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Abstract: In this paper, the conditional Tsallis entropy is defined on the basis of the 
conditional Renyi entropy. Regarding the fact that Renyi entropy is the 
monotonically increasing function of Tsallis entropy, a relationship has also been 
presented between the joint Tsallis entropy and conditional Tsallis entropy. 
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1. Introduction  

Experiences of Shannon during the Second World War led to the revolution in 
communication theory and he then introduced Shannon entropy [13] in 1948. Then, 
scientists (e.g., R e n y i [12], T s a l l i s [14]) generalized this idea and obtained 
different entropic forms which, in special cases, include Shannon entropy. R e n y i 
[12] in 1961 generalized Shannon entropy by defining an entropy which is called 
the Renyi entropy. H a r v d a and C h a r v a t [9] in 1967 defined an extension of 
entropy and in 1988 T s a l l i s [14] too proposed the generalization of the entropy 
by postulating a non-extensive entropy, (i.e., Tsallis entropy), which covers 
Shannon entropy in particular cases. This measure is non-logarithmic. These forms 
of entropy are obtained through the joint generalization of the averaging procedures 
and the concept of information gain. Renyi entropy as well as Shannon entropy 
preserves the same definition of information gain, however, it makes use of 
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exponential average where as Shannon entropy makes use of common average 
procedure. On the other hand, Tsallis entropy is not extensive [15] but generalizes 
the concept of the information gain and is obtained by the linear averaging 
procedure. In fact, Renyi entropy is a monotonically increasing function of Tsallis 
entropy. We know that conditional Shannon entropy has been introduced and for 
random variables and that there is a relation between conditional and joint Shannon 
entropies for random variables, indeed for which the chain rule holds. C a c h i n [4] 
has given a definition of conditional Renyi entropy that chain rule does not hold. 
Then J i z b a and A r i m i t s u [11] introduced some axioms for Renyi entropy and 
G o l s h a n i et al. [8], preserved different form of conditional Renyi entropy and 
showed that chain rule holds for that by using their axioms. 

In this paper, we have introduced a form of conditional Tsallis entropy on the 
basis of the conditional Renyi entropy in view of C a c h i n [4] and then shown that 
this definition is not suitable. So, we used the axioms introduced by J i z b a and 
A r i m i t s u [11] for Renyi entropy and monotone relation between Renyi and 
Tsallis entropy and gave a different form of conditional Tsallis entropy. in the end, 
given the fact that Tsallis entropy is not additive, we have proved a rule similar to 
chain rule for Tsallis entropy.  

2. Tsallis entropy  

Renyi entropy and Tsallis entropy play a central role in different sciences as 
extensive forms of the Shannon entropy. For example see [1-3, 7, 10-15]. In the 
following, a definition for Tsallis conditional entropy of random variables having 
discrete distribution, as well as its properties are presented. The Shannon entropy of 
a probability distribution P=(p1, p2, …, pn) or of a random variable X, with 
probability distribution P(X = xi) = pi, i = 1, 2, ..., n, is defined as  
(2.1) 1 1( ) ( ) log  ( log  )i i i i

i i
H X H P p p p p≡ = − = −∑ ∑  

where relation (2.1) is the arithmetic mean of the information –logpi. Also, its Renyi 
entropy is 

(2.2) 1( ) ( ) log ,   0, 1
1 i

i
H X H P p≡ = > ≠

− ∑ α
α α α α

α
. 

Renyi entropy becomes the Shannon entropy as α → 1. This relation for a 
random vector (X, Y) with probability distribution P(X= xi, Y= yj) =pij, i = 1, 2, ..., n, 
and  j = 1, 2, ..., m, can be written as  

(2.3) 
,

1( , ) ( ) log ,   0, 1.
1 ij

i j
H X Y H P p≡ = > ≠

− ∑ α
α α α α

α
 

Tsallis entropy (which is simply related to Renyi entropy) is another 
generalized entropy measure based on the generalization of the information gain. 
This measure is defined as follows: 

Definition 2.1. Tsallis entropy of a probability distribution P=(p1, ..., pn) or of 
a random variable X, with probability distribution P(X = xi) = pi, i = 1, 2, ..., n, is 
defined as 
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(2.4) 1S ( ) ( ) [1 ],   >0, 1.
1 i

i
X S P p≡ = − ≠

− ∑ α
α α α α

α
 

If we extend this definition to the case of random vector (X, Y ) with 
probability distribution P(X = xi, Y = yj) = pij, i = 1, ..., n, and j = 1, ..., m, then the 
joint Tsallis entropy is 

