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SoS Engineering (SoSE). The conceptions about SoS simulation modeling, 
subsystem integration and practical implementation issues in the face of main three 
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1. Large-scale systems and Systems of Systems  

1.1. State of the art in large-scale complex systems development 

Since the early 70-es of the past century the industrial, technical and social systems 
have changed into large-scaled and highly sophisticated technological production 
conglomerates. These systems have restrictions on information structure and critical 
sensitivity to risks [19]. In reply to the emerging features and increased demands for 
control, the paradigm of Large-Scale Systems (LSS) has appeared in system theory. 

A system is considered as large-scale, when it submits three general LSS 
concepts: ability to decomposition, centrality theorem for geographical distribution 
and property of complexity. These features require new system solutions for 
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operation in intensive network environments and need of integrating modern 
technologies to diverse applied aspects  (economic,  social,  technical,  natural, etc.). 

Traditional LSSs deal with power, gas and water supply; robotics and CIMS; 
transportation systems; industrial processes; communication/computer networks; 
space/military missions. Three groups of theoretical control problems for LSS exist: 

(i) Define specific performance indicators [33]: coordinability, identifyability, 
decentralizability, connectability, global and internal functional stabilizability. 

(ii)  Multicriterial and polycomponent efficiency indices. 
(iii) Solving emerging problems: intelligent network systems for decision and 

control of critical infrastructures, autonomous AGVS, security systems, etc. 
Generally said, large-scale systems become larger and more sophisticated. 

Practical solutions are still necessary, aiming at to include new technical progress. 

1.2. The concept for Systems of Systems  

The notion for System of Systems (SoS) is a new idea in Systems Engineering (SE). 
It arises after the endless complications of LSS. SoS is a natural extension of LSS in 
systems engineering. The paradigm of SoS represents a mix of independently 
operating and actively interacting large systems, integrated with sophisticated 
goal(s). SoS applications refer to Air Traffic Management Systems, Space 
exploration, ground support flight equipment, robotic space colonies, AGVS [22], 
communications and Internet [3, 24, 37], scientific researches (Modeling and 
simulation of SoS) [25], coast and border guard, modern army combat systems,  etc. 

The investigations at SoS are mainly due to the changing aerospace and 
defense industries, on the large-scale system integration by solutions to complex 
problems. SoS consists in a mix of intensively interacting independent systems with 
common goals during task execution. No firmly acknowledged definition for SoS 
exists up to now. A non-strict postulation has been given by  K e a t i n g  et al. [18]: 
Metasystems, comprised of multiple autonomous embedded complex systems 
(probably LSSs), that diverse in technology, operation, context, geographical 
disposition and conceptual frame (but aimed to a common general goal) [18]. 

The specific problems of SoS can be generalized in the following directions: 
• Determine appropriate list of independent LSSs for execution of particular 

task; 
• Heavily uncertain environment during SoS operation; 
• Operative compatibility (interoperability) has to exist between SoS 

components. 
The distinctions between SoS and LSS have been declared initially by [21] in 

March, 1998, and consist in the following general properties and characteristics: 
(i) Operational independence of the components in a SoS. 
(ii) Evolutionary development. Necessary changes in a SoS could be made. 

New functions are adding, existing ones removing or updating. SoS undergoes 
persistent evolution, in contrast to multi-step non-cyclic irreversible design of LSS. 

(iii) Emergent, suddenly changing and non-predictable behavior [32]. 
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(iv) Geographical distribution. E i s n e r [13], in 1993, denoted SoS as large 
geographically dispersed complexes. This property is adopted in all SoS 
publications. 

(v) Guaranteed interoperability between two or more systems and components 
to exchange information and operate independently by utilizing this information 
[16]. Only a SoS is able to interoperate its component systems. 

(vi) Complementarity.  Each  system  should  complement  the other  members 
within SoS. The multiple perspectives ensure robust approach and design [19]. 

(vii) Guaranteed integrity and On-line membership optimization. 
(viii) Holism. The overall entity is more informative than the sum of its parts. 
The comparison between LSS and SoS modeling processes shows opposite 

directions. The typical LSS modeling process evolves from top to bottom of the 
hierarchy. On the contrary, considerable difficulties arise during the SoS modeling, 
where the appropriate development is oriented “from bottom to top” of the system. 

The problems to SoS progress are set by the general consumers and promoters: 
• Tendency of fragmented perspectives for practical development; 
• Lack of rigorous investigations and extensive theoretical backgrounds; 
• Domination of IT and technical achievements in comparison to theoretical 

results; 
• Limitations by the adopted conception of SE, focusing on a single system; 
• Lack of theory or methodology for integrated systems analysis. 

2. System of Systems Engineering 

The first descriptive characteristic for the notion of the System of Systems 
Engineering (SoSE) is made primarily by K e a t i n g et. al. [18] and J a m s h i d i 
[17], both giving the following suggestions: 

“Design, deployment, operation and transformation of metasystems, that must 
function as an integrated complex system to produce desirable results.” 

Although there is no firmly accepted definition for SoSE up to now, actually 
SoSE is an integrated approach to upgrade existing systems to newer, more 
powerful and improved systems for command, control, communications, computer 
hardware intelligence, surveillance, reconnaissance and innovative logistic support. 
So, the main research areas of SoSE are organized around the following topics [28]: 

(i) Defining structure optimization, combinatorial design solving and control. 
(ii) Assessing, uncertain decision making in stochastic operating environment. 
(iv) Domain-specific modeling and simulation. Identify the areas of potential 

risk and additional analysis. Sets the operational development, mission rehearsal. 
The field of SoSE does not seem to comply precise logical organization for the 

different descriptions, conceptions and suggestions of what constitutes a SoS and 
what SoSE is [18, 31]. A divergence in SoSE between hard system solutions and 
soft system inquiry has been achieved [31].  It consists mainly in the following [19]: 

• General omission of what constitutes a SoS. It is currently a subject of 
disputes; 



 6

• No strict definition of SoSE. The methods and standards are not widely 
ratified; 

• Research works continue to be fragmented and mainly application-oriented; 
• The relationships of SoSE to the cognitive area of SE are rather weak; 
• The significance of information technology (interoperability) is strongly 

overestimated, while underrating human, social, organizational and other policies. 
SoSE development is a complex task, faced by a staff of system researchers. 

Main characteristics of this domain are consisted in the following items: 
• Information systems and technologies, originally not dedicated to SoS 

tasks; 
• Various local operators with incompatible requirements and distinct 

objectives; 
• Insufficient, varying uncertain resources and potential instabilities during 

tasks; 
• Shifting conditions and necessity of holding the emerged events and effects. 

Thus, the stability requirements to life cycle driven approaches is unreliable; 
• Technology advances from the capabilities and infrastructure compatibility, 

necessary to support the development, integration, maintenance and progress of 
SoS; 

• Urgent demand for response actions to prevent task crisis and failures; 
• Increasing complexities and uncertainties, calling in question the ability of 

classical systematic approaches to effectively deal with SoS problems. 
These specifications are not reachable in the near future and are expected to 

become more complicated. Shift from the classical SE approaches is mandatory. 
This examination gives variety of perspectives and applied developments, but 

considers the fragmented nature of SoSE. A general problem remains the invention 
of a framework for creating rough structure to SoSE developments. It must provide 
an overview on the central design problems and their implication for progress. 

