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Abstract: With the increase of subdivision depths, some problems of common data 
structures for representing the subdivision surfaces appear, such as excessive 
computer memory consumption and low efficiency of the data query which restrict 
the popularization and application of subdivision surfaces in more fields. By 
utilizing the topological characteristics of the subdivision surface, a two-layer data 
structure named CELL is presented in order to better realize the piecewise 
representation of trilateral/quadrilateral subdivision surfaces. The inner structure 
of CELL represents the subdivision surface patch by using arrays, and the outer 
structure of CELL represents the topological relations between the subdivision 
surface patches. Based on Catmull-Clark subdivision scheme, the structural 
compositions of CELL and the realization mechanism of the subdivision algorithm 
are proposed. Additionally, sharp and semi-sharp features are constructed, and a 
primary study on amalgamation of the image/Z-map model and subdivision surface 
is presented. The results of the experimental and theoretical analysis show the 
superior performance of CELL with relation to computer memory consumption, 
data query, subdivision surface computation and algorithm development. 

Keywords: Geometric modeling, subdivision surface, data structure, mesh 
compression. 
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1. Introduction 

The subdivision surface is a very popular geometric modelling method, which can 
be used to create smooth surfaces with arbitrary topological structure that has the 
advantages of strong numerical stability and high execution efficiency. It has been 
successfully applied to computer graphics, film & TV, animation and other fields. 
Appropriate data structure is very important for the geometric representation of the 
subdivision surface, implementation of the subdivision algorithm and development 
of the application algorithm. The ideal data structure must have the following 
features: efficient data query, less computer memory consumption and compact 
topological structure. At present the common data structures of the subdivision 
surface can meet the application requirements in most of the fields. However, with 
respect to the industries requiring higher subdivision depth, such as numerical 
control machining, the rapid increase of the computer memory consumption and the 
low search efficiency have become the bottleneck of the industrial application of 
the subdivision surface. Therefore the study on an appropriate data structure of the 
subdivision surface is of great significance. 

So far, some progress has been achieved in the study on the data structure of 
the subdivision surface. The edge-based data structures (wing-edge data structure 
[1] and half-edge data structure [2]), being able to express polygon meshes of 
arbitrary topological structure and applicable to all kinds of subdivision algorithms 
with a higher neighbourhood search efficiency, are the most common data 
structures for implementation of the subdivision algorithm at present. Based on the 
quadripartition feature of C a t m u l l, C l a r k [1] and L o o p [2] subdivision 
schemes, the quad-tree data structure [5] can be used for multi-resolution editing of 
the subdivision surface. However, when the subdivision depths get higher because 
of excessive pointer references, the two data structures above mentioned not only 
cause the memory consumption rapidly increased, but also become low in 
neighbourhood search efficiency. In order to realize rapid display of Loop 
subdivision surface, P u l l i  and  S e g a l [6] proposed to express Loop subdivision 
surface by the creation of triangle patch pairs, which, however, are highly restricted 
to the structure, and adjacency relationship between triangle patch pairs has not 
been established. O u  and  B i n [7] improved Pulli’s model and proposed a 
solution for the case when the sum of triangular patches is odd with a detailed 
description of the implementation process of Loop subdivision surface. S e t t g a s t  
et al. [8], in his study on the adaptive subdivision of Catmull-Clark subdivision 
surface, put forward to express the subdivision surface patch by a two-dimensional 
array to solve the problem of excessive computer memory consumption for 
subdivision surface. However, definite adjacency relationship between subdivision 
surface patches was not established, and the problem of how to deal with the 
boundary and extraordinary vertex was not discussed.  

