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Abstract: An estimation approach that allows recovering of the traffic state is 
proposed in this paper. The method used is based on numerical differentiation, 
which does not need any integration of differential equations and turns out to be 
quite robust with respect to perturbations and measurements noises. Numerical 
simulations, carried-out by using the so-called Cell Transmission Model (CTM) 
demonstrate the relevance of the proposed on-line estimation scheme. 
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1. Introduction 

Dynamic traffic management and control systems are becoming the most common 
solutions to alleviate the daily problem of congestion. Indeed, several studies have 
confirmed the efficiency of such systems in improving traffic flow networks and 
ensuring safe displacement of goods and people. They also contribute to pollution 
reduction. Traffic control in freeway networks consists of the use of several actions 
and measurements, such as dynamic speed limits, route guidance, ramp metering 
[16, 13].  
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Most of these strategies are based on the use of a macroscopic model. 
Nevertheless, the performance of any strategies requires accurate information about 
the traffic state1. Such information is often provided by a set of loop detectors. As 
stated in [14], the loop detector data is frequently incomplete or contains bad 
samples. In most cases, the available sensors are faulty. Therefore, the use of online 
state estimation schemes becomes necessary in order to provide the whole traffic 
information needed. It is important to underline that the works devoted to traffic 
state estimation are few. In the frame of surveillance systems, [15] and [23] have 
developed a method based on time series of speed and flow data from a set of 
sensors in order to generate estimates of vehicles accounts. These crude estimates 
are then filtered using a Kalman filter. This method has two major drawbacks. 
Firstly, it requires large data storage and becomes then impracticable. Secondly, the 
use of a Kalman filter is mostly adapted for linear models, while the measurements 
are a nonlinear function of the state variables. [18] and [19] have considered the 
problem of processing data at a fixed spatial location to produce estimates of spatial 
average quantities. As stated in [21], with good initial conditions, Nahi’s method 
shows the ability to estimate the density closely in homogeneous situations [20]. In 
[14], an estimation scheme was proposed based on a nonlinear switching model. In 
[15], M u ñ o z  et al. have used a semi-automated method based on the least-
squares techniques. In [22] K o h a n  has introduced a robust sliding mode observer 
in order to predict the freeway traffic states, such as traffic density and velocity. 
Such a method, though robust, suffers of the chattering phenomena. 

Notice that the widely used traffic state estimations methods are stemming 
from Kalman filtering techniques. In this context, [23] for example, has proposed an 
Extended Kalman filter using second order models (see also [24] for a general 
approach to real-time freeway estimation of both state and parametric estimations). 
See also, e.g. [16] as a comparison study of several filters configurations for 
freeway traffic state estimation). However, although such methods are more 
adapted when the set of the measurement and model uncertainties are assumed to be 
white noise with normal distributions, in practice this assumption is valid only for 
traffic measurements, and the uncertainties involved in the model equations, such as 
disturbances and modeling errors, cannot be simply regarded as white noise. 
Moreover, several difficulties are still persistent with respect to tuning (gain 
schedule), numerical analysis (Riccati’s equation where the precise statistics of the 
noise has to be quite accurately known), and sensitivity to perturbations. Other 
works given in [25] have proposed an estimation scheme based on a particle filter. 
Such a method was formulated within a Bayesian recursive framework where the 
traffic state is modeled as a hybrid stochastic system (see, e.g., [7]). 

The main objective of this paper is to deal with traffic state estimation using 
the recent advances on the algebraic methods in order to provide a real-time state 
estimation of the traffic density of freeway sections. Such an estimation method, 
which is of algebraic character, was developed by M. Fliess et al. (see [9]), and it 
differs from other approaches of this type because it involves the use of differential 
                                                 
1 Traffic density (or occupancy) represents the basic state variable of the most available traffic  
flow models. 
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geometry. As mentioned in [4], the method is applied to obtain an estimate of the 
derivative from any signal, thus avoiding reliance on the system model at least in 
the estimation of states2. The proposed approach assumes that the so-called Cell 
Transmission Model (CTM), which was developed by D a g a n z o [1], models the 
studied system.  

The paper is organized as follows. Section 2 describes the principle of CTM. 
Section 3 recalls a short background of the proposed algebraic method and its 
application for density estimation. Some numerical simulations are provided in 
Section 4. Finally, the last section presents some conclusions and next step 
investigations.  

