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Abstract: In rough set theory, the number of all reducts for a given decision table 
can be exponential with respect to the number of attributes. This paper investigates 
the problem of determining the set of all reductive attributes which are present in at 
least one reduct of an incomplete decision table. We theoretically prove that this 
problem can be solved in polynomial time. This result shows that the problem of 
determining the union of all reducts can be solved in polynomial time, and the 
problem of determining the set of all redundant attributes which are not present in 
any reducts can also be solved in polynomial time. 
Keywords: Rough sets, reducts, incomplete decision tables, tolerance matrix, 
tolerance function. 

1. Introduction 

Feature selection is one of the core problems in machine learning and data mining. 
The accuracy of many classification algorithms depends on the quality of selected 
attributes. The rough set approach to feature selection problem is based on reducts, 
which are in fact the minimal sets of attributes that preserve some necessary amount 
of information. However, the number of all reducts for a given decision table can be 
exponential with respect to the number of attributes. Therefore, we are forced to 
search either for minimal length reducts or for core attributes, i.e., the attributes that 
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occur in all reducts. The minimal reduct problem is NP-hard while the searching for 
a core attribute problem can be solved in polynomial time. 

In decision tables, a conditional attribute is called a reductive attribute if it is 
present in at least one reduct. A conditional attribute is called a redundant attribute 
if it is not a reductive attribute, i.e., it is not present in any reduct. Reductive 
attributes are used for object classification, while redundant attributes do not play 
any role in object classification. Redundant attributes must be eliminated before 
rule extraction. It is easy to see that the problem of determining the set of all 
redundant attributes becomes a problem of determining the set of all reductive 
attributes. To solve this problem, a common approach is to calculate the union of all 
reducts. However, the number of all reducts can be exponential with respect to the 
number of attributes. Thus the problem of calculating all reducts is not efficient for 
large datasets and we are forced to find another approach. In consistent complete 
decision tables, by considering a decision table as a relation, N g u y e n L o n g  
G i a n g and V u D u c T h i [3] have proposed an algorithm for determining the set 
of all reductive attributes in polynomial time based on some results of the relation 
database.  

In fact, there are many cases where the decision tables contain missing values 
for at least one conditional attribute in the value set of this attribute and these 
decision tables are called incomplete decision tables. To obtain decision rules 
directly from incomplete decision tables, M. K r y s z k i e w i c z [2] has defined a 
tolerance relation based on the equivalent relation in a classical rough set and 
proposed a tolerance rough set. In the tolerance rough set, M. Kryszkiewicz  has 
proposed an attribute reduction method in incomplete decision tables based on 
Boolean reasoning approach [2].   

In this paper, we investigate the problem of determining the set of all reductive 
attributes in incomplete decision tables based on Boolean reasoning approach  
[1, 2, 6]. As a result, we prove that this problem can be solved completely in 
polynomial time. This result shows that the problem of determining the set of all 
redundant attributes can also be solved in polynomial time. 

The structure of this paper is as follows. Section 2 presents some basic 
concepts in the tolerance rough set in incomplete information systems. Section 3 
presents the Boolean reasoning approach to reduct calculation problems in 
incomplete decision tables, as well as the computational complexity of these 
problems. The conclusions and future remarks are presented in the last section.  

2. Basic concepts 
An Information System is a pair ( )IS ,U A= , where the set U denotes the universe 
of objects and A is the set of attributes, i.e., mappings of the form: : aa U V→ , and 

aV  is called the value set of attribute a. If aV   contains a missing value for at least 
one attribute a A∈ , then IS is called an incomplete information system, otherwise it 
is complete. Further on, we will denote the missing value by *. 

An incomplete decision table is an Incomplete Information System 
{ }( )IDS ,U A d= ∪  where ,d d A∉ , and * dV∉ , is a distinguished attribute called 

decision attribute, and the elements of A are called conditional attributes. 
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Let us consider the incomplete decision table below (Table 1). Attributes 
Price, Mileage, Size and Max-Speed are conditions, whereas Decision is the 
decision attribute. 