In order to solve the above problems, a two-layer data structure named CELL 
is created in this paper for better representation of the subdivision surface by using 
the features of the topological structures of trilateral and quadrilateral subdivision 
surfaces. The fundamental principle of CELL is to express the subdivision surface 
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patch by an array. With its compact and regular structure CELL has better 
performance in such aspects, including computer memory consumption, data query, 
algorithm development, and implementation of the subdivision surface. The 
organization of this paper is as follows. In Section 2 some common subdivision 
schemes are reviewed briefly. In Section 3 concepts and definitions of the data 
structure are proposed. In Section 4 the realization mechanism of a subdivision 
algorithm based on the data structure is described in details. In Section 5 some 
experiments are carried out to test the performance of the data structure. In  
Section 6 some applications of the data structure for a subdivision surface are 
presented. In Sections 7 and 8 discussions and conclusions can be found. 

2. Subdivision surfaces 

The subdivision surface is the limit status of an initial control mesh subject to 
constant subdivision under certain subdivision rules (geometric rule and topological 
rule). Let M0 be an open or closed initial control mesh of arbitrary topology, S be a 
certain subdivision operator and Mn be a control mesh after n times of subdivision. 
Hence, the standard subdivision can be described as a linear process: Mn+1=SMn,  
n = 0, 1, 2, 3. There is a wide variety of subdivision surfaces. They can be divided 
into an approximating subdivision scheme and interpolating subdivision scheme 
according to whether the limit surface is interpolated with the vertices of the control 
mesh, or they can be divided into a trilateral subdivision scheme and quadrilateral 
subdivision scheme according to the shape of the control mesh after subdivision, or 
they can be divided into a dual subdivision scheme and primal subdivision scheme 
according to the rules of topological splitting, a dual subdivision scheme is vertex 
splitting and a primal subdivision scheme is face splitting respectively. Several 
subdivision schemes widely used at present are listed in Table 1. 

Table 1.  Classification of common subdivision schemes 
Subdivision scheme Approximating Interpolating Trilateral Quadrilateral Primal Dual 

C a t m u l l-C l a r k [1] *   * *  
L o o p [2] *  *  *  

D o o, S a b i n [9] *   *  * 
Quad/triangle [10] *  * * *  

Butterfly [11]  * *  *  

No matter what the subdivision scheme is, according to the local correlation of 
the geometric rule, a subdivision surface model with complex structure can be 
divided into several mutually independent subdivision surface patches (SSP). 
Moreover, each SSP can be computed independently. According to the splitting 
consistency of the topological rule, each SSP of the same subdivision scheme has 
the same topological structure. As shown in Fig. 1, Catmull-Clark and Loop 
subdivision models, shown in Fig. 1(a) and Fig. 1(c) can be divided naturally into 
several trilateral and quadrilateral SSPs, as shown in Fig. 1(b) and Fig. 1(d) with the 
same topological structure respectively. Compared with the general polygon mesh, 
the properties above mentioned can be regarded as topological characteristics of the 
subdivision surface, which provides the theoretical basis for CELL construction. 
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Fig. 1. Piecewise representation for subdivision surfaces 

3. Concepts and definitions 

By using the topological characteristics of the subdivision surface, a two-layer data 
structure called CELL is constructed for representing trilateral/quadrilateral 
subdivision schemes. CELL falls into an inner structure and outer structure, of 
which the former is composed of: a cell array denoted as Ac, auxiliary “boundary” 
subdivision structure denoted as Ae and auxiliary “corner vertex” subdivision 
structure denoted as Av. As shown in Figs 2 and 3, Fig. 2(a) and Fig. 3(a) show an 
initial control mesh of Catmull-Clark/Loop subdivision schemes comprised of SSP 
and relevant neighborhood information, Fig. 2(b), Fig. 3(b), Fig. 2(c) and Fig. 3(c) 
indicate the relationship between the mesh vertices and CELL. 

 
Fig. 2. Components of CELL for Catmull-Clark subdivision scheme 

 
Fig. 3. Components of CELL for Loop subdivision scheme 
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3.1. Cell array 

According to the topological structure of SSP of the quadrilateral subdivision 
scheme, the two-dimensional array is the best structure to represent SSP. 
Meanwhile, according to the topological structure of SSP of the trilateral 
subdivision scheme, array of arrays can be used to represent SSP. Two-dimensional 
array and array of arrays above mentioned can be collectively called cell array. The 
goal of creation of the cell array is to represent SSP by recording the data 
information of the mesh vertices of SSP. The topological information between the 
geometrical elements (vertex, edge and face) of SSP is implied in the row/column 
index relations of the cell array. 