The SoSE area encompasses three main perspectives: military, academic and 
industrial. This reveals the source of fragmentation and future divergent developing. 

The term “SoS” has already been adopted with significant generality, but 
insufficient number of sources provide reliable tests for approving what can be 
accepted as “System of Systems”. Actually, SoSE paradigm has no large succession 
to be distinguished from other related analysis and design areas, like SE for 
instance. SoSE appears to be a necessary extension and evolution of classic SE. The 
general distinctions between SE and SoSE refer to the following points [28]: 

• Greatly expanded SoS requirements for ranking level of strictness and 
rigor; 

• Centralized in substance (although distributed in space) control structure in 
LSS versus decentralized control and component disposition of SoS; 

• Comparing a standard stand-alone large-scale system with well-defined 
final states, fixed budget (resources), clearly planned schedules, technical baselines 
and homogenous structure, to a typical SoS with vaguely defined end states, 
periodical budget variations (supply, delivery) and heterogenous structure of 
equipment. 
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The research on SoSE exists in a lot of tasks. Although the area lacks 
conceptual completion, a conclusion has to be made for its commonly accepted 
assumptions: 

• Higher level of interactions among component systems; 
• SoS provides services, behavior or performance, impossible to any single 

system; 
• Each subsystem operates independently to its own goals, different by that of 

SoS; 
• A SoS is often constituted by multiple LSSs, functioning in a common 

mission; 
• Intended and random chains of events are emerging as a result of the 

interactions between the LSSs, jointed in a SoS. 
The SoSE requirements are summarized in ensuring compatibility and intero-

perability of the system components with highest levels of operational efficiency. 
Three perspective directions are examined as a proof of the observed field 

fragmentation [11]: academic, military and industrial developments: 
(i) Military perspective. It is issued by the US Department of Defense (DoD) 

Architectural Framework DoDAF and focused on the interoperability of technical 
command and control systems. The set of individual systems requires integration of 
the separate “technology” components in an overall SoS. 

(ii) Academic perspective. It is the weakest trend of progress, but demonstrates 
potential for future rigorous development in philosophic and theoretical aspects. 

(iii) Industrial perspective.  It  possesses  a more  robust  view  of  SoSE  and 
considers an industrial enterprise as a SoS, existing well beyond the technology. 

2.1. Military perspectives of SoSE 

The SoSE investigations are most closely linked to the military applications. In 
addition, the military perspective has evidently dictated to a large extent the former 
directions in SoSE progress, thus concentrating them in four main topics: 

(i) Adopting the technological aspects as primary. The SoS in military 
applications is focused on supporting the command and control activity through 
integrated use of SoS technologies to achieve success in the planned operations. 

(ii) Imposing interoperability as a central design objective. In addition to 
technical perfection, the military specifications require all technical (sub)systems in 
a SoS membership to be interoperable. 

(iii) Extrapolation from SE. Related to demands, traceability and architecture. 
(iv) Strong attention on technical devices. The military perspective of SoSE is 

interesting mainly for obtaining (technical) equipment, able to operate jointly. 
The military orientation complicates the advances on the SoSE area. In recent 

US DoD publications [10, 20], the SoSE future is recognized by the next notions: 
(i) There is no clear difference between SE for systems and SoS; 
(ii) The single difference consists only in the fact, that no one controls a SoS; 
(iii) There is no novelty in a SoS, moreover, any system composed by 

subsystems, is a SoS. This tendency originates since the statement of SE. 
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The promotion and perspective development of SoS is mainly pursued by the 
US military department, as declared in the Systems Engineering Guide for SoS [11], 
where there is a suggestion for SoSE as an extension of SE. This tendency is 
approved by some important definitions about the military perspectives of SoS and 
SoSE: 

Definition 1. SoSE deals with planning, analyzing, organizing and integrating 
the potentialities of a group of existing and new systems into SoS capability, thus 
exceeding the sum of resources in the constituent elements. 

Definition 2. The general objective for developing a SoS consists in satisfying 
the demanded system capabilities, that can only be created with a mix of multiple, 
autonomous and interacting systems. 

Definition 3. A set of interdependent systems, that are related or connected 
together to provide a given capability, is a SoS. The loss of any system component 
will significantly degrade the overall performance or potentials. The development 
of a SoS is a compromise between the systems and their individual system 
performance. 

The military oriented concept of SoSE is focused only on extrapolation from 
SE. Influence from the military perspective to SE and SoSE also exists (Table 2.1). 
Table 2.1. Important areas in SE and SoSE [34] 

Characteristic Classic SE SoSE 

Aim 

Development of a single system 
submitting the client’s require-
ments and necessary preset 
performance 

Obtaining new SoS capabilities by 
activating the force of coherent action 
between the participating systems and 
emerging properties 

System 
architecture 

Adopted early in the life cycle 
period. The set of expectations 
remains relatively stable 

Dynamic adaptation when emergent 
needs appear 

System 
interoperability 

Interface requirements are 
defined and implemented for 
integration of the components in 
the system 

All component systems can operate 
independently in a SoS by suitable 
manner. To enable an interoperable 
system, the protocols and standards are of 
essential importance 

System properties 

Reliability, maintainability, 
availability. Coordinability, 
detectability, identifiability, 
internal functional stability, 
decentralized stabilizability [33] 

Extension to special properties: flexabi-
lity, adaptability, composability [33], 
integriability, structural controllability, 
connectability, global and structural 
stabilizability 

Acquisition and 
management 

Centralized acquisition and 
management of the system 

Separate inclusion of the component 
systems, still remaining independently 
managed and operated 

Anticipated needs Determination of the system 
needs at the concept phase 

Intensive concept phase analysis, 
followed by continuous anticipation and 
forecasting, aided by real-time 
experiments 

Related costs 

Single or homogenous financial 
group with stable cost/funding 
profile and similar measures of 
success evaluation 

Multiple heterogenous financial groups 
with unstable cost/funding profiles and 
different measures for success evaluation 
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2.2. The academic perspectives of SoSE 
The academic researches represent a distinguished and more comprehensive 
approach to the SoSE area. These developments are in three main directions: 

(i) Investigate theoretical and conceptual differentiations. The investigations 
on this problem are insufficient till now, with exception of a few works [19, 20, 31]. 

(ii) Theoretical exploration of the phenomena. In contrast to the other two 
SoSE perspectives, the academic interests are taking more analytical orientation. In 
the existing theoretical works the investigations, inquiry and analysis of SoSE 
phenomena with their origins and explanations [19, 31] are treated. 

(iii) Foundations in systems theory. The principles, laws and concepts of this 
theory provide the background for academic development of SoSE and links to 
theoretical knowledge, but the SoSE practical developments are largely ignored. 

The academic contributions to SoSE are performed in some definitions [9]: 
“The design, installment, operation and transformation of metasystems, that 

operate as an integrated complex system to perform new desirable results. The 
metasystems are comprised of autonomous embedded complex systems, that can 
diversify in technology, context, operation, geography and conceptual frame.” 

