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Abstract: In this paper we propose two discrete-time sliding mode flow controllers 
for multisource connection-oriented networks. Each connection in the considered 
networks is characterized by a time delay and a packet loss ratio. The proposed 
controllers take advantage of appropriately designed sliding hyperplanes, which 
ensure the closed-loop system stability and finite-time error convergence to zero. 
Moreover, the proposed controllers ensure full utilization of the bottleneck link 
available bandwidth, guarantee bounded transmission rates, and eliminate the risk 
of buffer overflow in the bottleneck node. Since the primary controller may lead to 
excessive values of the transmission rate at the beginning of the control process, the 
modified controller is designed using the concept of the reaching law, which helps 
the removing of the undesirable effect. 
Keywords: Congestion control, sliding mode control, discrete time systems. 

1. Introduction 

In connection-oriented communication networks the data units, sent by sources pass 
through a series of intermediate nodes before reaching their destinations. If an 
intermediate node – due to limited data flow rate of its outgoing link – cannot pass 
on all the data it receives, then a congestion occurs. Consequently, in order to 
maximize the throughput and minimize the queuing delays and jitter in modern 
communication networks, congestion control algorithms are applied. The main 
difficulty in appropriate congestion control algorithm design is caused by the large 
propagation delays in the networks. The delays are inevitable since information 
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about the congestion at a specific node must be dispatched to all sources 
transmitting data through this node, in order to enable adjustment of the source 
transmission rates, and this action does not affect the congested node immediately, 
but only with a delay usually called a Round Trip Time (RTT). 

The problem of congestion control in the connection-oriented communication 
networks has been studied in many papers (see for example [2, 11, 15, 16]) and an 
extensive review of the papers can be found in the recent monograph [10]. 
Furthermore, due to the robustness of the Sliding Mode (SM) control [17], various 
types of SM congestion controllers have been proposed. In [13] a SM controller 
with a state predictor was used, and the maximum delay, necessary for the system 
stability has been established. A fuzzy controller combining the advantages of a 
linear and terminal SM was proposed in [14] for a simplified delay-free network 
model. For a DiffServ network an adaptive SM controller (using the backstepping 
procedure) for a model which neglects the feedback latency was presented in [22]. 
On the other hand, for a DiffServ network with a delay, the second order SM 
technique has been applied in [21] in order to reduce the chattering of the control 
signal. In [12] the problem of fair (in the max-min sense) data rate distribution 
among the sources is considered. A binary congestion signal is used to control the 
data output of the sources and the analysis of this algorithm is performed for a 
delay-free system. All controllers presented in the aforementioned publications are 
designed in the continuous time domain. However, it is evident that any flow 
control algorithm for a data transmission network must be implemented as a digital 
controller. Therefore, in the following works a discrete-time approach to the 
problem of the data flow control was used. A SM controller was presented in [18], 
but the result of this paper was derived without considering the system delays. In 
[19] it is shown that any max-min fair system with a stable symmetric Jacobian 
matrix maintains asymptotic stability under arbitrary directional delays. This means 
that if the controller is designed so that the system has a symmetric Jacobian matrix, 
its stability can be examined based on the corresponding undelayed system. A dead-
beat SM controller for multi-source networks with a priori known round trip times 
is presented in [3] and in [7] an LQ optimal SM controller for single-source 
networks is proposed. The same approach is then extended for multi-source 
networks in [8], and in [9], a similar optimal flow controller is designed for multi-
source networks with the round trip times which may change during the control 
process. 

In most papers published up to now, only packet losses due to bottleneck link 
buffer overflows are considered, and the occurrence of lossy links in the network is 
neglected. Since in real networks transmission losses are inevitable, in this paper we 
present discrete-time sliding mode controllers [1, 4, 5, 6, 20] for multisource 
networks, in which packets are lost during the transmission process. 

2. Network model  

We consider a connection-oriented communication network which consists of 
persistent data sources, intermediate nodes and data destinations. We assume that 
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(3) ( ) ( ) ( )
1 1

1 0 0
RTT .

m k k

p p p
p j j

y kT u jT h jT
− −

= = =

= − −∑∑ ∑α γ  

To simplify the model we can represent all connections with equal round trip 
times as a single connection. The amount of data that will arrive at the buffer from 
this connection is equal to aiu, where 

: RTTp

i p p
p m i

a
=

= ∑ α γ , i = 1, …, n – 1, and 

n = max(mRTTp) + 1. Obviously, if no connection has the round trip time iT, then the 
corresponding coefficient ai equals zero. Now we can rewrite (3) as follows: 