         Table 1. An example incomplete decision table 
Car Price Mileage  Size Max-speed Decision 
u1 High High * * Poor 
u2 Low * Full Low Good 
u3 Low Low Compact High Poor 
u4 Medium High Compact High Good 
u5 Medium High Compact High Good 
u6 Medium High Compact * Good 

 
We will refer to decision attribute Decision as d, and to conditional attributes Price, 

Mileage, Size and Max-Speed  as to 1 4,...,a a  in this order. 
The tolerance rough set has been introduced by Kryszkiewicz [2] as a tool for 

extracting decision rules directly from incomplete decision tables. The idea is to define a 
tolerance relation in incomplete information systems based on the equivalent relation in 
complete information systems. For a subset of attributes B A⊆  we define B-tolerance 
relation ( )SIM B  (defined on U U× ) as follows: 

( ) ( ) ( ) ( ) ( ) ( ){ }.SIM , , or orB u v U U a B a u a v a u a v= ∈ × ∀ ∈ = = ∗ = ∗       

The relation ( )SIM B  is a tolerance relation and it defines a covering of U into 

tolerance classes which we denote by ( ) ( )BS u u U∈ , where 

( ) ( ) ( ){ }, SIM .BS u v U u v B= ∈ ∈  Clearly, ( ) { }( )SIM SIMa BB a
∈

= ∩  [2]. 

Let { }( )IDS ,U A d= ∪  be an incomplete decision table. For B A⊆ , u U∈ , 

( ) ( ) ( ){ }uSvvdu BB ∈=∂  is called a generalized decision in IDS. If ( )card ( ) 1A u∂ =  for any 

u U∈  where ( )( )uB∂card  is the number of elements in ( )uB∂  , then IDS is consistent, 
otherwise it is inconsistent [2]. 

It has been shown that one of the crucial concepts in rough set theory is a reduct or 
decision reduct (see [5]). In general, reducts are minimal subsets (with respect to the set 
inclusion relation) of attributes which contain a necessary portion of information about the 
set of all attributes [1, 6].  

According to K r y s z k i e w i c z [2], a reduct of an incomplete decision table is a 
minimal attribute set which preserves the generalized decision for all objects. 

Definition 1. [2] Let { }( ),IDS U A d= ∪  be an incomplete decision table. If 
R A⊆  satisfies 
(1)    ( ) ( )uu AR ∂=∂  for any Uu ∈ , 
(2)     RR ⊂∀ ' , ( ) ( )uu AR

∂≠∂ ' , 
then R is called a reduct of IDS based on a generalized decision. 

The set of all reducts of a given incomplete decision table { }( )IDS ,U A d= ∪  
is denoted by 
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( ) { }RED IDS : is a reduct of IDS .R A R= ⊆  
The attribute a A∈  called a core attribute if and only if a presents in all 

reducts of A. The set of all core attributes is denoted by 
( )

( )RED IDS

CORE IDS .
R

R
∈

= ∩  

The attribute a A∈  is called reductive attribute if and only if a presents in at 
least one reduct of A. The set of all reductive attributes is denoted by 

( )
RED( IDS)

REAT IDS .
R

R
∈

= ∪  

It is obvious that ( ) ( )CORE IDS REAT IDS .R⊆ ⊆ for any reduct 

( )RED IDS .R ∈  
An attribute is called a redundant attribute if it is not a reductive attribute. In 

other words, a redundant attribute is not presented in any reduct of A. The set of all 
redundant attributes is denoted by 

( ) ( )REDU IDS REAT IDS .A= −  
For example, with the incomplete decision table given in Table 1, 

( ) { }1 1AS u u= , ( ) { }2 2AS u u= , ( ) { }3 3AS u u= , ( ) ( ) ( ) { }5 5 6 4 5 6, ,A A AS u S u S u u u u= = = , 

( )1card ( ) =1A u∂ , ( )2card ( ) =1A u∂ , ( )3card ( ) =1A u∂ , ( )4card ( ) =1A u∂ , 

( )5card ( ) =1A u∂ , ( )6card ( ) =1A u∂ . The set of all reducts of the incomplete decision 
table is ( ) { } { }{ }1 3 1 4RED IDS , , , .a a a a=  Thus, ( ) { }1CORE IDS ,a=  

( ) { }1 3 4REAT IDS , , ,a a a=  ( ) { }2REDU IDS .a=  

3. Boolean reasoning approach in incomplete decision tables and 
complexity results 
Boolean reasoning approach to a reduct calculation problem in complete decision 
tables has been explained in [1, 6]. Boolean reasoning approach to the reduct 
calculation problem in incomplete information systems without decision attribute 
has been explained in [2]. The nice idea of the approach is a tool showing that the 
reduct calculation problem is equivalent to the prime implicit problem for 
discernibility functions. 