3.2. Auxiliary subdivision structure 

The SSP cannot perform a subdivision operation only with its own data 
information. Some auxiliary subdivision structures must be constructed to provide 
the necessary data information for assisting the successful subdivision of SSP. 
According to different effects of the auxiliary subdivision structures, the auxiliary 
subdivision structures can be classified into two types: auxiliary boundary 
subdivision structure and auxiliary corner vertex subdivision structure. Based on 
one-dimensional array, the auxiliary boundary subdivision structure can be 
constructed by recording the data information about a column of vertices adjacent 
to a “boundary” of SSP. Based on one-dimensional array, the auxiliary corner 
vertex subdivision structure can be constructed by recording the data information 
about a “corner vertex” of SSP and its 1-neighborhood. 

3.3. Outer structure of CELL 

The goal of creation of the outer data structure is to realize inter-SSP data search for 
algorithm development and implementation of the subdivision surface by using the 
topological relations between SSPs. Since the topological relations between SSPs 
remain unchanged after subdivision, they can be expressed by recording the 
topological structure of the initial control mesh. In order to cope with the arbitrary 
topological structure of the initial control mesh, half-edge and winged-edge data 
structures can be used as an outer structure of CELL. 

4. Implementation of Catmull-Clark subdivision algorithm 

In view of the typicality of Catmull-Clark subdivision algorithm, Catmull-Clark 
subdivision algorithm is taken as an example to describe the realization mechanism 
of a subdivision algorithm based on CELL. The essence of CELL is to achieve 
piecewise representation of the subdivision surface. The subdivision of CELL also 
follows the common subdivision rules. As shown in Fig. 4, the hollow square dots 
are the new vertices and the circle dots are the original vertices. A new face-vertex 
as shown in Fig. 4(a) is computed as the average of all original vertices defining the 
face. A new edge-vertex as shown in Fig. 4(b) is computed as the average of the 
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original vertices defining the edge and two new face-vertices of the faces sharing 
the edge. A new vertex-vertex as shown in Fig. 4(c) is computed by the linear 
combination of the original vertex and its 1-ring neighbours. A new boundary edge-
vertex as shown in Fig. 4(d) is computed as the average of the original vertices 
defining the boundary edge. A new boundary vertex-vertex as shown in Fig. 4(e) is 
computed by the original boundary vertex and other two boundary vertices defining 
the boundary edge. 

 
Fig. 4. Catmull-Clark subdivision masks 

4.1. Subdivision of a cell array 
According to different topological positions of the new vertices, new vertices 
generated from Ac, the subdivision can be divided into two categories: an internal 
new vertex and a boundary new vertex. The basic types of the internal new vertex 
mainly include the new face-vertex, new edge-vertex and new vertex-vertex. The 
basic types of the boundary new vertex mainly include the new boundary edge-
vertex, new boundary vertex-vertex and new corner-vertex. As shown in Fig. 5, a 
big hollow dot is the original vertex of Ac. The solid circle dot, solid square dot and 
solid triangular dot are the new face-vertex, internal new vertex-vertex and internal 
new edge-vertex respectively. The hollow triangular dot, hollow square dot and 
hollow circle dot are the boundary new edge-vertex, internal new vertex-vertex and 
new corner-vertex respectively. 