(4) ( ) ( ) ( )
1 1 1

1 0 0
.

n k k

i
i j j

y kT a u j i T h jT
− − −

= = =

= ⎡ − ⎤ −⎣ ⎦∑∑ ∑  

The network can be described in the state space as 

(5) 
( ) ( ) ( ) ( )

( ) ( )T

1 ,

,

k T kT u kT h kT

y kT kT

⎡ + ⎤ = + +⎣ ⎦
=

x Ax b o

q x
 

where  x(kT) = [x1(kT)   x2(kT)   …   xn(kT)]T is the state vector and y(kT) = x1(kT) is 
the queue length. The state variables except x1 are the delayed values of the control 
signal, i.e.  
(6) ( ) ( )1 ,ix kT u k n i T= ⎡ − + − ⎤⎣ ⎦    i = 2, …, n.  
A is n × n state matrix,  

(7) 

1 2 11
0 0 1 0

,
0 0 0 1
0 0 0 0

n na a a− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Α  

and b, o, and q are n × 1 vectors 

(8) 

0 1 1
0 0 0

.
0 0 0
1 0 0

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b o q  

Alternatively, the state space equation can be written as follows: 

(9) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 1 2 2 3 1

2 3

1

1

1
,

1

1

n n n

n n

n

x k T x kT a x kT a x kT a x kT h kT

x k T x kT

x k T x kT

x k T u kT

− −

−

⎧ ⎡ + ⎤ = + + + + −⎣ ⎦⎪
+ =⎪

⎪
⎨
⎪ + =

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦
⎡ ⎤

⎪
⎪ + =⎩ ⎣ ⎦
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with the output signal y(kT) = x1(kT). The desired state of the system is denoted by 
xd = [xd1   xd2   …   xdn]T. The first state variable xd1  is the demand queue length, and 
further in the paper it is represented by xd. It can be noticed from (9) that for 
h(kT) = 0 all other components of the demand state vector are equal to zero. 

3. Proposed control strategy 

Further in the paper we apply the network model presented in the previous section 
to design two sliding mode congestion controllers: a classical dead-beat controller 
and its reaching law based extension. 

3.1. Primary sliding mode controller 

In this section the flow control algorithms for the described network are designed 
and essential properties of the algorithms are proved. For the purpose of the 
controller design we assume h(kT) = 0 and we introduce a sliding hyperplane 
described by equation 
(10) ( ) ( )T 0,s kT kT= =c e  
where vector cT = [c1  c2  …  cn] satisfies cTb ≠ 0. The closed-loop system error is 
denoted by e(kT) = xd – x(kT). Substituting (5) into cTe[(k + 1)T] = 0 we obtain the 
following control law 
(11) ( ) ( ) ( )1T T ,u kT kT

−
= ⎡ − ⎤⎣ ⎦dc b c x Ax  

with the application of this control signal, the closed-loop system state matrix has 
the form Ac = [1 – b(cTb)–1cT]A. The characteristic polynomial of this matrix can be 
found as 

(12) 
( ) 11 1 1

21 2 2 3 1 1 2

det

,

n nn n

n

n n

n n

c a c cz z z
c

c a c c c a cz z
c c

−−

− −

+ −
− = + + +

+ − −
+ +

n cI A
 

which leads to the condition cn ≠ 0. A discrete-time system is asymptotically stable 
if and only if all its eigenvalues are located inside a unit circle. Furthermore, in 
order to ensure error convergence to zero in finite time, the characteristic 
polynomial (12) has to satisfy 
(13) ( )det .nz z− =n cI A  

One can easily find that (13) is satisfied with the following vector c 

(14) 
1

1

1

1,

for 2, , .
i

i n j
j

c

c a i n
−

−
=

=⎧
⎪
⎨ = =⎪
⎩

∑  

Substituting (7) and (8) into (11) we obtain 
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(15) 

( )
( ) ( )

( ) ( )

1

1

1
2

1
2

1

1

1
.

i

n

j
j

n

n

d i
i

n

d i
i

j
j

x x kT c x kT
u kT

x x kT

a

u k

a

c n i T

−

=

−

=

=

=

−

−

−
= =

− ⎡ − + − ⎦
=

⎤⎣∑

∑

∑

∑

 

This completes the design of the primary flow control algorithm for the 
considered network. Further in this section, important properties of the proposed 
algorithm will be discussed. 

Let us first notice that the amount of data to be sent at the initial control instant 
is 

(16) ( ) 1

1

0 .d
n

j
j

xu
a

−

=

=

∑
 

Next we determine the relation between the utilized bandwidth and the 
transmission rate generated by the controller. This relation is stated in the following 
lemma. 

