web server, a gaming server, or another kind of a
server. Servers are available in different sizes, shapes and varieties. Servers may be
distributed throughout a network or they may be concentrated in centralized data
centers. The computing services that run on the servers are the core business of
companies or organizations, thus it is very important to keep the servers working
and keep the computing services running smoothly. This is also the key work of
system administrators. In time the users in the services will be increased, users tend
to demand faster, more convenient services, thus in most of the cases, the servers’
load is getting heavier and heavier. Because servers’ resource is limited, it is very
important for system administrators to monitor server's performance. Server's
performance data can be applied to the performance management, can be used to
detect faults in the fault management, can be used to decide how to adjust servers’
configuration, and also to regulate the bill in the billing management.

A good server resource monitoring system must have the following
characteristics:

(1) To work automatically and work around the clock after deployed.
(2) To be deployed easily, quickly and dynamically.
(3) It must have a small footprint.
(4) It must be an operating system-independent system.
To monitor the status of smaller numbers of computer systems, an individual

can switch among computer screens of each of the computer systems, querying for
a status as they switch among the screens, but to monitor dozens or hundreds of
computer systems would require a larger effort 1. Several centralized architecture
based server resource monitoring systems have been presented 3, 4. Since a large
amount of the management data must be transmitted to the centralized management
station for processing, these systems suffer from scalability and flexibility
problems 5.

Mobile agent technology has become a powerful technology for designing and
implementing various applications in a computer networking environment. The use
of mobile agent technology for network management 5-10, a distributed sensor
network [11-13 and intrusion detection [14-16 has been presented by several
researchers in recent years. However, there is little research regarding the efficiency
of the mobile agent-based monitoring of a server resource.

In this paper we present a mobile agent-based system called Mobile Agent
Based Server Resource Monitoring System (MABSRMS), which is based on the
Mobile-C library to monitor server resource at public computer centers. In
MABSRMS, an agency starts on each of the servers during the boot time.
Monitoring agents are dynamically sent to a group of or to all of the servers from a
monitoring server when monitoring tasks are needed. The monitoring results are
transferred from the servers to the monitoring server by the agent itself.

The rest of the paper is organized as follows. Section 2 presents a Mobile
Agent Based Server Resource Monitoring System (MABSRMS) based on the
Mobile-C library. Section 3 demonstrates an application of the system. Finally,
conclusions are drawn in Section 4.

 106

2. Mobile agent-based server resource monitoring system

2.1. Mobile-C library
Mobile-C library [17-19] was originally developed as a stand-alone, FIPA
compliant mobile agent system. It uses an embeddable C/C++ interpreter, Ch [20-
22, as the Agent Execution Engine (AEE) to support the interpretive execution of
C/C++ mobile agent codes.

The major components of the Mobile-C library include Agency, Agent
Management System (AMS), Agent Communication Channel (ACC), Agent
Security Manager (ASM), Directory Facilitator (DF), Agent Execution Engine
(AEE), Agent, Synchronization, and Miscellaneous APIs. The Mobile-C library has
extended most of the API functions from the host program space to the mobile
agent space. The mobile agent space APIs allows a mobile agent to interact with an
agency, different modules of an agency, and other agents. The right part of Fig. 1
shows how the mobile agent code interfaces with Mobile-C library. When the
function mc_Function is called in mobile agent code, Ch searches the
corresponding interface function MC_Function_chdl in the Mobile-C library, and
passes arguments to it by calling the function. Subsequently, the interface function
MC_Function_chdl invokes the target function MC_Function, and passes the return
value back to the mobile agent space.

Since the AEE of the Mobile-C is based on Ch and Ch is capable of calling
functions in binary static and dynamic libraries without recompilation [23-25], all
existing binary static and dynamic C libraries and modules can be used as a Mobile-
C agent code. For example, functions in OpenGL and XML libraries can be called
from Ch directly [26, 27], Ch communicates with the functions in binary libraries
using a dynamically loaded library, as shown in the left part of Fig 1.