2. Cell Transmission Model principles  

Macroscopic traffic flow models are based on the conservation of the vehicles law 
that reads:  

(1)   ∂ρ
∂t

+ ∂q
∂x

= 0  

where x  is the longitudinal position along the freeway, t  is the time; ( ),x tρ   and 

( ),q x t  are respectively, the vehicle density at position x  and time t , and the 
traffic flow in vehicles per hour (veh/h). 

In this paper the macroscopic cell-transmission traffic model was selected due 
to its analytical simplicity and ability to reproduce important traffic behavioral 
phenomena, such as the backward propagation of a congestion wave. Nevertheless, 
while CTM uses the cell occupancy, we use for simplicity, the cell density as state 
variables and acceptations, following [14] for nonuniform cell lengths. We also 
consider space discrete modeling. 

Consider the following simple section depicted in Fig. 1.  

 
Fig. 1. Example of a freeway section 

For space discrete representation, define the traffic density ρi  as the number 
of vehicles in segment i  at time t , divided by the segment length Li . The traffic 
volume qi−1 in veh/h is defined as the number of vehicles entering segment i ; qi  is 
the number of vehicles leaving segment i .  
                                                 
2 It should be emphasized that the proposed method does not use any probabilistic or optimization 
techniques [8]. 
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The equation of the nonlinear model for each freeway segment is as follows:  

(2)   ( ) ( ) ( ) ( ) ( )( )1
1

t i i i i i i
i

t q t q t a r t b p t
L

ρ −= − + −�  

where ai  and bi  are binary variables which indicate respectively the presence or 
the absence of an on-ramp ri t( )  and an off-ramp pi t( ) . The model parameters 
include v , w , maxQ , and ρ j , which are depicted in the following fundamental dia-
gram (Fig. 2). 

 
Fig.2. Fundamental diagram 

They can be uniform over all cells or allowed to vary from a cell to a cell. The 
free-flow speed v  is the average speed, at which the vehicles travel down the 
highway under uncongested (low density) conditions. w  is the average speed at 
which congestion waves propagate upstream within congested (high density) 
regions of the highway. maxQ  is the maximum flow rate and ρj is the jam density. 
ρc , the critical density, is the density at which the free-flow curve ( )Q vρ ρ=  

intersects the congestion curve ( ) ( )jQ wρ ρ ρ= − . The congestion status of cell 

i  is determined by comparing the cell density with critical density: if ρ i < ρ c, i  
the cell has a free-flow status, otherwise ,i c iρ ρ≥  and the cell is said to have a 
congested status. Three different types of intercell connections are allowed: simple 
connection, merge, and diverge. In this paper we will focus on the first one. As 
described in [1] q i t( ) , the flow entering cell i  from the mainline is determined by 
taking the minimum of two quantities:  

(3)   ( ) ( ) ( )( )1min , ,i i iq t S t R t−=  

where ( ) ( )1 1 1 max , 1min , ,i i i iS t v Q− − − −= ρ  is the maximum flow that can be supplied 

by cell i−1 under free-flow conditions. ( ) ( )( )1 , max ,min , ,i i j i i iR t w Q− = ρ − ρ  is the 

maximum flow that can be received by cell i  under congested conditions.  
According to the status of each cell, several modes can be depicted, which 

leads to the so-called Switching-Mode Model (SMM) [15].  Indeed, SMM is a 
hybrid model which switches between a set of linear differential equations, 
depending on the congestion status of the cells and the values of the mainline 
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boundary data (see, e.g. [15] for more explanations and discussions about the 
SMM). As stated in [15], the SMM is a modified version of CTM and can be 
obtained by expressing the inter-cellular qi , as an explicit function of cell density, 

qi = vρi−1 or ( )i j iq w ρ ρ= − , or as a constant, maxiq Q= . According to these 

expressions, a cell i is called “congested-C”, if it is not able to accept the flow 
delivered by its upstream neighboring cell i−1, otherwise it is considered as  
Free-F.  

In the general case, the densities vector gives the state of the system: 
[ ]1, , .Nρ = ρ ρ…  Notice that the loop detectors, located upstream and downstream of 

the studied freeway segment give the measurements of the traffic flow denoted as 
qe  and qs , respectively. 