2.3. Industrial trends in SoSE development 
The industrial development of SoSE provides considerable distinctions. The 
enterprise perspectives are omitting the engineering activity from the contributors 
on SoS. This brings in a distance between the SE and the enterprise applications on 
SoS. So, an enlargement of the SoS engineering is obtained. Some features include: 

(i) Expanding the technical specifications. The enterprise developments often 
include strategic and social components by a technology oriented environment. 

(ii) De-emphasizing the engineering tendency. The industrial tendency in 
SoSE diminishes the significance of engineering approaches. 

(iii) Domination of architecture. A central level of the enterprise SoS trends is 
occupied by the system architecture, that is a dominant paradigm in SE [21]. 

These tendencies are the framing perspectives for SoSE. Due to the inability to 
reconcile the different flows, SoSE becomes a fragmented set of clustered areas. 

2.4. Continuing divergence in the SoSE area 

While military, academic and private industrial tendencies prove the potential needs 
and use of SoSE, the related references offer diverse but divergent nature. The 
ongoing distinctions within SoS perspectives are met in the following topics [19]: 

• Omitting some statements, no broad agreement for SoS composition is 
accepted; 

• The SoSE philosophy, methodology or standards are not generally 
acknowledged; 

• Research methodology in SoS and SoSE is fragmented, with many 
applications, but having little theoretical developments in the fundamental 
knowledge; 

• Current goals, originating from the SoS area, are not convincingly argued. 
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2.5. Framing suitable structure to SoSE area 

A particular framework, proposed for organization, integration and understanding 
the R&D activities to SoS, takes a holistic (voluntary) form and simultaneously 
orientates the area towards several fundamental directions. On Fig. 2.1 the holistic 
relationships for integrated knowledge development [19, 20] are performed. 

 
Fig. 2.1. Directions of development in SoSE area 

Following, a brief review of the various interrelated topics in SoSE is 
provided: 

• Philosophy. Its aim is research directed to developing theoretically 
consistent meanings of the paradigms in SoSE in the near future for reaching the 
maturity. 

• Theory. Concerns the explanation of all phenomena in relation to SoSE, 
investigation of explanatory models and testable conceptual frameworks. 

• Axiological developments. Axiology has a human-subjective component 
for establishing the underlying valuables via value judgment frameworks and belief 
propositions, that are fundamental to understand the perspectives of the SoSE area. 

• Axiomatic point of view. Axiomatic concerns with investigating new 
principles, concepts and laws that constitute the basic knowledge of the prospective 
area [19]. 

• Methodology considerations. They concern the research activity to 
develop theoretically relevant frameworks that provide powerful guidance for 
design, analysis, implementation and advances of SoSE projects [19, 20]. There is 
no SoSE methodology that is dominating in the area. Each SoSE concept is only 
appropriate for particular application, but it is not necessarily the best one. 

• Methods for investigation. They concern developing specific models, 
technologies, processes and tools for practitioners in SoSE. Most of the used 
approaches are adapted or extended from other research domains to be applied at 
the SoSE area. 

• Application development. It considers the progress in practical 
implementations of SoSE via installations of science-based technologies and 
methods. Untill now, there is not known any large list of illustrative examples, the 
so called “benchmarks” on the topic. 
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To appreciate whether or not an application belongs to the SoSE area, the 
clarifying of some conceptual understandings must be considered: 

• Problem: nature, features and definition of contents in an applied SoSE 
task; 

• Context: aspects of the applied domain, embedding SoS and SoSE 
problems; 

• Overview: compatibility of the SoSE application, that define the problem 
framing, approach and interpretation of results; 

• Approach: creation of an appropriate methodological approach to solve a 
problem. 

Limitations on SoSE applicability to particular problems should also be 
placed. Evidently, not each problem is suitable for SoSE application. But up to now, 
there is no valid set of distinguishing features to classify the problems as suitable. 

3. Fundamentals of the Modeling and Simulation for SoS 

It is necessary to show how Modeling and Simulation (M&S) helps in solving 
particular SoS problems. 

3.1. Model based engineering 

The process of model-based software engineering is generally referred to as Model-
Driven Architecture (MDA) or Model-Driven Engineering (MDE). The basic idea 
in this approach is to develop a conceptual model before the actual state of the art 
or product is been designed and then transform the model into an actual product. 
The MDA approach defines the system functionality using Platform-Independent 
Model (PIM) and domain-specific language. Then, given a Platform Definition 
Model (PDM), the PIM is translated to one or more Platform-Specific Models 
(PSMs). MDA encompasses various standards – UML, Meta-Object Facility 
(MOF), XML Metadata Interchange (XMI), Common Warehouse Model (CWM), 
etc. [20]. An MDA tool is used to develop, interpret, compare, align, etc., models or 
metamodels (CWM metamodel). This tool may be one or more of the following 
types: 

• Creation utility. Used to generate initial models and/or edit derived models; 
• Analysis utility. Used to check models for completeness and inconsistency; 
• Transformation utility to other types of models or into software code; 
• Composition utility. Serves to group few source models into a large 

metamodel; 
• Testing utility. Helps to test models. Gives a mechanism how the test cases 

are derived from a model, that describes some features of the system under test; 
• Simulation tool. Contains a mechanism to execute system models; 
• Reverse engineering tool. Transforms a particular inheritance or 

information product to a completed model. 
A utility needs not to contain all the features of MDE. For instance, UML in 

MDA is a small subset of the general UML. Being a subset of MDA, the UML is 
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bounded to its specific UML metamodel. Recent developments have obtained 
executable UML models, but without wide industrial acceptance yet, due to some 
limitations. Potential problems with the current MDA achievements include: 

• MDA is based on technical standards, yet to be specified (e.g., executable 
UML); 

• Utilities developed by different vendors are not interoperable; 
• MDA is a theoretical approach, lacking iterative features for software 

engineering; 
• The practical realization of MDA needs skillful industrial engineers. The 

design imposes strict engineering rigor, not generally available by applied 
programmers; 

• The supported by CORBA MDA initiative failed to become an accepted 
standard. 

Model-based testing is a fitting procedure, organized on explicit behavior 
models, giving intended system reactions under the assumed environmental 
behavior [23]. The input/output pairs of the models are interpreting as test cases for 
the implementation: the model output is the expected output of the system under 
test. This methodology considers added abstractions and design goals, dealing with 
various summarized aspects, as these cannot be tested separately via the developed 
model. The model-based testing process consists in the following steps (Fig. 3.1): 

(i) Test system model with desired abstraction is built upon the specifications; 
(ii) Test selection criteria detect more or less severe faults at plausible costs; 
(iii) The selection criteria are coded to test specifications. The documentation 

is turned into operational instructions. Automatic test case generators are also used; 
(iv) A separate test module is built via the system model and test 

specifications; 
(v) Various trial cases from the generated test module are running on the test 

system after appropriate priority selection. Each simulation run produces an 
appreciation of “passed” or “failed”, or “inconclusive”. 