 
Fig. 5. Basic types of new vertices for subdivision of a cell array 
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Fig. 6. Catmull-Clark subdivision masks for a cell array 

After n times of subdivision, the new vertices in Ac total up to (2n+1)2, 
including 4n–1 new face vertices, (2n–1−1)2 internal new vertex vertices, 22n–1−2n 
internal new edge vertices, 2n+1−4 boundary new vertex vertices, 2n+1 boundary new 
edge vertices and 4 new corner vertices. As shown in Fig. 5, after 3 times of 
subdivision, the new vertices in Ac total up to 81, including 16 new face vertices, 9 
internal new vertex vertices, 24 internal new edge vertices, 12 boundary new vertex 
vertices, 16 boundary new edge vertices and 4 new corner vertices. From the 
viewpoint of programming implementation, a concept of the “reference point” is 
introduced. The reference points refer to the vertices at the particular positions 
before Ac subdivision. During Ac subdivision, the geometric calculation of the new 
vertices and their topological positions are closely related to the reference points. In 
Fig. 6 are shown the subdivision masks for computing the new face-vertex, internal 
new edge-vertex I and II, internal new vertex-vertex, fake and real boundary new 
edge-vertex, fake and real boundary new vertex-vertex, and new corner-vertex, the 
hollow circle dots are the reference points, the square dots are the new vertices and 
the circle dots are the original vertices. From the viewpoint of geometric calculation 
of new vertices, the new vertices of Ac still follow the basic subdivision rule. The 
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subdivision mask as shown in Fig. 6(a) is essentially the subdivision mask of the 
new face-vertex. The subdivision masks as shown in Fig. 6(b), Fig. 6(c) and Fig. 
6(e) are essentially the subdivision mask of the new edge-vertex. The subdivision 
masks as shown in Fig. 6(d), Fig. 6(g) and Fig. 6(i) are essentially the subdivision 
mask of the new vertex-vertex. The subdivision masks as shown in Fig. 6(f), Fig. 
6(h) are essentially the subdivision masks of the new boundary edge-vertex and 
new boundary vertex-vertex respectively.  

Assuming the subdivided Ac as Acs and the reference point as Ac(i, j), it is very 
important to determine the topological position of the new vertex in the process of 
Ac subdivision. As shown in Fig. 5, the full lines show the topological structure of 
Ac and the dotted lines show the topological structure of Acs. If the size of Ac is K.K, 
the size of Acs is (2K−1).(2K−1). And based on that, the topological position of each 
type of a new vertex can be deduced from the reference point as shown in Fig. 6. 
For example, as shown in Fig. 6(b), if the reference point is indicated by Ac(i, j), the 
new edge-vertex can be indicated by Acs(2i−1, 2j). The relations between the 
geometric calculation/topological position of the new vertices and the reference 
points are shown as follows: 

The new face-vertex expressed as a square dot in Fig. 6(a):  

(1)  ( )1
(2 , 2 ) ( , ) ( 1, ) ( , 1) ( 1, 1)

4
.cs c c c cA i j A i j A i j A i j A i j= + + + + + + +  

The internal new edge-vertex I expressed as a square dot in Fig. 6(b): 

(2)  
( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) .

32 1, 2 , , 18
1 1, 1, 1, 1 1, 116

c ccs

c c c c

A i j A i j A i j

A i j A i j A i j A i j

− = + + +

+ − + + + − + + + +
 

The internal new edge-vertex II expressed as a square dot in Fig. 6(c): 

(3)  
( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) .

32 , 2 1 , 1,8
1 , 1 , 1 1, 1 1, 116

c ccs

c c c c

A i j A i j A i j

A i j A i j A i j A i j

− = + + +

+ − + + + + − + + +
 

The internal new vertex-vertex expressed as a square dot in Fig. 6(d): 

(4)  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

.

1, 1,9 32 1, 2 1 ,16 32 , 1 , 1

1, 1 1, 11
64 1, 1 1, 1

c c
cs c

c c

c c

c c

A i j A i j
A i j A i j

A i j A i j

A i j A i j
A i j A i j

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
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⎝ ⎠

+ + −
− − = + +

+ + + −

+ − + + +
+

+ − − + − +

 

The fake boundary new edge-vertex expressed as a square dot in Fig. 6(e): 
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(5)  
( ) ( ) ( )( )
( ) ( ) ( ) ( )( )1 1 .