Fig. 1. Interface of a mobile agent code with Mobile-C library and a common C dynamic library

The example shows how a mobile agent code invokes the functions in the C
dynamic library, called SrvResMon.dll in Windows (or in the shared object called
SrvResMon.so in LINUX), which is developed to get the CPU information and the
CPU utilization information, the available and used hard disk space, the physical
memory space and memory utilization information, and other connected
information from the operation systems.

 107

2.2. Architecture of MABSRMS

The architecture of MABSRMS is shown in Fig. 2. Each monitored server, known
as a client node, runs a monitoring program that encompasses a Mobile-C agency.
Multiple mobile agents can run in the agency at the same time. When the agency
receives a mobile agent that is sent from the monitoring server, an AEE will be
automatically created to run the agent code immediately. If the monitoring server
needs some results, the result will be carried by the original mobile agent back to
the monitoring server automatically after the agent is executed. If the agent has a
migration task, it will migrate to its next destination automatically after its task on
the current client node is completed. When the agent is running at the client node, it
can access all the client node resources via the method mentioned in Section 2.1.

Mobile
Agent

NetworkNetwork

Fig. 2. The architecture of MCBAS

There is a monitoring server program running on the monitoring server. The
monitoring server program includes the Monitoring Knowledge Management
module (MKM), the Mobile Agent Module (MAM), and the Monitoring Result
Management module (MRM).

The functions of MKM are to manage the monitoring knowledge. For
example, adding/removing a server to/from the system, setting alarm thresholds of
CPU usage for a monitored server.

The functions of MAM are to create mobile agents, manage mobile agents’
code, send mobile agents to client nodes, and receive the monitoring result data by
inspecting the returning mobile agents and also store data in the monitoring
knowledge database. For example, if a new server resource monitoring algorithm
has been developed, it can be stored in the monitoring knowledge database through
this module. A new mobile agent powered by the new monitoring algorithm can be
created and sent to the client nodes for testing or getting the designated information
of the client nodes.

 108

The MRM is used to analyze the monitoring data and generate reports. By
accessing the server information database and monitoring knowledge database, the
report about the computing resource usage of the servers will be automatically
generated and emailed to the designated recipients daily.

2.3. Mobile-C agent

The Mobile-C agent is composed of a mobile agent code in Ch which is an
embeddable C/C++ interpreter, as mentioned in Section 2.1, encapsulated in XML
format, as shown in Fig. 3. Each Mobile-C agent has several attributes, including
the name, owner, home address, and tasks of the agent. Each agent task has
attributes, such as the ordinal number of the task, the return variable, completeness,
persistence, execution host of the task, and agent code of the task. The persistence
attribute can be enabled to create an agent that will not be removed from the agency
after the agent code is executed. In this way the variables and functions in the agent
code can still be accessed later on. The Mobile-C agents can have sophisticated
dynamically generated task lists and move around a network autonomously. For a
detailed format, please refer to [18, 19].

<MOBILE_AGENT>
 <AGENT_DATA>
 <NAME> HDUA </NAME>
 <OWNER>ZSTU</OWNER>
 <HOME>localhost:5050</HOME>
 <TASKS task="3" num="0">
 <TASK num="0" complete="0" Server="10.16.23.2:5070" persistent="1" return="fHard" />
 < TASK num="1" complete="0" Server="10.16.23.3:5070" persistent="1" return="fHard" />
 < TASK num="2" complete="0" Server="10.16.23.4:5070" persistent="1" return="fHard" />
 <AGENT_CODE>
 <![CDATA[

#include <stdio.h>
#include <Windows.h>
double fHard;
int main()
{

char sDriver1[10]="c:";
ULARGE_INTEGER AvailableToCaller, Disk, Free;
if (GetDiskFreeSpaceEx(sDriver1,&AvailableToCaller,&Disk, &Free)){

fHard = (double)((long double)Free.QuadPart/1024/1024);
}
else{

fHard = 0;
}
return 0;