In the sequel, we consider that two adjacent cells can be in one of the 
following modes: Free-Flow (FF), Congested-Free (FC), and Congested-Congested 
(CC). The main objective then is to design an estimator for these different 
situations using the new algebraic methods of identification. The following section 
recalls a short background of this approach.  

3. Estimation method  

3.1. Background on numerical differentiation 

Numerical differentiation is based on the algebraic setting started by F l i e s s [7],  
F l i e s s  et al. [3-6] and provides a powerful tool for the estimation of derivatives 
of a noisy signal. In this section we just sketch the principle of the method, for more 
details and interesting discussions and comparisons the reader might refer to [8, 12].  

Consider a real-valued signal ( ) ( ) ( )0
0 ,

!

i
i

i

ty t y
i

∞

=
= ∑  which, for sake of 

simplicity, is assumed to be analytic around t = 0 and introduce its truncated Taylor 
expansion:  

(4)   ( ) ( ) ( ) ( )1

0
0 .

!

iN
i N

i

ty t y O t
i

+

=

= +∑  

Approximate y t( )  in the interval ( )0, ,0ε ε β< ≤ by its truncated Taylor 
expansion 

( ) ( ) ( )0
0 ,

!

i
N i

N i

ty t y
i=

= ∑  

of degree N . The usual rules of symbolic calculus in Schwartz’s distributions 
theory yield  

( ) ( ) ( ) ( )1 0 ... ,N NN
Ny t y y+ = δ + + δ  
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where δ  is the Dirac measure at 0 . Multiply both sides by − t( ) i  and using the 

rules ( ) ( )10, , 1i it t i iδ δ δ −= = − ≥  leads to a triangular system of linear equations 

from which derivatives y i( ) 0( )   can be obtained ( )1 ,i N≤ ≤   

(5)   ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 1 0 ... 0 .

!
i N N N i

N
Nt y t y y

N i
+ − −− = δ + + δ

−
 

It means that those quantities are linearly identifiable [2]. The time derivative 
of ( )Ny t , the Dirac measures and its derivatives are removed by integrating with 
respect to time both sides of equation (5) at least v  times v > N( ) : 

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1 1
1 10 0 0

1 1

. . . . . . .

0 ... 0 .
! 1 ! 1 !

vt t t i N
N v

v N i v
N i

y d t d t d

N t ty y
N i v N i v

− +
−

− − − −
−

−τ τ =

= + +
− − − − −

∫ ∫ ∫
 

Remark 1. These iterated integrals are low pass filters, which attenuate the 
noises, which are viewed as highly fluctuating or oscillatory phenomena (see [7] for 
more details).  

Remark 2. An excellent estimated value, which is derived via iterated time 
integrals, may be obtained by utilizing quite short time windows. The above 
formulae may easily be extended to sliding time windows in order to obtain real 
times estimates [12].  

Remark 3. The same calculations can be achieved using the operational 
calculus (see, e.g. [8, 17]).  

3.2.  Traffic densities estimation in a FF mode 

In the case of a Free-Flow mode, all the cells { }2, , ,i N∈ …  are able to accept the 
traffic flow coming from its upstream neighboring cell.  

As demonstrated in [15], the observability results were derived using standard 
linear systems techniques. In the case of FF mode, the studied freeway segment is 
observable from the downstream measurements of qs . 

Consider for simplicity’s sake, the following freeway section with three cells 
(Fig. 3). In the free-flow mode, the density evolution is3 

 
Fig. 3. A freeway section divided into three cells 

                                                 
3 We consider in this paper that all cells are with the same length L . 
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(6)   

( )
( )
( )

1 1 1

2 1 1 1 2

3 2 2 3 3

,

,

.

eL t q v

L t v v

L t v v

⎧ ρ = −ρ
⎪⎪ ρ = ρ −ρ⎨
⎪

ρ = ρ −ρ⎪⎩

�

�

�
 

Let 3 3sq v ρ= and assume that ( ) ( )3y t tρ=  is an output variable. Some 
simple manipulations allow us to express the missing densities values ( ρ2  and 
ρ1 ) as a function of y,  �y , and ��y ,  

(7)   

( )

( )

( )

3

3
2

2 2

2
3 3

1
1 2 1 2 1

,

,

1 .