32 , 1 , 1 1, 18
1 , 2 1, 2 116

c ccs

c c e e

A i A i A i

A i A i A i A i

= + + +

+ + + + + +
 

The real boundary new edge-vertex expressed as a square dot in Fig. 6(f): 

(6)   ( ) ( ) ( )( ) .
12 , 1 , 1 1, 12 c ccsA i A i A i= + +   

The fake boundary new vertex-vertex expressed as a square dot in Fig. 6(g): 

(7)  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1 1
.

1, 1 1, 19 32 1, 1 , 116 32 , 2

1, 2 1, 21
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c e

c c

e e

A i A i
A i A i

A i A i

A i A i
A i A i

⎛ ⎞
⎜ ⎟
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⎝ ⎠

⎛ ⎞
⎜ ⎟
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⎝ ⎠

+ + −
− = + +

+ +

+ + −
+

+ + + −

  

The real boundary new vertex-vertex expressed as a square dot in Fig. 6(h): 

(8)   ( ) ( ) ( ) ( )( ) .
3 12 1, 1 , 1 1, 1 1, 14 8 c ccs cA i A i A i A i− = + + + −   

The new corner-vertex expressed as a square dot in Fig. 6(i): 

(9)  ( ) ( ) ( ) ( ),, 1 2 2 1
1 1cs v v v

m m
A i j A A i A i

i i
= + + +∑ ∑

= =
α β λ   

where m is the valance of corner-vertex, 2

3 ,
2m

=β , 2

1 ,
4m

=λ  1 m mα β λ= − − . 

4.2. Subdivision of auxiliary subdivision structure 

To ensure successful updating of Ac, corresponding updating mechanisms are 
required for Ae and Av. The basic types of new vertices of Ae include a new face-
vertex and a new edge-vertex. And the basic types of the new vertices of Av include 
a new face-vertex, a new edge-vertex and a new vertex-vertex. As shown in Fig. 7, 
the hollow circle dot is the original vertex of Ae, the solid circle dot and solid 
triangular dots are the new face-vertex and new edge-vertex. The hollow square 
dots are the original vertices of Av. The solid circle dot, solid triangular dot and 
solid square dot are the new face-vertex, new edge-vertex and new vertex-vertex. 
After n times of subdivision, the new vertices in Ae total up to 2n+1, including 2n–1 

new face vertices and 2n–1+1 new edge vertices. The new vertices in Av total up to 
2m+1 (m is the valence of the corresponding corner vertex), including m new face 
vertices, m new edge vertices and 1 new vertex. In Fig. 8 are the subdivision masks 
for computing the new face-vertex, new edge-vertex and subdivided Av, the hollow 
circle dots are the reference points for computing new vertices.  
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Fig. 7. Basic types of new vertices for subdivision of auxiliary subdivision structure 

 
Fig. 8. Catmull-Clark subdivision masks for auxiliary subdivision structure 

Assuming the subdivided Ae as Aes and subdivided Av as Avs, the relations 
between the geometric calculation/topological position of the new vertices and the 
reference points are shown as follows: 

The new face-vertex expressed as a square dot in Fig. 8(a): 

(10)  ( ) ( ) ( ) ( ) ( )( )1 .1 1
12 , 1 1, 1 14 c ce s e eA i A i A i A i A i= + + + + +   

The new edge-vertex expressed as a square dot in Fig. 8(b): 

(11)  
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
11

1 1 .

32 1 , 18
1 1, 1 1, 1 1 116

c ee s

c c e e

A i A i A i

A i A i A i A i

− = + +

+ + + − + − + +
  

Avs expressed as circle dots in Fig. 8(c): 

(12)  ,vs m vA M A=  

where Av and Avs are column vectors of ordered vertices formed by corner vertices 
and their 1-neighborhood points before and after the subdivision respectively; Mm is 
the subdivision matrix deduced based on the valences m of the corner vertices and 
the column vectors of the ordered vertices. 
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5. Algorithm test 

Some experiments are carried out to implement the subdivision algorithm and 
evaluate the performance of CELL in computer memory consumption and the 
computing time of SSP. We have implemented our approach on Windows 7 64-bit 
operating system using Matlab7.13 software and run on an i5-3570k processor PC 
with 4GB RAM. 