(2.5)  
,

1( , ) ( ) [1 ],   0, 1.
1 ij

i j
S X Y S P p≡ = − > ≠

− ∑ α
α α α α

α
 

In fact, Renyi entropy can be shown [4] to be a monotonically increasing 
function of Tsallis entropy and the two are related via the following relation: 

(2.6) 1( ) log[1 (1 ) ( )].
1

H X S X= + −
−α αα
α

 

Now we seek a suitable definition for conditional Tsallis entropy by relation 
(2.6). First of all, an overview of conditional Shannon entropy is provided below. 
For random variable Y, given X, with conditional probability distribution  
P(Y= yj|X = xi) = pj|i, we have:  
(2.7) 1 | |( | ) ( | ) log .i i i j i j i

i i
H Y X p H Y X x p p p= = = −∑ ∑  

On the basis of the conditional Shannon entropy (2.7), we propose the 
following definition for conditional Tsallis entropy: 

(2.8) 
| |

1 1( | ) [1 ] [1 ].
1 1j i j ii i

i j i j
S Y X p p p p= − = −

− −∑ ∑ ∑ ∑α α
α α α

 

Although Tsallis entropy, just like Shannon entropy, employs the same 
averaging procedure called linear averaging, it seems that the relation (2.8) must be 
suitable, which is disproved in the next section of the current study. Following 
J i z b a and A r i m i t s u [11], G o l s h a n i et al. [8] presented the following 
definition for conditional Renyi entropy. For probability distributions  
P = (p1, ..., pn), Q = (q1, ..., qm) and the joint probability distribution denoted by pij, 
the conditional Renyi entropy of random variable Y, given X, is defined as  

(2.9)  ,1( | ) log ,
1

ij
i j

i
i

p
H Y X

p
=

−

∑
∑

α

α αα
 

and for this equation Hα(Y |X) = Hα(X, Y ) − Hα(X). 

3.  Conditional Tsallis entropy 
Since Renyi and Tsallis entropy are related as mentioned in (2.6), now we  present 
another definition for conditional Tsallis entropy. 

Definition 3.1. The conditional Tsallis entropy of random variable Y given X is 
defined as 

(2.10) ,1( | ) 1 .
1

ij
i j

i
i

p
S Y X

p

⎡ ⎤
⎢ ⎥= −⎢ ⎥− ⎢ ⎥⎣ ⎦

∑
∑

α

α αα
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Using this definition, we can show that the conditional Shannon entropy as  
α → 1, also via (2.6) and (2.10) we can obtain: 

(2.11) 

,

1 1( , ) 1 [1 exp((1 ) ( , ))]
1 1

1 [1 exp((1 ) ( ) ( | ))]
1

1 [1 [1 (1 ) ( )][1 (1 ) ( | )]]
1

( ) ( | ) (1 ) ( ) ( | ).

ij
i j

S X Y p H X Y

H X H Y X

S X S Y X

S X S Y X S X S Y X

⎡ ⎤
= − = − − =⎢ ⎥− −⎣ ⎦

= − − + =
−

= − + − + − =
−
= + + −

∑ α
α α

α α

α α

α α α α

α
α α

α
α

α α
α

α

 

By considering the relation (2.10) we see that this conditional Tsallis entropy 
verifies in (2.11), and we can show through one example that the equality holds. It 
does not hold for the relation (2.8) for conditional Tsallis entropy, so we can reach 
the conclusion that relation (2.10) could better define conditional Tsallis entropy 
rather than the relation (2.8) does. 

Example 3.2. Let X and Y be two random variables with the joint distribution 
P(0, 0) =0, P(0, 1) = P(1, 0) = P(1, 1) =1/3, the conditional Tsallis entropy is 
obtained from equation (2.8) and it is given by 

1( | ) [1 1/ 3 4 / 3(1/ 2 )]
1

S Y X = − +
−

α
α α

 and Tsallis entropy for random variable X is 

1 1 2( ) 1 .
1 3

S X
⎡ ⎤+

= −⎢ ⎥− ⎣ ⎦

α

α αα
 and the joint Tsallis entropy, using (2.5), is  

1( , ) [1 3(1/ 3) ],
1

S X Y = −
−

α
α α

 thus relation (2.8) is not suitable. 

Now we express some properties of the conditional Tsallis entropy. 
Lemma 3.3. When Y has a probability distribution P(Y = yj) = 1/m,   

j = 1, 2,..., m,  we have Sα(Y |X) ≤ Sα(Y ), α, and the equality holds if X and Y are 
independent. 