}
]]>
 </AGENT_CODE>
 </TASKS>
 </AGENT_DATA>
 </MOBILE_AGENT>
 </MESSAGE>
</MOBILEC_MESSAGE>

Fig. 3. The Hard Disk Usage agent on the Windows platform

 109

3. Monitoring server machine resource

This application uses MABSRMS framework that is introduced in Section 2 to
monitor server machines’ resource. The monitoring server sends mobile agents to
the monitored servers and gets servers’ workload performance data, such as the
information of the main memory, CPU usage, and hard drive space of the monitored
server. Using servers’ workload performance data, the bottlenecks of the servers
can be found, workloads in the servers can be balanced, and the hardware of the
servers can be properly upgraded.

3.1. Monitoring environment introduction

In this application MABSRMS is used to monitor the resource of server machines
of a university computer center. There are 15 servers and hundreds of computer
workstations in the computer center. In the server room, all 15 servers are installed
in cabinet racks. Different applications are installed on the servers, such as DBMS,
FTP Service, Mail Service, and variety of educational software. Traditionally,
server’s resources, such as CPU usage, main memory usage, and available hard disk
space, are monitored by manual inspections. Because there is only one terminal
which we can use to interact with the servers, we know little about the servers’
workload performance. Thus, a program for continuously monitoring the server
resource consumption is strongly desired.

3.2. Monitoring the server machine resource agents design

There are many kinds of resources in the server machines, including hardware,
software, network, etc. In this monitoring example, we are only concerned about the
usage of the main memories, CPUs and the hard drive, because they are some of the
most crucial factors that affect the server performance. Three mobile agents are
designed to get the information.

(1) The Hard Disk Usage Agent (HDUA). The hard disk usage agent is used
to get the total disk capacity and the currently available disk space of each hard disk
of a server. As shown in Fig. 3, a HDUA can be a single-task or multi-task mobile
agent depending on how many tasks are configured in the agent. When a HDUA is
created on the monitoring server, it will migrate to the monitored servers based on
its tasks and get the desired information back to the monitoring server. As shown in
Figs. 1 and 3, the function GetDiskFreeSpaceEx in the HDUA calls the function
GetDiskFreeSpaceEx_chdl in Ch dynamic load library, and the function
GetDiskFreeSpaceEx_chdl invokes the function GetDiskFreeSpaceEx which is an
API function on the Windows platform. This API function retrieves information
about the amount of space that is available on a disk volume, which is the total
amount of space and the total amount of free space available to the user that is
associated with the calling thread 27. For Linux platform, the HDUA can invoke the
functions statfs or statvfs using the same method.

 110

(2) The CPU Usage Agent (CPUUA). The task of the CPU usage agent is
getting the usage of each CPU and the total CPU usage of a server. The agent code
and the working mechanism of the CPUUA are similar to the HDUA. For the
Windows platform, the CPUUA can invoke the Window API function
GetSystemTimes which returns the idle time, kernel time, and user time 29. Ejor
gives some details in 30. As shown in Fig. 4, call the function GetSystemTimes to
get the CPU’s idle time, kernel time, and user time at time t . Given times 1t and
t2, the CPU usage can be calculated as follows:

(1) 2 1User_time=UserTime() UserTime(),t t−
(2) 2 1Kernel_time=KernelTime() KernelTime(),t t−
(3) 2 1Idle_time=IdleTime() IdleTime(),t t−
(4) Total_time=User_time Kernel_time,+
(5) Cpu_usage=(Total_time-Idle_time)/Total_time,

where UserTime()t , KernelTime()t and IdleTime()t are the CPU’s user time,
kernel time and idle time at time t respectively, User_time , Kernel_time and
Idle_time are the CPU’s user time, kernel time and idle time from time 1t to time

2t respectively, Total_time and Cpu_usage are the CPU’s total time and the CPU
usage from time 1t to time 2t respectively.