5.1. Implementation of Catmull-Clark subdivision surface 

As shown in Fig. 9, Fig. 9(a) and Fig. 9(c) show the initial control mesh of Catmull-
Clark subdivision surface, Fig. 9(b) and Fig. 9(d) show the corresponding results of 
Catmull-Clark subdivision algorithm implementation by using CELL. The 
experiment results show that either open or closed Catmull-Clark subdivision 
surfaces can be represented well by CELL. 

 
Fig. 9. Implementation of Catmull-Clark subdivision surface 

5.2. Computer memory consumption 

Since SSP is the data element of CELL, SSP can be used as a test model for testing 
the performance of CELL with relation to Computer Memory Consumption (CMC). 
Under different conditions of the subdivision time, the test results of computer 
memory consumption for implementation of Catmull-Clark SSP by CELL are 
recorded in Table 2. 
Table 2. Computer memory consumption 

Subdivision times 1 2 3 4 5 6 7 8 9 10 
CMC: measured in Mega-Bytes 0.00003 0.0001 0.0003 0.001 0.004 0.016 0.066 0.264 1.052 4.202 

5.3. Computing time 
In the same way, SSP is used as a test model for testing the performance of CELL 
with respect to the Computing Time (CT). Under different conditions of the 
subdivision time, the test results of the computing time for implementation of 
Catmull-Clark SSP by CELL are recorded in Table 3. 

Table 3. Computing time 
Subdivision times 1 2 3 4 5 6 7 8 9 10 

CT: measured in seconds 0.001 0.004 0.007 0.013 0.026 0.054 0.167 0.609 2.367 9.603 
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6. Algorithm development 

The data structure plays an important role in developing relevant algorithms of 
subdivision surface. By virtue of simple intra-SSP topological relationship and 
explicit inter-SSP topological structure, CELL not only reduces the difficulty in 
algorithm implementation and cuts the algorithm development cycle, but also 
enables good readability and portability in program codes and easy program 
maintenance.  

6.1. Implementation of Loop, Doo-Sabin and Quad/triangle subdivision algorithms 

In addition to Catmull-Clark subdivision algorithm, CELL is also applied to 
implement Loop, Doo-Sabin and Quad/triangle subdivision algorithms. The key to 
subdivision algorithm implementation is the creation of corresponding Ac. In respect 
of quadrilateral subdivision scheme, the corresponding Ac can be created by using a 
two-dimensional array. For a trilateral subdivision algorithm, the corresponding Ac 
can be created by using array of arrays. The creation methods for Ae and Av are 
essentially the same. As shown in Fig. 10, Fig. 10(a), Fig. 10(c) and Fig. 10(e) show 
the initial control meshes of Loop, Doo-Sabin, Quad/triangle subdivision surface, 
Fig. 10(b), Fig. 10(d) and Fig. 10(f) show the subdivision models of Loop, Doo-
Sabin and Quad/triangle subdivision surface. 

 

Fig. 10. Implementation of Loop, Doo-Sabin and Quad/triangle subdivision surface 

6.2. Establishment of sharp and semi-sharp features 

Smooth surface can be created by a subdivision algorithm, but real objects often 
have sharp and semi-sharp features. In order to enhance the modelling capability of 
the subdivision surface, H o p p e  et al. [12] proposed methods to establish sharp 
and semi-sharp features for the subdivision surface. Sharp and semi-sharp features 
of the subdivision surface can also be established efficiently by CELL. As shown in 
Fig. 11, Fig. 11(a) shows an initial control mesh; Fig. 11(b) shows a Catmull-Clark 
subdivision surface without sharp and semi-sharp features, Fig. 11(c) shows a 
Catmull-Clark subdivision surface with semi-sharp features, Fig. 11(d) shows a 
Catmull-Clark subdivision surface with a sharp feature. 
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Fig. 11. Sharp and semi-sharp features 