 
Fig. 3.1. Model-based testing process 
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3.2. Levels of interoperability 

The SoS concept is proposed as a method to describe the use of different intercon-
nected systems, integrated to achieve specific goals, unattainable to each of them 
separately [8, 9]. A common attribute of a SoS, distinguishing it from a LSS, is its 
interoperability, or the lack of thereof between the constituent disparate systems. 

The variety of perspectives for the SoS problems is evident in [26, 28] and 
suggests that interoperability may take the form of integration to the constituent 
systems or interoperation between the composing subsystems (e.g., two or more 
separately independent elements or systems without established hierarchy). 

Systems theory, as formulated by W y m o r e [35], provides a conceptual basis 
about formulating the interoperability problems in SoS. Systems are considered as 
components having to be coupled together to form a higher level system, i.e., SoS. 
The components have input and output ports, that provide coupling to be defined 
for information flows from the output ports to the input ports. 

The review of interoperability for distributed simulation and the linguistic 
approach to SoS interoperability is given in [4, 9]. In [29] a parallel between the 
structure of SoS as a federation of systems and a set of systems, supported by the 
High Level Architecture (HLA), is suggested. HLA is an IEEE standard, proposed 
by DoD to enable composition of simulations [7]. It is a network middleware layer, 
that supports message exchanges between simulations (federates) in a neutral 
format. HLA provides also a set of services to support the executing of a number of 
simulations. The practical use of HLA is very unsatisfactory, so two distinct notions 
for interoperability are defined: the data exchange between heterogenous 
simulations (technical interoperability), and exchanging meaningful data to realize 
concerted interactions between system federates (substantive interoperability). 

The notion for Levels of Conceptual Interoperability Model (LCIM) sets up 
seven levels of interoperability between co-operating systems. These are 
developments of the operational interoperability, defined in [8]. 

To attain interoperation in a federation of SoS, during development LCIM is 
mapped onto three pseudolinguistic levels: syntactic, pragmatic and semantic [37]. 
The pragmatic level describes how the information in the messages is used. The 
semantic level represents a common understanding of the meaning in the messages. 
The syntactic level provides common rules for managing contents and transmission 
of messages. 

In the interoperability framework, the M&S problem is how all three linguistic 
levels of interoperability to be achieved. The formal foundations of M&S allow 
discussing the support, now available, and that awaiting in the future. 

3.3. Modeling and simulation in the SoS framework 
The theory of M&S [8] provides conceptual framework and computational 
approach for M&S methodology. It supplies a set of elements (real system, model, 
simulator, experimental frame) and due relations between them (model validity, 
simulator correctness) to perform ontology of the M&S domain. 

The computational approach lies on the mathematical Theory of systems and 
features object orientation and other programming paradigms. It provides 
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manipulation on the framework elements and ability to derive logical relationships 
between them in simulation modeling. The framework elements are due to the 
system specifications in system theory. The framework relations are formulated in 
terms of morphism (preservation laws) between the system specifications. 
Conversely, the abstractions, supplied by mathematical systems theory, require 
interpretation, as provided by the framework, applicable to practical problems. 

In a computational aspect, the modeling and simulation theory lies upon the 
formalism of Discrete Event Systems (DEVS). It is implemented in various object-
oriented environments. By using the Unified Modeling Language (UML) technique, 
the M&S framework is described as a set of classes and relations (Figs 3.2, 3.3). 
Various implementations have the feature to support different subsets of classes and 
relations. The implementation of DEVS via the Service Oriented Architecture 
(SOA) environment (DEVS/SOA) is further outlined [23]. 

 
Fig. 3.2. M&S framework expressed by UML 
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systems. These system interactions can be described efficiently by discrete-event 
models. 

 
Fig. 3.3. M&S framework classes and relations in UML form 
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3.4. Modeling of SoS architectures 

A preferred medium for structure specifications in industrial applications is the 
UML for its comprehensive multi-model power. But the UML primitives are not 
sufficient for full specification of SoSE operations. The better organization and 
support of the SoSE process require a more extensive architectural framework. 
Examples for implementing UML in the SoSE concept are the Wymore’s 
Framework [35, 36], the DoD Architecture Framework (DoDAF) [12], the 
Zachman’s Framework, IDEF functional modeling method, etc. UML has gained 
large support as a powerful graphical performer of multiple SE subprocesses in 
SoSE frameworks. 

M&S takes integrated role in the SoSE design with respect to the theory of 
systems engineering. The DEVS technology serves as a mediator, placed between 
the I/O requirements and the technological specifications, aiming to provide M&S 
design level much before any design is considered as feasible. DEVS is a 
component-based modeling and simulation formalism, based on “port” recognition 
of events. It intersects the three regions of Wymore’s theory for systems 
Engineering (SE) – Fig. 3.4. 

 
Fig. 3.4. Role of M&S in the three-component theory for Systems engineering  
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OL is a description of the tasks and activities, operational elements and infor-
mation transfers, necessary to accomplish DoD missions. Such missions combine 
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both war-fighting targets and business tasks, together with humanitarian constraints. 
All the components are further decomposed to separate mission threads. 

The SL itself is a set of graphical and textual products for describing systems 
and interconnections that support general mission functions. SL associates all 
system resources, available to the tasks and produced by the OL. 

TL is a minimal set of rules and knowledge, arranging the organization, 
interaction and interdependency of the system components or elements. Its purpose 
is to ensure that a particular system satisfies the special set of requirements. 

M&S design tasks help to link up the desired goals and their possible relations, 
i.e., organize the transition from abstraction (OL specifications) to reality (SL 
implementations). M&S contributes also to the system design process. 

Although the current DoDAF specification provides an extensive methodology 
for system architectural development, it is suffering some important shortcomings: 
absence of integrated M&S support for model-continuity principles throughout the 
development process and lack of associated testing support. To overcome these 
disadvantages, specification of DoDAF architectures within a development 
environment, founded on DEVS-based M&S, is introduced. The enhanced DoDAF 
specifications [23, 37] contain M&S as a tool for developing “executable 
architecture” and providing detailed DoDAF to DEVS mapping in simulation and 
feasibility analysis. The result is an improved system lifecycle development that 
contains model-continuity based design and testing in an integral form. 

4. DEVS and DEVS for SoS 
The modeling formalism DEVS underlies the high performance simulation-based 
environment for SoS. The main concepts of the DEVS formalism [39] and 
simulation methodology describe the modeling/simulation phenomena via four 
basic objects: 

Object 1. The real system, existing or designed, is regarded as a general data 
source. 

Object 2. The model is a set of program instructions for generating relevant 
data, compatible to observations from the real system. The structure of the model is 
transferred by a set of instructions. The model behavior contains a set of all possible 
data that can be generated by correct executions of the model instructions. 

Object 3. The simulator executes the model instructions to generate the actual 
feasible behavior of the system. 

Object 4. Experimental frames establish how the researcher objectives 
influence the model structure, experimentation practice and validation results. The 
frames are formulated as model objects, such as the general models. So, the pairs 
“model – experimental frame” are composing coupled model objects to simulate 
model behaviors. 