To calculate reducts in incomplete decision tables based on this approach, 
firstly we define a tolerance relationship discernibility matrix to calculate 
discernibility functions, called tolerance matrix for short. 

Let { }( )IDS ,U A d= ∪  be an incomplete decision table. We denote 

( )
{ }( ) ( ) ( ) ( ) if ( ) ( ),

,
if ( ) ( ) .

A

d

A

a A a u a v a u a v d v u
D u v

d v u

∈ ≠ ∧ ≠ ∗ ∧ ≠ ∗ ∉∂
=

∅ ∈∂

⎧
⎨
⎩
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Then ( ),dD u v  is called a discernibility attribute set with respect to the 
tolerance relation of IDS, and ( ) ( )( ), : ,d dM A D u v u v U= ∈  is called a tolerance 
matrix of IDS. 

It is easy to see that a tolerance matrix ( ) [ ]d ijM A a=  is a n n×  table, where n 

is the number of objects, and the entry i ja  is referring to the pair of objects ( ),i ju u  
that belong to tolerance classes which are with discernibility by the generalized 
decision. The entry i ja  is the set of all conditional attributes which discern these 
two objects with respect to the tolerance relation, i.e., it is a list of attributes a, such 
that ( ) ( )i ja u a u≠  and ( )ia u ≠ ∗  and ( )ja u ≠ ∗ . 

In Table 2 we present a compact form of a tolerance matrix corresponding to 
the decision table from Table 1, where the objects corresponding to class Poor are 
listed as columns and the objects corresponding to class Good are listed as rows. 
Table 2.  The compact form of the tolerance matrix corresponding to the decision table in Table 1 

ui u1 u3 
u2 a1 a3, a4 
u4 a1 a1, a2 
u5 a1 a1, a2 
u6 a1 a1, a2 

The Boolean tolerance relationship discernibility function corresponding to 
the tolerance matrix, called the tolerance function for short, is defined as follows: 

( )
( ) ( )

1
, :

, ...,
iji j

d k
a ai j d u d u

a a a
∈≠

Δ = ∑∏  

where 1 , ..., ka a  are the Boolean variables related to attributes from A, and 
,∑∏ denote the Boolean conjunction and Boolean disjunction operators. Thus, 

for the tolerance matrix in Table 2, the tolerance function is as follows: 
(3)  ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 4 1 1 1 1 3 4 1 2 1 2 1 2,..., .d a a a a a a a a a a a a a aΔ = + + + +  

It is shown in [1, 6], that the discernibility matrix and discernibility function 
are very important tools for calculation and analysis of reducts in complete decision 
tables. As a consequence of this fact, we also use the tolerance matrix and the 
tolerance function to solve reduct calculation problems in incomplete decision 
tables. 

In the sequel, we define the reduct based on a tolerance matrix and prove that 
the reduct based on a tolerance matrix is equivalent to the reduct based on a 
generalized decision [2]. 

Definition 2. Let { }( )IDS ,U A d= ∪  be an incomplete decision table and 

( ) ( )( ), : ,d dM A D x y x y U= ∈  is the tolerance matrix of IDS. If R A⊆  satisfies 

( ) ( ) ( )
( ) { } ( )
1 , , , , ,

2 , is not satisfied 1

for anyd dR D u v D u v u v U

r R R R r

∩ ≠ ∅ ≠ ∅ ∈

′∀ ∈ = −
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then R is called a reduct of IDS based on tolerance matrix. 
Theorem 1. Let { }( )IDS ,U A d= ∪  be an incomplete decision table and 

( ) ( )( ), : ,d dM A D u v u v U= ∈  is the tolerance matrix of IDS. For any attribute set 
R A⊆ , if ( )( ) ( )R Au u u U∂ = ∂ ∀ ∈  then   