6.3. Amalgamation of image/Z-map models with subdivision surface 

CELL records the information of the subdivision surface patch via a two-
dimensional array, and image and Z-map models also record the information of the 
image and graph through a two-dimensional array. In order to enhance the modeling 
capability of the subdivision surface, an attempt is made to study the amalgamation 
of the image/Z-map models with Catmull-Clark subdivision surface. As shown in 
Fig. 12, Fig. 12(a) shows a character image; Fig. 12(c) shows a graphic image, and 
Fig. 12(b) and Fig. 12(d) show subdivision surfaces combined with an image. As 
shown in Fig. 13, Fig. 13(a) and Fig. 13(c) show Z-map models, Fig. 13(b) and  
Fig. 13(d) show subdivision surface amalgamated with Z-map model. 

 
Fig. 12. Amalgamation of an image with subdivision surface 

 

 
Fig. 13. Amalgamation of Z-map model with subdivision surface 
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7. Discussions 

7.1. Computer memory consumption 

With regard to the subdivision surfaces, the computer memory consumption is 
mainly used to store the geometrical information of the subdivision surface vertices 
and the information of the topological structure among mesh vertices, edges and 
faces. The latter part accounts for a large percent of memory consumption. The 
computer memory consumption of the subdivision surface is increased 
exponentially with the increase of the subdivision times. However, CELL has a 
significant advantage in saving the computer memory consumption. Based on 
CELL, the topological information of the subdivision surface can be divided into 
intra-SSP topological information and inter-SSP topological information. The 
topological information of the intra-SSP structure is naturally represented by the 
row/column indexing relationship of a cell array. While the topological information 
of inter-SSP structure can be evolved from the topological structure of the initial 
control mesh of subdivision surface. Foremost, its volume is generally small and 
does not expand with the increase of the subdivision times. 

7.2. Data query 

Data query is the most basic operation used in the implementation or analysis of the 
subdivision surface or in the development of some applications based on 
subdivision surfaces. CELL has obvious advantages in terms of zone, content and 
speed of data query. If you want to search mesh elements within a neighboring zone 
of a mesh element (vertex, edge or face), or mesh elements having particular 
adjacency relationship with it, the required mesh elements can be obtained through 
the row/column index of Ac. The search can be completed in constant time as long 
as the search zone does not exceed this Ac. If the search zone is beyond this Ac, the 
desired information can be found in other Ac areas through the inter-SSP topology 
information. 

7.3. Implementation of subdivision surface 

Based on CELL, the global subdivision of the subdivision surface can be 
transformed into local subdivision of CELL. Each SSP is subdivided by using the 
same subdivision pattern; no determination of a vertex valence is required; the 
boundary conditions are decided within a specific limited zone. So, the subdivision 
surface can be rapidly implemented. The topological relationship between the mesh 
elements can be certainly established upon the subdivision algorithm completion. 

8. Conclusion 

By utilizing the topological characteristics of the subdivision surface, CELL is 
proposed for representing trilateral/quadrilateral subdivision surfaces. Certain 
excellent features, such as local subdivision, pattern subdivision, compact 
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topological structure and local natural parameterization make CELL better than 
other data structures in terms of data storage, search efficiency, subdivision 
computing speed, algorithm development and maintenance. Within the broad 
applicability of CELL, Catmull-Clark, Loop, Doo-Sabin and Quad/triangle 
subdivision schemes can be efficiently implemented. The application of CELL not 
only establishes sharp and semi-sharp features of the subdivision surface, but also 
realizes the amalgamation of the image/Z-map model and subdivision surface, so 
that the modelling capability of the subdivision surface can be improved by using 
CELL. The results of the algorithm test and theoretical analysis show that CELL 
has excellent performance with respect to computer memory consumption, data 
query and implementation of the subdivision surface. By making full use of CELL, 
it will be appropriate for generalization and application of the subdivision surface in 
more fields. 
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