All these basic objects are bound together by two relations. 
(i) Modeling relation. It links the real system and the model by defining how 

well the model represents the system or the subject being modeled. In general, a 
model can be approved as valid if the data, generated by this model, approaches 
sufficiently near the data obtained by the real system in an experimental frame. 
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(ii) Simulation relation associates the model and the simulator by representing 
how successfully the simulator can execute the program instructions of the model. 

The basic data, generated by a system or a model, are multiple time segments. 
They represent mappings from defined specified time intervals to values of different 
variables. The variables can either be measured or observed by software observers. 

The model structure may be expressed in a particular mathematical language, 
called formalism. In brief, formalism defines how to generate new values for the 
variables and the particular time moments when these new values should appear. 

The discrete event modeling formalism generates changes in the variables as 
piecewise constant time segments. So, a discrete event is a sudden jump in values of 
the variables, occurring instantaneously. Important feature of the DEVS formalism 
is that the time intervals between the discrete random events are varying, in contrast 
to the discrete-time simulation with generally fixed quantized time steps. 

The independence from fixed time steps gives valuable advantages to DEVS 
regarding heterogenous modeling and simulations. Multiprocess models contain a 
number of sub-processes, operating at different time scales. The calculation of such 
set of models is difficult under a common discretization time step, because the 
simulation procedure would behave inherently inefficient with the uniform smallest 
time increment to all states of the processes and frequent updating would be time-
consuming to the slower sub-processes. In contrast, when a discrete-event model is 
used, every component organizes its own time control till the next internal event. 
Thus, the component models demand processing resources just at an extent imposed 
only by their own dynamics or necessary speed to responses on external events. 

DEVS are regarded to the formalism of H o [15] for Discrete Event Dynamic 
Systems (DEDS) [40]. DEVS were introduced for discrete-event dynamic modeling 
and simulation [39]. Due to their theoretical backgrounds, DEVS are adopted as 
formal abstract notation for specifying systems with sudden jumps (discontinuities) 
in their piecewise continuous trajectories of inputs, outputs and states. 

Discrete event models provide also a natural theoretical framework to include 
discrete formalisms for intelligent systems – neural networks, fuzzy logic, 
qualitative reasoning and expert systems. But the conventional differential equation 
models remain basic paradigm for performing technical environments to intelligent 
agents. The DEVS-based systems theory of mixed discrete-continuous formalisms 
provides a general powerful framework for modeling, simulation, design and 
analysis of technical and computerized systems. Any causal dynamic system, 
possessing piecewise continuous inputs and outputs, belongs to the class of DEVS-
representable systems. In particular, systems specified by differential equations, are 
equally used to describe both the controlled system and the controller, the latter 
demonstrating a genuine DEVS behavior as decision making element. 

DEVS approach supports creation of new combined models by interconnecting 
stand-alone models as components. This interconnection is specified in a well-
defined manner, contained in the formalism of the coupled models. The closure 
property under coupling guarantees that coupling of a class of instances results in a 
system of the same class. The class of DEVS-representable dynamic systems is 
closed under coupling [40]. Closure is a substantial property since it justifies 
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hierarchical, modular structures of both DEVS models and the original system 
(continuous or discrete) they describe. 

4.1. Discrete-event modeling and simulation of SoS 
The DEVS formalism [5, 38], based on systems theory, provides a computational 
framework and tool to support systems concepts in application to SoS. In discrete-
event modeling, the events are generated at random time intervals. More precisely, 
the state variations of a DEVS appear only when events are detected (or generated), 
though not necessarily appearing at constant times. So, the DEVS model is a 
feasible approach for simulating the overall SoS framework and its interactions. 

Information flow in DEVS formalism is implemented on an object-oriented 
basis by the DEVS message concept via container classes for bounding port-value 
pairs. In a message, sent from component A to component B, a port-value pair 
contains an output port of A, and the value is an instance of the base class (or any of 
its subclasses) from a DEVS implementation. A coupling is a successive quadruple 
of the form 
(1)  (send component A, output port of A, receive component B, input port of B) 

So, the coupling sets up a path through which a value is placed by an output 
function to an output port of A and immediately (in zero time) is transmitted to the 
input port of B for further processing by the latter’s external transition function. 

In systems or simulation tasks, running in DEVS environments, the port-
message-coupling (p-m-c) concept is explicitly coded. However, for systems or 
simulation implementations, created earlier without the systems theory background, 
in existing or non-DEVS environments, the p-m-c concept is not straightforward 
and needs to be designed with the constructs of the particular environment. 

In SoS engineering, application of existing components is very often used. It is 
then suitable to start with clear concepts and modern methodology, based on 
systems theory and DEVS formalism, to deal with the interoperability requirements, 
then translate the whole problem back to the non-DEVS outdated frameworks. 

A. Implementation of confluent DEVS simulators 

The main goal in designing DEVS-based high performance simulation environment 
for optimization of large complex systems is the portability of models across 
different platforms, though at deep abstraction level. So, DEVS models are not to 
be recoded for execution on serial, parallel or distributed environments. Ideally, 
such platform independence exists at deep abstraction level, e.g., set theory, where 
DEVS models are defined. But the computational platform, encompassing all these 
features does not yet exist, although some efforts appear. Close to these 
requirements is the computer ability to port DEVS models, coded on a common 
programming language across various platforms. There are numerous advantages 
following the portability: 

(i) Models developed on serial machines with their whole convenient 
development support, can be easily transferred after appropriate verification on 
parallel systems for executing high performance simulation runs (Fig. 4.1); 

(ii) In both parallel or distributed environment, the identical models can be 
applied to perform interactions between the components, executed within serial 
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nodes and in the same way for parallel interactions of the model components on 
different nodes. 

Object-Oriented Programming (OOP) approach is the key for achieving 
DEVS portability, while retaining software flexibility on lower programming costs. 
The most notable feature of OOP is its ability to separate behavior from 
implementation, thus enabling distinct implementations with the same behavior to 
coexist [6]. 

As shown on Fig. 4.1, DEVS are implemented in an object-oriented form to 
enable execution on serial or parallel platforms. The DEVS formalism is expressed 
as objects and their interactions with details of serial or parallel implementations, 
are hidden within the objects. The user interacts only with interfaces, ensured in the 
DEVS structures while being encapsulated by the ultimate execution environment. 

The DEVS formalism is modified to enable parallel execution of heterogenous 
large-scale simulation problems. This revised version of DEVS is the basis of a 
high-performance simulation environment, denoted as DEVS-C++ [5]. Due to its 
rapidly growing availability, C++ language is usually applied as an object-oriented 
descriptive instrument. DEVS is implemented via a set of classes (containers). In 
their simulated serial version, such classes provide a well-defined tool for 
specifying list data structures and their manipulation. A more abstract and 
generalized description of the container functionality provides services to group the 
objects into collections and coordinate the activity within groups. 

B. Specification of containers classes in OOP descriptions to DEVS [6] 
In Fig. 4.2, the primitives to coordinate the object behavior in a container are 
shown: 

• tell-all.  Send uniform command to each object in a container; 
• ask-all. Send query to each object and return a container, holding the 

responses; 
• which? Return subcontainer with all object responses TRUE to a Boolean 

query; 
• which one? Return a container object, responding TRUE to a Boolean 

query; 
• reduce. Aggregate the object responses in a container to a single one (e.g., 

sum). 