FILETIME idleTime;
FILETIME kernelTime;
FILETIME userTime;
BOOL res = GetSystemTimes(&idleTime, &kernelTime, &userTime);

Fig. 4. Using the Windows API function GetSystemTimes to get the CPU’s user time, kernel time and
idle time

For a Linux platform, the CPUUA can use the /proc/stat file which includes
various pieces of information about kernel activity 31. As shown in Fig. 5, the very
first “cpu” line aggregates the numbers in all other “cpuN” lines. These numbers
identify the amount of time the CPU has spent performing different kinds of work.
Time units are in USER_HZ or Jiffies (typically hundredths of a second). The
meanings of the columns of the very first “cpu” line are as follows, from left to
right:

• user: Normal processes executing in user mode;
• nice: Niced processes executing in user mode;
• system: Processes executing in kernel mode;
• idle: Twiddling thumbs;
• iowait: Waiting for I/O to complete;
• irq: Servicing interrupts;
• softirq: Servicing softirqs.
Thus, the total CPU time and CPU busy time at time t can be calculated as

follows:

 111

(6) Total_cpu() user() nice() system() idle(),t t t t t= + + +
(7) Cpu_busy() user() nice() system().t t t t= + +

Given times 1t and 2t , the CPU usage can be calculated as follows:

(8) 2 1

2 1

Cpu_busy() Cpu_busy()Cpu_usage .
Total_cpu() Total_cpu()

t t
t t

−
=

−

> cat /proc/stat
cpu 2255 34 2290 22625563 6290 127 456
cpu0 1132 34 1441 11311718 3675 127 438
cpu1 1123 0 849 11313845 2614 0 18
…

Fig. 5. The information in the proc/stat file

(3) The Main Memory Usage Agent (MMUA). The main memory usage
agent is designed to get the total physical memories and the currently available
memories of a server. The agent code and the working mechanism of the MMUA
are similar to HDUA. For Windows platform, the MMUA can invoke the Window
API function GlobalMemoryStatusEx which retrieves information about the
system's current usage of both physical and virtual memory 32. For a Linux
platform, the MMUA can invoke the Gestalt, sysconf and getsysinfo functions.

3.3. Agents migration
Each of these three mobile agents, described in Section 3.2, is a multi-task mobile
agent. It can go through the servers to get information about the servers, and take
the information back to its home agency. As shown in Fig. 6, after the monitoring
server creates the agent, the agent will migrate to each of the host servers in
sequence and return to its home agency with server usage information of all of the
visited servers. When the agent returns to the home agency, we can retrieve the
information that the agent takes back and store it in the database for further
analyzing.

Fig. 6. The mobile agent technology VS traditional polling technology

to get the performance information of the servers

 112

The traditional polling method can only poll the servers one by one, as shown
in Fig. 6. Comparing it with this information collecting using the traditional polling
method, the mobile agent technology saves lots of the bandwidth of the network
because the agents can travel through the servers. Atul Mishra and A.K. Sharma
have proved that the mobile agents reduce bandwidth overloading problems by
transferring the processing of the management data and decision making from the
centralized management stations to the managed devices, thereby saving many
repetitive request/response round trips 5.

3.4. Experiment on all servers in a server machine room

The experiment has been performed on all the servers in the server machine room.
The monitoring server program, called the ResMonitor, is installed and run on one
of PC server machines. Its interface is shown in Fig. 7. The client node program,
called the ResReporter, is installed on each server in the server machine room.

Fig. 7. The interface of the monitoring server program

The MMUA and CPUUA are created by the monitoring server every 30
seconds, and the HDUA is created every 10 minutes. Each of them has 15 data
collection tasks corresponding to the 15 servers. The experiment was conducted for
9 hours (8:00 AM to 5:00 PM). By analyzing the experiment data, the following
problems, which we have never found before, have been identified.