( ) ( )( ), , , ,d dR D u v D u v u v U∩ ≠ ∅ ∀ ≠ ∅ ∈ . 
P r o o f. Suppose that there exists ( )0 0,dD u v ≠ ∅  such that 

( )0 0,dR D u v∩ = ∅ . Since ( )0 0,dD u v ≠ ∅ , then ( ) ( )0 0Ad v u∉ ∂ . 
Because ( )0 0,dR D u v∩ = ∅ , according to the definition of a tolerance matrix we 
have ( ) ( )0 0, SIM ,u v R∈  that is ( )0 0Rv S u∈ or ( ) ( )0 0Rd v u∈ ∂ .  From 

( ) ( )0 0Ad v u∉ ∂ , ( ) ( )0 0Rd v u∈ ∂  we can conclude that 0 0( ) ( )R Au u∂ ≠ ∂ . This is in 
contradiction with the precondition, so the assumption is not true, thus 

( ) ( )R Au u∂ = ∂  holds for any u U∈ . 

Theorem 2. Let { }( )IDS ,U A d= ∪  be an incomplete decision table and 

( ) ( )( ), : ,d dM A D u v u v U= ∈  is the tolerance matrix of IDS. For any attribute set 
R A⊆ , if ( ) ( )( ), , , ,d dR D u v D u v u v U∩ ≠ ∅ ∀ ≠ ∅ ∈  then ( )( ) ( )R Au u u U∂ = ∂ ∀ ∈ . 

P r o o f. Suppose that there exists 0u U∈  such that 0 0( ) ( )R Au u∂ ≠ ∂ . Because 

0 0( ) ( )A Ru u∂ ⊆ ∂ , then there exists 1d such that 1 0 1 0( ) ( )R Ad u d u∈ ∂ ∧ ∉ ∂ . Suppose 
that ( )1 1d d u= , it is easy to see that ( )1 0Ru S u∈  and ( )1 0Au S u∉ . 
From ( )1 0( )Ad u u∉ ∂  and ( )1 0Au S u∉ , we have ( )0 1,dD u u ≠ ∅ . For any 

( )0 1,da D u u∈  we have ( ) ( ) ( ) ( )0 1 0 1and anda u a u a u a u≠ ≠ ∗ ≠ ∗ . From 

( )1 0Ru S u∈ , ( )1 0Au S u∉  we can conclude that a A R∈ − . This implies that 

( )0 1,dD u u R∩ = ∅ .  This is in contradiction with the precondition, so the 
assumption is not true, thus ( ) ( )R Au u∂ = ∂  holds for any u U∈ . 

Theorem 3. Let { }( )IDS ,U A d= ∪  be an incomplete decision table. Then, the 
reduct of IDS based on generalized decision is the same as the reduct based on a 
tolerance matrix. 

P r o o f.  Suppose that ( )RED IDS  is the set of all reducts of IDS based on a 
generalized decision and ( )IRED IDS  is the set of all reducts of IDS based on a 
tolerance matrix.  

(1) For any ( )RED DSR ∈  we have ( )( ) ( )R Au u u U∂ = ∂ ∀ ∈ , according to 
Theorem 1, we have ( ) ( )( ), , , ,d dR D u v D u v u v U∩ ≠ ∅ ∀ ≠ ∅ ∈ . Moreover, if there 

exists '

0 ,u U R R∈ ⊂  such that ' 0 0( ) ( )AR
u u∂ ≠ ∂ , according to the method proving 

Theorem 2, we can conclude that there exists 0 1,u u U∈  such that 



 124

( ) '

0 1,dD u u R∩ = ∅ . According to Definition 2, R  is a reduct of IDS based on a 
tolerance matrix. This implies that ( ) ( )RED IDS IRED IDS⊆  

(2) For any ( )IRED DSR ∈  we have ( ) ( )( ), , , ,d dR D u v D u v u v U∩ ≠ ∅ ∀ ≠ ∅ ∈ , 
according to Theorem 2, we have ( )( ) ( )R Au u u U∂ = ∂ ∀ ∈ . Moreover, if there exists  

'R R⊂ , ( )0 0,dD u v ≠ ∅ , such that ( )'

0 0,dR D u v∩ = ∅ , according to the method 
proving Theorem 1, we can conclude that there exists 0u U∈ such that 

' 0 0( ) ( )AR
u u∂ ≠ ∂ . According to Definition 1, R  is a reduct of IDS based on the 

generalized decision. This implies that ( ) ( )IRED IDS RED IDS⊆ . 
From (1) and (2) we have ( ) ( )RED IDS =IRED IDS . In other words, the reduct 

based on a generalized decision is the same as the reduct based on a tolerance 
matrix. 