         
          Fig. 4.1. Object-oriented implementation            Fig. 4.2. Containers classes with basic 
          of DEVS on various platforms with C++                               primitives 
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These Assembling methods seem rather parallel than sequential by nature, but 
having abstract specifications, independent from the particular implementation. So, 
applying the C++ polymorphism, two abstract container subclasses are defined: 

• Lower-case class: implement a set of assembling methods in a serial form; 
• Upper-case class: implement same assembling methods in a parallel form 

(Fig. 4.2). 
The serial implementation can be executed in any architecture having C++ 

compiler. In particular, if the nodes of a system can execute C++, then the serial 
type Containers will be compatible with them. However, the implementation of a 
parallel type CONTAINERS involves physical (as opposed to virtual) message 
passing between objects on different nodes. This kind of message exchange must be 
realized within the communication primitives, admissible by the parallel or distribu-
ted system. For example, a parallel CM-5 implementation applies the message-
passing library CMMD in CM-5. Similarly, a network of workstations, linked with 
PVM technology, offers communication primitives supplied by the PVM itself. 

C. DEVS engines and platforms 
The computational organization of modeling the subsystem processes in program 
simulation environments is shown in Fig. 4.3. The internal structure and system 
interrelations between subsystems, as well as the simultaneous functioning on 
different time-scales, are clearly denoted. In a separate discrete time-period during 
the simulation run of each subsystem, a specific data exchange takes place and the 
computational processes start inside its particular (micro)time-scale between t and 
t+h time intervals. Evidently, the system in the federation of LSS has also complex 
structure, built up by the component modules (sub-subsystems), executed in a 
definite step. This shows the binding condition for hierarchicity in simulation of the 
overall task. The large time-scale of the system is the range between Т0 и Т1 time 
intervals. 

 
Fig. 4.3. Functional diagram for subsystem simulation of a large-scale system 
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Up to now, multiple discrete-event simulation engines are known (XDEVS, 
Matlab Simulink, NS-2, OMNET++, etc.). They are suitable to simulate 
interactions in heterogenous groups of independent systems. The advantage of 
DEVS to distributed simulation tasks is its powerful mathematical description and 
feasible support using middleware products, such as the software suit HLA of DoD. 

4.2. Application of DEVS in a test and evaluation of SoS 

The capabilities of DEVS for SoS Testing and Evaluation (T&E) lie in the DEVS 
Unified Process (DEVSUP). The T&E process is included in SOA due to numerous 
tasks by DoD. In Table 4.1 the general DEVS features to T&E are performed. 

Aiming to solve the problem for war mission thread testing at the second and 
third system levels, a Collaborative Distributed Environment (CDE) is proposed in 
[3]. It is a combined toolbox of new and existing utilities from commercial, military 
and non-profitable issues. In this environment, M&S technologies are applied to 
support model-continuity and Model-Driven Design (MDD) development, making 
the test and evaluation an integral part of the design and operations life-cycle. 

The development of such a distributed testing environment has to comply with 
the recent DoD trends, that require DoDAF to be adopted to describe all high-level 
system and operational requirements and architectures [10]. Unfortunately, DoDAF 
and DoD network-oriented specifications bring in significant difficulties in T&E 
process, since these requirements must be clearly estimated to guarantee meeting 
the objectives, but they all are not expressed in a strict form for evaluation. 

DoDAF however, does not provide a formal algorithm to support this 
integration. Without such process DoDAF is non-applicable to SOA ideas and GIG 
in particular. There are some efforts to map DoDAF products to SOA, but with no 
clear methodology to develop a SOA project directly from DoDAF, though nothing 
is mentioned to their testing and evaluation. 
Table 4.1. General DEVS resources and capabilities 

M&S capabilities for 
T&E of SoS DEVS solutions 

Support to DoDAF for 
executable architectures via 
M&S (mission testing for 
GIG/SOA) 

DEVSUP [23] methodology and SOA infrastructure for 
integrated development/testing, extending DoDAF requirements 
[25]. 

Interoperability and platform-
independent M&S using 
GIG/SOA 

Layered simulation architecture to accomplish technology 
advances and run various technological versions [23, 26]. 
Network-oriented composition and integration of validated via 
DEVS models using Simulation Web Services [23]. 

Automatic test generation and 
implementation in distributed 
simulation problems 

Model separated from the simulation process (executed on 
single or multiple distributed platforms). 
Randomized test and development process. 

Testing product continuity and 
traceability between phases of 
system development 

Rapid tool for applying model-continuity principles like 
“simulation reality”  

Real time observation and 
manipulation of test 
environments 

Dynamic variable-structure component modeling to perform 
control and reconfiguration of the simulations at run. Dynamic 
simulation tuning, interoperability testing and benchmarking 
applications. 
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5. SoS Test and evaluation via DEVS modeling and simulation 

SoS test and evaluation is accomplished by modeling and simulation of the large 
sets of systems, performed as DEVS with particular properties. 

5.1. Branching Model-Continuity based Life-Cycle Methodology for SoSE design 

The generalized solution of SoSE design is obtained by combining the system 
theory, M&S framework and model-continuity concepts. This introduces the 
Branching Model-Continuity based Life-Cycle process at the following steps: 

• Behavior requirements at lowest levels of system specification. The 
hierarchy of system specifications [38] sets well-defined goals for the system 
behavior. The process is iterative and follows improved formal description. 

• Model structures at higher level specification. The formal requirements 
become model implementations, e.g., DEVS-based transformation in C++, Java, 
C#, etc. 

• Simulation execution. The developed model is copied from the Software 
Program base to the simulation module. Separation of the model from the simulator 
allows independent development, contrasting to the tight coupling in some older 
systems. 

• Real-time execution. The simulation must be executable in Real-time mode 
and according to Model-Continuity principles. The model is a final application 
code. 

• Test models/Federations. By working out the branching system model 
process, the formalized models, which might be developed at the atomic or the 
coupled level, turn into test models and become organized federations. For checking 
the system specifications, experiments and test cases are accomplished. DEVS aids 
the invention of experimental frames at this step of developing a test tool. 

• Verification and validation. The simulation provides correctness check of 
the system specifications over a wide range of execution platforms. The test tool is 
verifying the consistency of such implementations in a testing infrastructure. Both 
operations consist in Verification and Validation design step. 

5.2. Analysis capabilities 

A DEVS coupled model allows the use of analysis tools to obtain useful 
information on the testing support. A mission thread model contains upper and 
lower bounds on the time duration for individual activities. Time windows are 
derived for the random events and entering of the messages. During analysis, more 
strictly than in simulation, it is important to select the events and messages of 
particular interest, derived by the performance and efficiency measures in the 
experimental frame. This is necessary for appropriate constraining the analysis, 
since it suffers from “global state explosion”. For this reason, the algorithms are so 
developed, that under restrictions on the model class, they derive time window 
specifications to inform the DEVS agents during monitoring of the related mission 
thread performers [23, 41]. 