 113

(1) The hard drive C on a server used for ACM program contest has only 60
MB available space.

(2) The CPU usage of the student FTP server, which is used for collecting
students’ homework, is more than 70 % in daytime, and often reaches 100%.

3.5. Experiment on three main servers

The experiment was performed on three main servers in a server machine room.
The network topology of the monitoring server and the three monitored servers are
shown in Fig. 8. The monitoring server and the monitored servers are connected by
a 1000 Mbps Ethernet. The MMUA and CPUUA are created by the monitoring
server every 60 seconds, and the HDUA is created every 10 minutes. Each of them
has three data collection tasks corresponding to the three servers. The experiment
was conducted for 24 hours.

The distributions of CPU usage percentages of the three servers over 24 hours
are plotted in Fig. 9. Three servers’ CPU maximum usages were 39, 61, and
6%, respectively. In the students’ frequently used time, which is from 7:30 AM to
8:30 PM, the CPU usage percentages of server I, server II and server III, are below
5, 40, and 3%, respectively, and in the rest time, the CPUs of the three servers were
almost idle. Fig. 9 shows that the CPU load of the three main servers is light.

Fig. 8. The network topology of the servers in the experiment

The distributions of the memory usage percentages of the three servers over
the 24 hours are shown in Fig. 10. The maximum memory usages of the three
servers are 65.8, 49.2, and 39.5%, respectively. As shown in Fig. 10, the memory
usage percentages of server I show an upward trend. During night time (0:00 AM to
7:30 AM, 21:30 PM to 24:00 PM), the memory usage percentages of server II and
server III are low, while during day time (7:30AM to 21:30PM), they are high and
fluctuating. This occurs because the computer center opening time is from 7:30 AM
to 21:00 PM each day.

 114

The distributions of the available spaces of the hard disk for the three servers
over 24 hours, are plotted in Fig. 11. The minimum available spaces of the hard
disk of the three servers were 2220, 15881, and 12683 MB, respectively. Although
the disk available spaces of the three servers undulated in 24 hours, they tended to
decline. The disk available spaces of server I were 2225.39 MB at 0:00 AM, down
to 2221.67 MB at 23:50 PM. The disk available spaces of server II were 15955.91
MB at 0:00 AM, down to 15881.89 MB at 23:50 PM. The disk available spaces of
server III were 12684.69 MB at 0:00 AM, down to 12683.24 MB at 23:50 PM.
Based on these facts, the disk available spaces of the servers must always be
checked.

0
10
20
30
40

0 2 4 6 8 10 12 14 16 18 20 22 24

C
P

U
 U

sa
ge

(%
)

Time(h)

Server I CPU usage distribution

0
20
40
60

0 2 4 6 8 10 12 14 16 18 20 22 24

C
P

U
 U

sa
ge

(%
)

Time(h)

Server II CPU usage distribution

0
2
4
6

0 2 4 6 8 10 12 14 16 18 20 22 24

C
P

U
 U

sa
ge

(%
)

Time(h)

Server III CPU usage distribution

Fig. 9. The CPU usage distribution of the three monitored servers

56
60
64

0 2 4 6 8 10 12 14 16 18 20 22 24M
em

or
y

U
sa

ge
(%

)

Time(h)

Server I memory usage distribution

20
30
40
50
60

0 2 4 6 8 10 12 14 16 18 20 22 24M
em

or
y

U
sa

ge
(%

)

Time(h)

Server II memory usage distribution

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24M
em

or
y

U
sa

ge
(%

)

Time(h)

Server III memory usage distribution

Fig. 10. The memory usage distribution of the three monitored servers

 115

2220
2222
2224
2226

0 2 4 6 8 10 12 14 16 18 20 22 24A
va

ila
bl

e
sp

ac
e(

M
B

)

Time(h)

Server I hard disk available space distribution

15880
15900
15920
15940
15960

0 2 4 6 8 10 12 14 16 18 20 22 24A
va

ila
bl

e
sp

ac
e(

M
B

)

Time(h)

Server II hard disk available space distribution

12682

12684

12686

0 2 4 6 8 10 12 14 16 18 20 22 24A
va

ila
bl

e
sp

ac
e(

M
B

)

Time(h)

Server III hard disk available space distribution

Fig. 11. The distribution of the available spaces of the hard disk of the three monitored servers

Based on the experimental data and the analysis above given, it can be
concluded that the three main servers are in a good condition.