It is shown from Theorem 3 and the Boolean reasoning approach that the 
reduct calculation problem in incomplete decision tables is the same as that in 
complete decision tables [1, 6]. This means that the set of attributes 

{ }
1
, ...,

ji iR a a= is a reduct in an incomplete decision table if and only if the 
monomial 

1

...
jR i im a a= ⋅ ⋅  is a prime implicant of ( )1 , ...,d ka aΔ . As a consequence of 

this fact, both the problem of searching for minimal length reducts, as well as the 
problem of searching for all reducts of a given incomplete decision table, are  
NP-hard. 

The question is related to the computational complexity of the problems of 
reductive attributes. We will use the tolerance matrix and tolerance function to 
prove that this problem can be solved in polynomial time. Therefore, the proof is 
also based on Boolean reasoning approach. 

The main idea is based on the absorption law in Boolean algebra, which states 
that ( )x x y x+ ⋅ =  and ( )x x y x⋅ + =  where x, y are some Boolean functions. 
In other words, in Boolean algebra, the longer expressions are absorbed by the 
shorter ones. For the Boolean function in (1), ( )1a  absorbs ( )1 2a a+ . 

The Boolean expression is called the irreducible CNF if it is in CNF 
(Conjunctive Normal Form) and it is not possible to apply the absorption law on its 
clauses. 

As an example, the irreducible CNF of the discernibility function in (1) is as 
follows: ( ) ( )1 4 1 3 4, ...,d a a a a aΔ = ⋅ + . We have the following  

Theorem 4. For any incomplete decision table { }( )IDS ,U A d= ∪ . If   

( )
1 2

1 , ...,
m

d k
a C a C a C

a a a a a
∈ ∈ ∈

Δ = ⋅ ⋅ ⋅ ⋅
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

is the irreducible CNF of discernibility function ( )1,...,d ka aΔ then 

( )
1

REAT IDS .
m

i
i

C
=

=∪  

P r o o f: We will prove the inclusion in both directions that Equation 2 holds: 
(1) Let ( )REAT IDS .a ∈  From the definition, there exists a reduct 

( ) ,RED IDSR ∈  such that a R∈ . From Definition 2 we have iR C∩ ≠ ∅  for 

1, ...,i m= . If ia C∉  then i iR a C R C− ∩ = ∩ ≠ ∅ . This implies that if 
1

m

ii
a C

=
∉∪  
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then there exists a subset of { }R a−  which is also a reduct of IDS, and this is a 

contradiction. Hence we have 
1

m

ii
a C

=
∈∪  i.e., 

( )
1

REAT IDS .
m

i
i

C
=

⊆∪  

(2) We can use the fact that the irreducible CNF of a monotone Boolean 
function is unique to prove the inverse inclusion: 

( )
1

REAT IDS .
m

i
i

C
=

⊆∪  

If 
1

m

ii
a C

=
∈∪  and a is a redundant attribute, then 

( ) ( )1

1
1

, ...,
j i

m

d k j
a Ci

a a a
∈=

Δ =
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑∏   and ( ) ( )2

1
1

, ...,
j i

m

d k j
a C ai

a a a
∈ −=

Δ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∏  

are the two different irreducible CNF forms of the discernibility function 
( )1 , ...,d ka aΔ , which is the contradiction. Consequently, if 

1

m

ii
a C

=
∈∪  then 

( )REAT IDSa ∈  i.e. ( )
1

REAT IDS
m

i
i

C
=

⊆∪ . 

The following algorithm is the straightforward application of Theorem 4. 

Algorithm 1: Determining all reductive attributes of an incomplete decision 
table. 