 23

6. Experimental frames for SoS 

6.1. Experimental frames concepts 

An  Experimental Frame (EF)  is  a specification  of  the conditions for  observation 
orexperiment, which must be conducted with the system. So, EF is an operational 
definition of the objectives in a modeling and simulation project. 

For a particular system (source system or model), several experimental frames 
might be defined, and vice-versa, a single experimental frame may be applied to 
different systems. This is due to the various designer objectives in modeling a 
particular system, or having identical goals to different systems. This conception 
considers the frame as a definition of the data element types, contained into a data 
base. 

Another formulation suggests the frame as a system that interacts with the 
tested system to obtain data of interest under specified conditions. Here the frame is 
described by its implementation as a measurement system or state observer. 

In this treatment, a frame contains three types of components (Fig. 6.1 (a)): 
• Generator for generating input sequences to the system; 
• Acceptor for experiment monitoring: meeting desired experimental 

conditions; 
• Transducer for observing the output sequences and analyzing the system 

behavior. 
In Fig. 6.1 (b), illustration of a standard type experimental frames is shown. In 

the web context, a generator produces messages for service request at a given rate. 
The elapsed time between sending a request and its return back from a given server 
is the RTT. Data throughput for the observation period To is measured. 

The Transducer notifies the departure and arrival times of the requests and 
computes the average RTT, statistics, throughput DT and the unattended requests. 

The Acceptor monitors performance and achieved objectives (e.g., 
throughput). 

The experimental frames transform the objectives into precise experimental 
conditions [38], regarding the original system or its valid models. For given 
objectives, there is a suitable preciseness level in model description. Thus the 
appropriate model abstraction depends on the objectives and experimental frame. 

In SoSE, modeling objectives determine the development and testing of SoSs. 
The Measures Of Efficiency (MOE) in SoS allow the evaluation of the  
architectural and design alternatives. MOEs are computing via model output 
variables, which are obtained during repeated simulation runs. The mapping of the 
output variables into the outcome measures is performed by the transducer in the 
experimental frame. For some systems, more than one layer of parameters between 
the outputs and outcome measures exists. In sophisticated control solutions (third 
hierarchical level), the Measures Of Performance (MOP) (integral error, damping, 
settling time) are output parameters of the system operation and directly enter the 
MOE. 

The interoperability conception of DoD [10, 11] for planning military missions 
with mutual participation of various services (army, navy, air force, etc.) offers 
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numerous SoS problems to investigate how the joint critical threads will perform in 
real situations. Obtaining numerical efficiency measures for joint missions requires 
multiple runs of the mission threads in live or virtual simulation environments. 

The EF approach enables simulated and real-time data in the system 
information exchange and processing. Relevant MOPs refer to shared situational 
clarification, quality and non-delayed operative information, range and effective-
ness of co-operation. The efficiency measures cover power increase, decision-
making capabilities and command speed. Such abstract indices are to be modeled 
mathematically and precisely computed to support repeatable and consistent T&E. 

The thread starts when the Combat Command HQ receives a mission order, 
exposed to the HQ Staff. The Staff performs mission analysis with results back to 
the commandment (Fig. 6.2). Then the Joint Planning Group and the Development 
Teams investigate the operations and predict the expected effects. The thread ends 
with an issue of orders. The performance indices include measures of collaboration 
and interrelations. The efficiency estimates the speed of command and goals 
execution. 

              
   (a)                                                                    (b) 

Fig. 6.1. Experimental frames for SoS testing and evaluation:  building components (a);   
functionality (b) 

 
Fig. 6.2. Joint mission thread and its components 
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All measures might be combined together to assess the collaboration support 
system in an operational real treatment. The performed mission thread is further 
used as a template for specifying a large set of instances (Fig. 6.3). As shown, the 
instances can vary in several directions, including the objectives of interest (desired 
MOP and MOE), the type of application, the participants involved and the 
operational environment for testing. Various mission threads can be nested one into 
another. For example, Analysis is a sub-thread, executed within the Planning thread. 

A collaborative mission thread can be described as a coupled model in DEVS, 
where all components are participants in the collaboration and the coupling between 
them represents the available information exchanges that can occur. 

The implementation of the joint mission threads as test model federations is 
simulated in network-oriented integrated infrastructures as GIG/SOA [4]. This 
infrastructure ensures an environment for the mission thread components together 
with network and web services, allowing collaboration to them (Fig. 6.3). The 
formulation of a mission thread as coupled model ensures the thread simulation 
within the infrastructure. The defined MOEs and MOPs for assessing the mission 
execution need to be transformed to a distributed EF, possessing observers for 
check of the component activities and message exchanges, as well as generators, 
transducers and acceptors. The assessment of an integrated infrastructure to support 
the collaboration of a mission thread is presented in Fig. 6.3 as design of an 
Instrumented Test System (SoS). It can be solved with the M&S approach. 

 
Fig. 6.3. Mission thread implementation in an integrated environment 
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Thus the DEVS model is built by an observer and EF, both embedded in a test 
agent. 

 
Fig. 6.4. Distributing experimental frame agents and observers 

The network-based SOA provides a technical realization of the concept. The 
DEVS/SOA infrastructure enables DEVS models and test agents, located on pres-
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Nodal generator agents activate the check of the Quality of Service (QoS) 
specifications according to the information, supplied by the higher layer test agents. 
These probes return statistics and alarm monitoring data to the transducer-
acceptors at the DEVS fault diagnosis layer, which cancels the virtual experiment at 
the test layer when QoS measures are violated. In an EF for real time network 
diagnostics, the test system is the network infrastructure (OSI layers 1-5) It supports 
higher session and application layers. QoS measures have values for meaningful 
testing at the higher layers: transit times and other statistics for quality. For 
messages in XML and transferred by SOAP middleware, such measures are directly 
produced by DEVS generators and utilized by the DEVS transducers/acceptors. 
Such messages investigate the network secrets and bottlenecking conditions, 
experienced by the message exchange procedure between higher level web 
servers/clients. Under certain QoS conditions, however, video streams and other 
types of data packets, may experience different conditions than the SOAP-produced 
messages. For these cases, lower layer monitoring is necessary under control of the 
nodal EFs. 

 
Fig. 6.6. Multi-layer testing with Network fault monitoring 
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speed and accuracy of sending an information item from the producer to the user. 
Accuracy may be estimated by comparing the received item to the sent one, using 
appropriate metrics. To automate the process of comparing, metrics must be 
selected to be both discriminative and fast for computing. If translation takes place, 
the meaning of the item must be preserved as declared. The delay, involved in 
sending an item from the sender to the user, must be within preset limits, defined by 
human abilities. Such limits are more severe where random exchanges are observed 
on immediate priority, such as in a conversation. The instrumentation of such tests 
is similar to one at the syntactic level. There must be understanding that the 
complexity of accuracy and speed testing is of higher order at the semantic level. 