P r o o f: We have | |
1

ij j i j i jp p p p
m

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

α
α α α α , on the other hand |i i jp p≤α α , 

therefore:  

|
,

|
,

,

1 11 1 .

i j i
i j i

i j
i j

i
i

p m p

p
m

m p m

⎧ ≥
⎪
⎪⎪
⎨ ⎛ ⎞ ⎛ ⎞⎪ − ≤ −⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠
⎪⎩

∑ ∑

∑
∑

α α

α
α α

α

 

So we have Sα(Y |X) ≤ Sα(Y). 
Remark 3.4.  For two independent random variables, we have pij= pipj, 

therefore, 
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,1 1( | ) 1 1 ( ) 
1 1

i j
i j

j
ji

i

p p
S Y X p S Y

p

⎡ ⎤
⎡ ⎤⎢ ⎥= − = − = ∀⎢ ⎥⎢ ⎥− − ⎣ ⎦⎢ ⎥⎣ ⎦

∑
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α α

α
α αα α

α α
 

when the random variable X takes values 1, 2, ... we extend Definition 2.1. So 

(2.12) 
1

1( ) [1 ],   >0, 1,
1 i

i
S X p

∞

=

= − ≠
− ∑ α

α α α
α

 

(2.13) 1
1

( ) log .i i
i

S X p p
∞

=

= −∑  

If the series on the right-hand sides of (2.12) and (2.13) converge, these 
entropies exist. If α > 1, summation (2.12) always converges, but summation (2.13) 
does not. If all entropies converge for 0 < α < 1, then all of the definitions and 
propositions that hold for Tsallis entropy of random variables with finite values, 
hold for infinite values as well. This issue is absolutely the same for Renyi entropy. 
For Shannon entropy the chain rule holds [5], and for the Renyi entropy, Golshani 
et al. [8] showed that the chain rule holds, which is expressed as follows: 

Theorem 3.5. Let (X1, ..., Xn) be a random vector with probability distribution 
P(i1, ..., in) and Hα(X1, ..., Xn) be the Renyi entropy, then 

(2.14) 1 1 1
1

( ,..., ) ( | ,..., ).
n

n i i
i

H X X H X X X −
=

=∑α α  

Now, considering the point that “Tsallis entropy is not extensive”, we may 
obtain a relation between conditional Tsallis entropy and the joint Tsallis entropy, 
by the following theorem. 

Theorem 3.6. Under assumptions of Theorem 3.5 and Sα(X1, ..., Xn) be the 
Tsallis entropy. Then 

(2.15) 1 1 1
1

1( ,..., ) [1 (1 (1 )) ( | ,..., )].
1

n

n i i
i

S X X S X X X −
=

= − + −
− ∏α αα

α
 

P r o o f: For the random vector (X1, ..., Xn), we have: 

1

1

1 ,...,
,...,

1( ,..., ) 1 .
1 n

n

n

n i i
i i

S X X p
⎡ ⎤

= −⎢ ⎥− ⎣ ⎦
∑ α

α α
 

Now via Theorem 3.5 and relation (2.6) we obtain 

1 1

2 1

1 1

1 1log[(1 (1 ) ( ,..., )] log[(1 (1 ) ( )]
1 1

1 log[(1 (1 ) ( | )]
1

1 log[(1 (1 ) ( | ,..., )].
1

n

n n

S X X S X

S X X

S X X X −

+ − = + − +
− −

+ + − +
−

+ + −
−

α α

α

α

α α
α α

α
α

α
α

 

hence 
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1 1 1
1

1 1
1

log[(1 (1 ) ( ,..., )] log[(1 (1 ) ( | ,..., )]

=log [(1 (1 ) ( | ,..., )].

n

n i i
i

n

i i
i

S X X S X X X

S X X X

−
=

−
=

+ − = + − =

+ −

∑

∏

α α

α

α α

α
 

And so, 1 1 1
1

1( ,..., ) [1 (1 (1 ) ( | ,..., )].
1

n

n i i
i

S X X S X X X −
=

= − + −
− ∏α αα

α
 

4.  Conclusion 
Following J i z b a and A r i m i t s u [11], G o l s h a n i et al. [8] provided a definition 
for conditional Renyi entropy. Given that Renyi entropy is a monotonically  
increasing function of Tsallis entropy, the conditional Tsallis entropy was 
introduced in this paper on the basis of the conditional Renyi entropy. Also, we 
have obtained a relation between the joint Tsallis entropy and conditional Tsallis 
entropy.  
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