The client node program ResReporter has a small footprint. Because during
the experiment, all services running the servers were going normally and smoothly,
and in not very busy times, not only the CPU usage, but also the memory usage is
kept at a relatively low using level.

4. Conclusions

A mobile agent-based system called Mobile Agent Based Computer Monitoring
System (MABCMS) for monitoring the computer resource usage at public
computer centers is presented. An IEEE FIPA compliant mobile agent system,
called Mobile-C, is used as the base for MABCMS. The monitoring server can
deploy resource monitoring algorithms to a group of or to all of the monitored client
nodes easily, quickly, dynamically and silently. The experiment in a university
computer center, with hundreds of computer workstations and 15 PC servers have
been conducted to validate this system. The experiment uses MABSRMS to detect
the system resources, such as available hard disk space, CPU usage and main
memory usage. The experiment shows that the mobile agent-based monitoring
system is a practical way to monitor the server resources in large scale distributed
computer centers.

Acknowledgments: This work is supported by the Qianjiang Talent Project of Zhejiang Province
under Grant No 2012R10056 and the Zhejiang Provincial Natural Science Foundation of China under
Grant No LY13F020043.

 116

R e f e r e n c e s

1. B a r t h, J. S. System and Method for Collecting and Displaying Information about Many Computer
Systems. U. S. Patent No US 8131842B1, March 6, 2012.

2. S t a l l i n g s, W. SNMP, SNMPv2, SNMPv3 and RMON 1 and 2. Third Ed. Addison Wesley, 1999.
3. Z e n g, W., Y. W a n g. Design and Implementation of Server Monitoring System Based on SNMP.

– In: Proceedings of 1st IITA International Joint Conference on Artificial Intelligence, China,
Hainan Island, April 2009, 680-682.

4. Y u c h e n g, L., L. Y u b i n. A Monitoring System Design Program Based on B/S Mode. − In: 2010
International Conference on Intelligent Computation Technology and Automation, China,
Changsha, May 2010, 184-187.

5. M i s h r a, A t u l, A. K. S h a r m a. Application of Mobile Agent in Distributed Network Management.
– In: Proceedings of 2012 International Conference on Communication Systems and Network
Technologies, India, Rajkot, Gujrat, May 2012, 930-935.

6. B i e s z c z a d, A., B. P a g u r e k, T. W h i t e. Mobile Agents for Network Management. – IEEE
Communications Surveys, Vol. 1, 1998, No 1, 1-9.

7. B e l l a v i s t a, P., A. C o r r a d i, C. S t e f a n e l l i. An Open Secure Mobile Agent Framework for
Systems Management. – Journal of Network and Systems Management, Vol. 7, 1999, No 3,
323-339.

8. A h n, J. Fault-Tolerant Mobile Agent-Based Monitoring Mechanism for Highly Dynamic Distributed
Networks. – IJCSI International Journal of Computer Science Issues, Vol. 7, May 2010, No 3, 1-7.

9. G a v a l a s, D., G. E. T s e k o u r a s, C. A n a g n o s t o p o u l o s. A Mobile Agent Platform for
Distributed Network and System Management. – Journal of Systems and Software, Vol. 82, 2009,
355-371.

10. N a i r, M. K., V. G o p a l a k r i s h n a. Applying Web Services with Mobile Agents For Computer
Network Management. – International Journal of Computer Networks and Communications
(IJCNC), Vol. 3, March 2011, No 2, 125-144.