D a t a: an incomplete decision table { }( )IDS ,U A d= ∪ . 
R e s u l t: ( )REAT IDS – the set of all reductive attributes of IDS. 
Step 1. Calculate the tolerance matrix ( )dM A . 
Step 2. Reduce ( )dM A  using the absorption law; assume that 1 , ..., mC C  are the 

nonempty entries of ( )dM A  after reduction. 
Step 3. Return ( )

1
REAT IDS

m

ii
C

=
= ⊆∪  as the set of all reductive attributes of 

IDS. 
If A k= and U n= , then the construction of the tolerance matrix requires 

( )2O n k steps and the reducing phase using an absorption law requires at most 
( )4O n k  steps. Therefore, the problem of calculation of all reductive attributes can 

be solved in ( )4O n k  steps. 
For example, with the incomplete decision table in Table 1, the compact form 

of the tolerance matrix is as Table 2, the irreducible CNF of the discernibility 
function is ( ) ( )1 4 1 3 4, ...,d a a a a aΔ = ⋅ + , that is ( )1 1C a= , ( )2 3 4C a a= + . 
Consequently, ( ) { }1 3 4REAT IDS , ,a a a=  and ( ) { }2REDU IDS a= . 

4. Conclusions 
In this paper we have presented an approach to the problem of determining the set 
of all reductive attributes for an incomplete decision table. The approach is based 
on tolerance matrix and Boolean reasoning methodology. As a result, an algorithm 
for determining the set of all reductive attributes of an incomplete decision table 
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was proposed. We also proved that the time complexity of the proposed algorithm 
is polynomial in the number of rows and columns of the incomplete decision table. 
This result shows that we can determine all redundant attributes in incomplete 
decision tables in polynomial time. This plays an important role in eliminating 
redundant attributes in incomplete decision tables before rule extraction. However, 
the method proposed seems to have quite high complexity. In the worse case, the 
proposed solutions may need ( )4O n k  steps, where n is the number of objects and k 
is the number of attributes in the incomplete decision table. 

We are planning to work on more efficient methods to reduce the time 
complexity of the proposed solutions. The idea may be based on the attempt to 
realize the same algorithms without implementation of a tolerance matrix. 
Acknowledgments. This work was funded by Vietnam’s National Foundation for Science and 
Technology Development (NAFOSTED) via a research grant for fundamental sciences, Grant 
number: 102.01-2010.09. 

R e f e r e n c e s 
1. H u n g  S o n  N g u y e n. Approximate Boolean Reasoning. Foundations and Applications in Data 

Mining. − Transactions on Rough Sets, Vol. 5, 2006, 334-506. 
2. K r y s z k i e w i c z, M. Rough Set Approach to Incomplete Information Systems. − Information 

Science, Vol. 112, 1998, 39-49. 
3. N g u y e n  L o n g  G i a n g, V u D u c T h i. Some Problems Concerning Condition Attributes 

and Reducts in Decision Tables. – In: Proceeding of the Fifth National Symposium “Fundamental 
and Applied Information Technology Research” (FAIR), Dong Nai, Viet Nam, 2012, 142-152. 

4. P a w l a k, Z. Rough Sets. – In: International Journal of Information and Computer Sciences,  
Vol. 11, 1982, 5341-5356. 

5. P a w l a k, Z. Rough Sets − Theoretical Aspects of Reasoning about Data. Dordrecht, Kluwer 
Academic Publishers, 1991. 

6. S k o w r o n, A., C. R a u s z e r. The Discernibility Matrices and Functions in Information 
Systems. – In: Słowi´nski [8]. Chapter 3. 331-362. 

7. S k o w r o n, A., Z. P a w l a k,  J. K o m o r o w s k i, L. P o l k o w s k i. A Rough Set Perspective 
on Data and Knowledge. – In: W.Kloesgen and ˙ J. Zytkow, Eds. Handbook of KDD. Oxford, 
Oxford University Press, 2002, 134-149. 

8. R. Słowi´nski, Ed. Intelligent Decision Support − Handbook of Applications and Advances of the 
Rough Sets Theory. Vol. 11 of D: System Theory, Knowledge Engineering and Problem Solving. 
Dordrecht, Netherlands, Kluwer Academic Publishers, 1992. 

 
 