Lemma 1. If the proposed controller is applied, then its output signal for any 
k > 0 is given by 

(17) ( ) ( )1

1

1 1 .n

j
j

u kT h k
a

T−

=

= ⎡ − ⎤⎣ ⎦
∑

 

P r o o f: From (14), for any i = 3, …, n, we obtain 
(18) 1 1.i i n ic c a− − += +  

Then using (18) and (15) we get 

(19) 
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1

1
2

1

1

1

1

2
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⎩ ⎭
⎧ ⎫= ⎡ + ⎤ − ⎡ + ⎤ −⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭

⎡ ⎤
− − =

−

−

− =⎢ ⎥
⎣ ⎦

∑

∑

∑
∑

 

This equation has been derived assuming k ≥ 0. If we assume k > 0 we can 
rewrite it to be identical to (17). This ends the proof. 
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Remark 1. Because h(kT) ∈ 〈0, dmax〉 for any k ≥ 0, and (
1

1
0,1

n

j
j

a
−

=

∈∑  this 

lemma with (16) imply that the value of the control signal is always nonnegative 
and upper-bounded. 

Further important properties of the proposed controller are given in the 
following two theorems. 

Theorem 1. With the application of the proposed control algorithm the queue 
length never exceeds its demand value. 

P r o o f: Transforming (15) we obtain 

(20) ( ) ( ) ( )1
2

.1
n

d n i
i

u kx x kT c u k iT Tc n
=

− −= + ⎡ + − ⎤⎣ ⎦∑  

Since ci ≥ 0 for i ∈ (1, n), using Remark 1 we conclude that the right hand side 
of (20) is nonnegative, which implies that x1(kT) ≤ xd for any k ≥ 0. This ends the 
proof. 

Theorem 2. If the proposed controller is applied and the demand queue length 
satisfies inequality 

(21) 
( )

1

max
1

1

1

,
1

n

i
i

d n

j
j

a i d
x

a

−

=
−

=

⎡ + ⎤⎣ ⎦
>
∑

∑
 

then the queue length is strictly positive for any k > max(mRTTp) + 1. 
P r o o f: We observe, that u(kT < 0) = 0. This allows us to rewrite (4) for 

k > max(mRTTp) + 1 as 

(22)

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 1

1 0 0

1 1 1 1

1 0 1 0

1 1 1 1

1
1 1 1 0

1

0

n k k

i
i j j

n i k k

i i i
i j j i j

n n k k
d

i in
i i j i j

j
j

d

y kT a u j i T h jT

a u j i T a u a u j i T h jT
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x
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1
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This ends the proof. This theorem shows that if condition (21) is satisfied, then 
the queue length is strictly greater than zero for any k > max(mRTTp) + 1 which 
implies that the available bandwidth is fully used. 

3.2. Reaching law based sliding mode controller 

A disadvantage of the sliding mode controller presented in the previous chapter is 
the large value of the control signal at the initial time instant. Therefore, in this 
subsection we introduce a reaching law based control strategy in order to minimize 
this effect. The properties of the modified strategy are then formulated and proved. 

In order to design the modified controller, we adapt the reaching law proposed 
in [6]. It can be formulated in the following way 
(23) ( ) ( ) ( )1 ,s k T s kT s kT⎡ + ⎤ − = − ⎡ ⎤⎣ ⎦ ⎣ ⎦φ  
where φ[s(kT)] = min[|s(kT)|, δ]sgn[s(kT)] and δ > 0.With this law applied to the 
dead-beat type controller – like the one proposed in the previous subsection – the 
system representative point is guaranteed to reach the hyperplane s(kT) = 0 
monotonically in a finite number of steps. 

Equation (23) can be alternatively expressed as follows 
(24) ( ) ( ) ( )T

1 ,s kT e kT f kT= +c  
where s1(kT) is a new sliding variable, vector c is given by (14) and function f(kT) is 
defined as follows 

(25) 
( ) ( ) ( ){ }

( )
0

0

1 sgn 1 for ,

0 for .

f kT f k T s k T k k

f kT k k

⎧ = ⎡ − ⎤ + ⎡ − ⎤ <⎪ ⎣ ⎦ ⎣ ⎦
⎨

= ≥⎪⎩

δ
 

We assume, that s1(0) = 0, which results in the following condition  
(26) ( ) ( )T