t y
vLt y y

v v

v vL Lt y y y
v v v v v

⎧
⎪
⎪ ρ =
⎪
⎪ ρ = +⎨
⎪
⎪ ⎛ ⎞⎪ ρ = + + +⎜ ⎟⎪ ⎜ ⎟

⎝ ⎠⎩

�

�� �

 

3.3. Traffic densities estimation in CF mode 

In this case all the cells { }2, ,i N∈ … are not able to accept the traffic flow coming 
from its upstream neighboring cell. Nevertheless, the computation of the 
observability matrix allows concluding that the freeway section is observable from 
the downstream measurements of flow qe . We assume then, that the measured 
variable is y= ρ1 . The traffic model in the CC mode is given as: 

(8)   

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 , 1 1 2 , 2 2

2 2 , 2 2 3 , 3 3

3 3 , 3 3

,

,

.

j j

j j

j s

L t w w

L t w w

L t w q

⎧ ρ = ρ − ρ − ρ − ρ
⎪⎪ ρ = ρ − ρ − ρ − ρ⎨
⎪

ρ = ρ − ρ −⎪⎩

�

�

�

 

where , 1, 2, 3iw i = , represent the wave speeds. 
The same calculations performed above allow us to express the variables 2ρ  

and 1ρ  as follows:  

(9)   

( )

( )

( )

1

1 1
2 , 1 , 2

2 2 2

2
1 1

3 , 1 , 3
2 3 3 3 3 3

,

,

1 1 .

j j

j j

t y

w wLt y y
w w w

w wL Lt y y y
w w w w w w

⎧
⎪
⎪ ρ =
⎪
⎪ ρ = + − ρ +ρ⎨
⎪
⎪ ⎛ ⎞⎪ ρ = + + + − ρ +ρ⎜ ⎟⎪ ⎜ ⎟

⎝ ⎠⎩

�

�� �
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3.4.  Traffic densities estimation in CF mode 

We assume that the first segment is congested, while the second and the third are 
free. The traffic model describing this situation is: 

(10)   

( ) ( ) ( )
( )
( )

1 1 , 1 1 2 , 2 2

2 1 1 2 2

3 3 2

,

,

.

j j

s

L t w w

L t v v

L t v q

⎧ ρ = ρ − ρ − ρ − ρ
⎪⎪ ρ = ρ − ρ⎨
⎪

ρ = ρ −⎪⎩

�

�

�
 

The observability matrix allows confirming that in CF mode it is observable 
from both upstream and downstream measurements. Assuming that 3 ,y ρ=  we 
obtain the same results as in equation (7).  

4. Time derivative estimation  

For the generation of time derivatives of the measured outputs y, consider a 4th 
order approximation of a smooth signal y(t). Thus, it is not necessary to design the 
derivative estimator from a specific dynamic model of the traffic flow.  

(11)   
( )4

4 0.
d y t

d t
=  

Rewriting expression (11) in the operational domain, we get [17]  
(12)    ( ) ( ) ( ) ( ) ( )4 3 20 0 0 0 0.s y s s y s y s y y− − − − =� ��  

In order to eliminate the initial conditions, we take successive derivatives, with 
respect to the operational variable s , until the number of three is obtained:  

(13)   
( )4 4

4 0,
d s y

d s
=  

(14)   ( )
4 3 2

4 3 2
4 3 216 72 96 24 0.d y d y d y d ys s s s y s

d s d s d s d s
+ + + + =  

Multiplying the above equation (14) by 3s −  yields:  

(15)   ( )
4 3 2

1 2 3
4 3 216 72 96 24 0.d y d y d y d ys s s s y s

d s d s d s d s
− − −+ + + + =  

According to the equivalence:  
1

0
,

t
s − → ∫  

( )

0

nns − → ∫ : Multiple integrals. 