11. Z h a n g, N., J. Z h a n g. A Self-Adapted Anycast Routing Algorithm Based on Mobile Agent in
Wireless Sensor Network. – Journal of Networks, Vol. 6, 2011, No 2, 206-213.

12. W u, Q., N. S. V. R a o, J. B a r h e n et al. On Computing Mobile Agent Routes for Data Fusion in
Distributed Sensor Networks. – IEEE Transactions on Knowledge and Data Engineering, Vol. 16,
June 2004, No 6.

13. W a n g, L. G., Y. D. Q i. Management Model Research of Low-Power Wireless Sensor Network. –
Journal of Networks, Vol. 6, 2011, No 12, 1734-1739.

14. U g u r, A., U. A. S i m a. Distributed Detection of Ddos Attacks During the Intermediate Phase
Through Mobile Agents. – Computing and Informatics, Vol. 31, 2012, No 4, 759-778.

15. E l K a d h i, N., K. H a d j a r, N. E l Z a n t. A Mobile Agents and Artificial Neural Networks for
Intrusion Detection. – Journal of Software, Vol. 7, 2012, No 1, 156-160.

16. H o u, Z., Z. Y u, W. Z h e n g, X. Z u o. Research on Distributed Intrusion Detection System Based on
Mobile Agent. – Journal of Computers, Vol. 7, 2012, No 8, 1919-1926.

17. Mobile-C: A Multi-Agent Platform for Mobile C/C++ Code. 2005.
http://www.mobilec.org

18. C h e n, B o., H. H. C h e n g, J. P a l e n. Mobile-C: A Mobile Agent Platform for Mobile C/C++ Code.
– Software – Practice & Experience, Vol. 36, 2006, No 15, 1711-1733.

19. C h o u, Y.-C., D. K o, H. H. C h e n g. An Embeddable Mobile Agent Platform Supporting Runtime
Code Mobility, Interaction and Coordination of Mobile Agents and Host Systems. – Information
and Software Technology, Vol. 52, February 2010, No 2, 185-196.

20. C h e n g, H. H. Scientific Computing in the Ch Programming Language. – Scientific Programming,
Vol. 2, 1993, No 3, 49-75.

21. C h e n g, H. H. Ch: A C/C++ Interpreter for Script Computing. – C/C++ User’s Journal, Vol. 24, 2006,
No 1, 6-12.

22. C h e n g, H. H. Ch – An Embeddable C/C++ Interpreter.
http://www.softintegration.com

23. Ch – An embeddable C/C++ Interpreter. Softintegration, Inc.
htth://www.softintergration.com/

 117

24. Softintegration. The Ch Language Environment – SDK User’s Guide. Softintegration, Inc.
http//www.softintegration.com.

25. Embedded Ch User’s Guide, Softintegration, Inc.
http://www.softintegration.com/products/sdk/embedded ch/

26. C h e n, B., H. H. C h e n g. Interpretive Open GL for Computer Graphics. – Computers & Graphics,
Vol. 29, June 2005, No 3, 331-339.

27. W a n g, Z., H. H. C h e n g. Portable C/C++ Code for Portable XML Data. – IEEE Software, Vol. 23,
No 1.

28. Microsoft Corporation. GetDiskFreeSpaceEx Function. 2013.
http://msdn.microsoft.com/en-us/library/aa364937(VS.85).aspx

29. Microsoft Corporation. GetSystemTimes Function. 2013.
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724400(v=vs.85).aspx

30. Ejor. Get CPU Usage with GetSystemTimes. December 2004.
http://www.codeproject.com/Articles/9113/Get-CPU-Usage-with-GetSystemTimes

31. Sascha Nitsch Unternehmensberatung UG. www.LinuxHowtos.org howtos, tips&tricks and tutorials for
linux. 2013.
http://www.linuxhowtos.org/System/procstat.htm

32. Microsoft Corporation. GlobalMemoryStatusEx Function. 2013.
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366589(v=vs.85).aspx