10 0 .d df c x x= − = − = −c e  
In this way the representative point will move towards the original sliding 

hyperplane described by (10), attain it after k0, and remain on it afterwards. 
Now we will determine the relation between the design parameter δ and the 

time instant k0. From (25) we obtain 
(27) ( ) ( ) ( ) ( ) ( )0 0 01 0 1 sgn 0 1 .df k T f k s x k⎡ − ⎤ = + − ⎡ ⎤ = − + −⎣ ⎦ ⎣ ⎦δ δ  
If f(k0T) = 0, then f[(k0 – 1)T] ≥ –δ. From this relation it follows that 

(28) 0 ,dxk ⎡ ⎤= ⎢ ⎥⎢ ⎥δ
 

where function ξ⎡ ⎤⎢ ⎥  denotes the smallest integer greater than its argument ξ. This 
shows how the choice of parameter δ affects the time instant when the 
representative point reaches the sliding hyperplane. 

With the application of the proposed reaching law, the control signal can be 
derived by substituting (5) into equation cTe[(k + 1)T] + f[(k + 1)T] = 0. This leads 
to 
(29) ( ) ( ) ( ) ( ){ }1T T 1 .u kT kT f k T

−
⎡ ⎤⎣ ⎦= − + ⎡ + ⎤⎣ ⎦dc b c x Ax  

Substituting (7), (8) and (14) into (29) we obtain 
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(30) ( ) ( ) ( ) ( )1
2

1 1 .
in

n

d iiu kT x x kT c x kT f k T
c =

⎧ ⎫
= − + ⎡ + ⎤⎨ − ⎬⎣ ⎦

⎩ ⎭
∑  

This completes the design of the reaching law based control strategy. Further 
in this section, we state and prove important properties of the proposed strategy. 
Lemma 2 shows that the control signal is always nonnegative and upper bounded. 
Theorems 3 and 4 (analogous to Theorems 1 and 2) show that the queue length 
never exceeds its demand value and that after some initial time the queue length is 
always strictly positive, which means that the available bandwidth is fully used. 

Lemma 2. If the designed sliding mode controller is applied, then its output 
for any k ≥ 0 satisfies 

(31) ( )
( ) ( ) ( )

1

1

1 1
.n

j
j

h k T f k T f kT

a
u kT −

=

⎡ − ⎤ + ⎡ + ⎤ −⎣ ⎦ ⎣ ⎦=

∑
 

P r o o f: The proof is similar to the proof of Lemma 1. We can rewrite (30) as 

(32) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1
2

1

1
2

1

1

1
2

1 1 1

1 1

1 1 1

1 1
.

n

d i
in

n

d i
in

n

d

i

i

ii
i

n

j

n

j

u kT x x kT c x kT f k T u k T
c

x x kT c x kT f k T
c

x x k T c x k T f kT
c

h k T f k T f kT

a

−

=

−

=

=

−

=

⎧ ⎫
= − + ⎡ + ⎤ − ⎡ − ⎤ =⎨ ⎬⎣ ⎦ ⎣ ⎦

⎩ ⎭
⎧ ⎫

= − + ⎡ + ⎤ +⎨ ⎬⎣ ⎦
⎩ ⎭

⎧ ⎫
− ⎡ − ⎤ − ⎡ − ⎤ + =⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ − ⎤ + ⎡ + ⎤ −⎣ ⎦ ⎣ ⎦=

−

−

−

∑

∑

∑

∑

 

This ends the proof. 
Remark 2. We notice that f(kT) is non-decreasing, h(kT) ≥ 0, and 

(
1

1
0,1 .

n

j
j

a
−

=

∈∑  From this it follows, that the control signal is always nonnegative. 

Furthermore h(kT) ≤ dmax, and max{f[(k + 1)T] – f(kT)} = δ. This means that the 
control signal is always upper-bounded, i.e., 

(33) ( ) a
1

m

1

x
n

j
j

u kT
a

d
−

=

≤
+

∑
δ

 

for any k ≥ 0. By an appropriate choice of function f(kT) we obtained a constant 
upper bound on the control signal, which is practical for application in a real 
network. 

Theorem 3. If the proposed control strategy is applied, then the queue length 
never exceeds its demand value. 

P r o o f: Using (6) we transform (30) and obtain 
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(34) 
( ) ( )

( ) ( )
1

1 1

1 2
1

1 1
.

n

n n

j
j

i

j

d i

j

u k n i T

a

c f k Tx x kT
u kT

a
− −

= =

=

⎡ − + − ⎤⎣ ⎦−
− ⎡ + ⎤⎣ ⎦

= +
∑

∑ ∑
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Remark 2 the control signal is always nonnegative. This means, that the right hand 
side of equation (34) is nonnegative, which gives ( )1 dx kT x≤  and ends the proof. 