Derivative said “algebraic”: 

,d t
d s

→ −  
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( )1
n

n n
n

d t
d s

→ −   and  .
n

n
n

ds
d t

=  

Equations (15) can be expressed in the time domain as follows: 

(16)  ( )( ) ( ) ( )( ) ( )( )( ) ( )( )( )2 34 3 216 72 96 24 0.d t y t t y t t y t ty t y t
d t

− + − + =∫ ∫ ∫  

For simplicity we have used here the following notation: 

(17)   
( )( ) ( )1 1

10 0
. . . . . . .jj tk k

j j jt y y d d−σ σ
= σ σ σ σ∫ ∫ ∫ ∫  

These expressions yield, after some algebraic manipulations, the 
approximations of the first and second order time derivatives of ( )y t :  

(18)   
( )( ) ( )( ) ( )3 2 2 3

4

24 96 72 12
,

e

d y
d t

y t y t y t y

t

⎡ ⎤
=⎢ ⎥

⎣ ⎦

⎡ ⎤− + − +⎢ ⎥⎣ ⎦=
∫ ∫ ∫

 

(19)   
( )( ) ( ) ( ) [ ]( )

2

2

2 2 3

4

24 96 36 8
,

e

e

d y
d t

y t y t y t y

t

⎡ ⎤
=⎢ ⎥

⎣ ⎦

⎡ ⎤− + − +⎢ ⎥⎣ ⎦=
∫ ∫

 

where •[ ] e  is the estimation value. Notice that expression (19) for the second 

order time derivative estimate requires the outcome of the evaluation of the first 
derivative estimate. This is in complete agreement with the announced triangular 
structure of the generating system of equations.  

The above formulas are valid for t > 0. Since (18) and (19) provide an 
approximated value of the first and second derivatives, these are only valid during a 
period of time. Thus the state estimation must be calculated periodically as follows:  

(20)   

( )
( ) ( )( )

( )( ) ( )

3 2

4

2 3

1 24 96

72 12 ,

t t

e

it t
i

i i

d y
d t

y t t y
t t

t t y t t y

⎡ ⎤
=⎢ ⎥

⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦−

⎡ ⎤+ − − + −⎢ ⎥⎣ ⎦

∫ ∫

∫
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(21)   
( )

( ) ( )

( )( ) ( ) [ ]

2

2

2

4

2 3

1 24 96

36 8 ,

i i

e

it t
i

i i e

d y
d t

y t t y
t t

t t y t t y

⎡ ⎤
=⎢ ⎥

⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦−

⎡ ⎤+ − − + −⎢ ⎥⎣ ⎦

∫ ∫

�

 

where 0it t− > is the estimation period.  

5. Simulation results  

In order to illustrate the relevance of the proposed approach, consider the freeway 
section depicted in Fig. 3. For the simulation purpose we consider the following 
traffic demand in vehicles per hours (Fig. 4). 

 
Fig. 4. Traffic demand 

Table 1 summarizes the used model parameters.  
Table 1.  Model parameters 

Parameters Free-flow speed 
(m/s) 

Wave speed 
(m/s) 

Critical density 
(veh/m) 

Jam density 
(veh/m) 

Segment 1 26 6.4 0.05 0.1425 
Segment 2 20 5.9 0.05 0.1425 
Segment 3 18 6.3 0.05 0.1425 

Figs 5 and 6 show the traffic densities time evolution when all the cells are in 
the free-flow situation. A very short time is needed for the developed estimator in 
order to reach the simulated traffic densities.  
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Fig. 5. Traffic densities evolution of the second cell: FF mode 

 
Fig. 6. Traffic densities evolution of the first cell: FF mode 

Fig. 7 confirms the relevance of the algebraic estimation techniques for both 
CC and CF modes.  

 
Fig. 7. Traffic densities evolution of the cells: CC and CF modes 
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6. Conclusion  

The work presented in this paper demonstrates the relevance of the recently 
introduced identification methods for traffic state estimation. Such techniques, 
which are of algebraic character, do not use either optimization, nor probabilistic or 
asymptotic techniques, and lead to robust and fast traffic estimation. The proposed 
approach was successfully applied for the densities estimation of a freeway section 
modelled by using the so-called Switching Mode Model (SMM). It allows the 
estimation of the traffic densities according to the mode of the freeway, i.e., FF, CF 
and CC modes.  

Further works will be focused on a comparative study between the proposed 
approach and the classical one, and the more frequently used in the traffic area state 
estimators, such as the Extended Kalman Filter (EKF). Other research works will be 
realized in order to exploit the approach proposed for dynamic traffic management 
and control measurements design, such as ramp metering, dynamic speed limits and 
dynamic traffic routing.  

Acknowledgement: This paper is partly supported by FP7 project 316087 ACOMIN “Advance 
computing and innovation”. 
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