Theorem 4. If the proposed control algorithm is applied, and the demand 
queue length satisfies the following condition 
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then for any k > k0 + max(mRTTp) + 1 the queue length is strictly greater than zero. 
P r o o f: Using (31) and relation u(kT < 0) = 0, we rewrite (4) for any 

k > k0 + max(mRTTp) + 1 as follows: 
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This ends the proof.  
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This theorem shows that if the demand queue length satisfies the same 
condition as for the basic version of the dead-beat sliding mode controller, then the 
queue length is strictly greater than zero for any k > k0 + max(mRTTp) + 1, which 
implies that the available bandwidth is fully used. 

4. Simulation examples 

In order to verify the properties of the proposed flow control strategy, computer 
simulations of the network with 4 data sources were performed. As stated in  
Section 2, we assume that the distribution of data rate among the connections is 
performed by some higher-level algorithm. The discretisation period T is selected as 
1 ms. The parameters of the connections are shown in Table 1.  

Table 1. Link parameters in the simulated network 
p 1 2 3 4 

mRTTp 2 4 6 9 
Tb p, ms 1 2 3 5 
γp 0.1 0.3 0.4 0.2 
αp 0.98 0.99 0.95 0.93 

Because max(mRTTp) = 9, we get n = 10. According to Section 2, the state 
space network model parameters are: a1 = 0, a2 = 0.098, a3 = 0, a4 = 0.297, a5 = 0, 
a6 = 0.38, a7 = 0, a8 = 0, a9 = 0.186. The maximum available bandwidth of the 
bottleneck node is dmax = 30 kb. According to Theorems 2 and 4 in order to ensure 
full bandwidth utilization, the demand queue length must be greater than 197 kb for 
both proposed controllers. Therefore, the demand queue length has been chosen as 
200 kb. The available bandwidth changes rapidly from low to high values, which 
reflects the most adverse possible conditions in the network. The available 
bandwidth is shown in Fig. 2. For the reaching law based sliding mode controller, 
parameter δ has been chosen as 35 kb, which according to (28) gives k0 = 6. 

 
Fig. 2. Available bandwidth 

Fig. 3 shows the bottleneck link queue length when the primary dead-beat 
controller is applied. We notice from the figure that the queue length never exceeds 
its demand value, and after the initial time derived in Theorem 2 it is always strictly 
positive. Therefore, there is no risk of a buffer overflow, and full bandwidth 
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utilization is ensured. The value of the control signal and the amount of data leaving 
the buffer are shown in Fig. 4. The value of the control signal at the first time 
instant is equal to 208.11 kb. As one can see from the figure, the control signal is 
always strictly positive and upper bounded. The transmission rates of individual 
sources with the application of the basic control strategy are shown in Fig. 5.  

 
Fig. 3. Queue length with application of the primary sliding mode controller 

 
Fig. 4. Amount of data leaving the buffer and the control signal  

with application of the primary sliding mode controller 

 
Fig. 5. Transmission rates of individual sources in the network  

with the primary sliding mode controller 
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Figs 6, 7 and 8 present the simulation results obtained for the reaching law 
based sliding mode controller. Fig. 6 shows the queue length in the bottleneck link 
buffer. It can be seen from the figure, that the queue never exceeds its demand value 
and after the initial time predicted by Theorem 4, it is always strictly positive. Fig. 7 
shows the amount of data leaving the buffer and the value of the control signal. 
Comparing Figs 4 and 7 one can notice, that the introduction of the reaching law 
significantly reduces the maximum value of the control signal at the beginning of 
the data transmission process. The transmission rates of individual sources are 
shown in Fig. 8. 

 
Fig. 6. Queue length with application of the reaching  

law based sliding mode controller 

 

Fig. 7. The amount of data leaving the buffer and the control signal  
with application of the reaching law based controller 

 
Fig. 8. Transmission rates of individual sources in the network  

with the reaching law based sliding mode controller 
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5. Conclusions 

In this paper two discrete time sliding mode flow controllers for connection-
oriented networks with multiple connections have been presented. The possible 
losses during the transmission have been explicitly taken into account in designing 
the sliding hyperplane. The first algorithm has been designed to ensure finite-time 
error convergence. Then it has been modified by introducing a reaching law to 
reduce the maximum value of the control signal at the beginning of the data 
transmission. It has been proved that the flow rates generated by both control 
algorithms are always nonnegative and upper-bounded. Furthermore, both proposed 
controllers ensure full bottleneck bandwidth consumption and eliminate the risk of 
buffer overflow. 
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