C. Pragmatic level – mission thread testing 
A test federation observes the agreement of web services to verify if the message 
flow traffic among participants conforms to information exchange requirements. A 
mission thread is a series of activities, executed by the operational nodes and 
engaging the information processing functions of the web services. Test agents 
watch the messages, sent and received by the services that host the participating 
operational nodes. Depending on the mode of testing, the test architecture may, or 
may not have information about the running mission thread under test. When thread 
knowledge is available during execution of a mission thread, the test process has 
more opportunities than in case of lacking information. 

D. Measuring mission thread performance execution 
The ultimate test for efficiency of an integrated infrastructure is its ability to support 
successful goal achievement of mission thread executions. To measure such 
efficiency, the test instrumentation system must be informed about the possible 
events and messages to be expected during execution, including those that provide 
acknowledgement for success or failure. The test system must also be able to detect 
and track these events and messages during the execution. It is often considered that 
success of a mission depends on the obtained relevant information. So, a perfor-
mance objective is the ability of an integrated infrastructure to measure the extent of 
delivering the right information to the necessary place at the precise time moment. 

6.4. Layered high-performance environment for SoS simulation 
The complexity of behavior, that modern large systems can exhibit, demands 
computing power for simulation-based design, far exceeding that of standard 
workstation technology. In order to be able to solve such hard computing problems 
using high-resolution and large-scale representations of both natural and artificial 
subsystems, high performance simulation-based design environments are used with 
two levels of intensive knowledge and information processing. At the Decision-
making level, searches are performed through vast problem parameter spaces of 
alternative design configurations and associated model structures. At the Execution 
level, simulations generate and evaluate complex candidate model behaviors, 
possibly interacting with human participants in real time. To represent both 
continuous and discrete processes, the DEVS modeling formalism is used. This is 
due to its significant performance and conceptual advantages. The simulation-based 
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task solver is a layered system of functions, containing modeling, simulation, 
optimization and decision making. Decision makers draw their inferences on 
experiments with alternative strategies (reducing the risk, minimizing the time of 
task execution, etc.), where the best ones, according to some criteria, are put into 
analysis. Experiments on models are preferred to those, carried out in reality. For 
realistic models such experiments cannot be worked out analytically, therefore they 
require direct simulation. The design of an environment to support all these 
activities is based on a layered collection of services, where each level uses the 
options of lower levels to realize its functionality. To provide generic and robust 
search capabilities, special algorithms are implemented for the searcher in the 
model space. The optimization layer employs the searcher to find reasonable or 
even optimal system designs. The experience with different computing 
environments shows, that only a large number of interconnected processing nodes 
can provide memory to hold the enormous amount of knowledge or data for 
modeling complex systems and simulation speed to provide reliable solutions in 
reasonable time. Currently, such large numbers of computing nodes, dedicated to a 
single problem, can be organized only on scalable, high-performance platforms, like 
Connection Machine, CM-5 or IBM SP2, containing up to 1024 processors. 
However, at least a million times increase in either speed or numbers of nodes is 
necessary for such systems to support optimization of large-scale models. 
Unfortunately, the cost of such platforms is beyond most of the potential users. The 
other solution to networking large number of distributed computing resources 
(network clusters) results in 130 workstations, connected with Parallel Virtual 
Machine (PVM) over Ethernet [27], which is less than the parallel computer 
platforms. So, the technical barriers in the design of simulation environment are 
heterogeneity, portability and dimensions. A multilayered hierarchical environment 
for high precision simulation of large complex systems is applicable only if meets 
the high-level requirements towards its computational abilities and quality of 
results. The structure of such environment consists of three mayor layers: modeling, 
simulation and searching layer. 

 
Fig. 6.7. High performance simulation environment for distributed modeling and optimization of LSS 
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The simulation layer executes concurrent processes in heterogenous and 
distributed computing multiagent environment. Single process optimization is run 
by an independent agent on separate algorithm in individual simulator for a model-
based experiment (Fig. 6.7). Although each simulator is shown as a separate stand-
by element, it could be allocated everywhere in a multiprocessor distributed 
computational system. Thus an experiment is consisting of numerous simulation 
trials, aiming to determine how well the particular intelligent controlling 
(monitoring, managing) agent operates. The functional environment is performed as 
a simulation model, governed and observed by the agent via “experimental” frame. 

The model in each simulator is selected by a set of related models with 
different abstraction levels − from the lowest to the highest resolution of the 
phenomena. The optimization agent performs initially coarser searching, starting 
with the more abstract problem DEVS models, before going on to more precise 
slower descriptions of high resolution. The experimental modeling frame ensures 
various inputs to the process models for observing intermediate and final results. 
The test effectiveness of all spatially distributed configurations is estimated and 
reported by a GA agent and manipulated by distributed functional agent. 

7. Service Oriented Application of the DEVS unified process 
The Branching Model-Continuity process undergoes further refinement and 
integrates together with various elements as automated DEVS model generation 
tool or automated test-model generation utility via network-oriented simulation 
procedure over SOA to produce the DEVSUP [23], built over the Branching Model-
Continuity based life-cycle methodology. The design of test simulation framework 
is carried out in parallel with the model simulation of the system under design. The 
DEVSUP process consists in the following components: 

(i) Automated DEVS model generation in various requirement specifications; 
(ii) Collaborative model developed by DEVS Modeling Language (DEVSML); 
(iii) Automated generation of a test image from DEVS simulation model; 
(iv) Network-oriented execution of the model and the test image over SOA. 
Various forms of requirement specifications – state-based, natural language 

based, rule-based, BPMN/BPEL-based and DoDAF-based are analyzed and the 
automated process, used by each one to deliver DEVS hierarchical models and 
DEVS state machines, is evaluated [33]. In this case the simulation execution is 
more sophisticated than simple execution of a model on a single machine. With grid 
applications and multiprocessor collaborative computing, a network-oriented 
platform using XML as middleware results in an infrastructure, that supports the 
distributed collaboration and model reuse. The infrastructure provides for platform-
free specification language, DEVSML and network-oriented execution using 
Service-Oriented Architecture DEVS/SOA [24]. Both DEVSML and DEVS/SOA 
provide a novel approach to integrate, collaborate and remotely execute complex 
system models on SOA. This infrastructure supports automated procedures for test-
case generation leading to test models. Using XML for the system specifications in 
a rule-based format, a new tool (Automated Test-Case Generator (ATC-Gen)) is 
developed to facilitate the automated development of test models [37]. 
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The integration between DEVSML and DEVS/SOA is shown in Fig. 7.1. 
Various model specification formalisms are supported and mapped onto DEVSML 
models: UML state charts, exhibit-driven state-based approach [24], Business 
Process Modeling Notations (BPMN), Business Process Execution Language 
(BPEL) [2] or DoDAF-based specifications [25]. A translated DEVSML model is 
supplied to the DEVSML client that makes coordination together with the 
DEVSML server utility. When the client operates with DEVS-JAVA models, a 
DEVSML server can be used to compile the client’s model with the other models 
available at other sites to obtain an enhanced integrated DEVSML file that can 
produce a coupled DEVSML model. The adopted DEVS/SOA server can use this 
integrated DEVSML file to distribute the component models at selected DEVS 
web-server simulation engines. The resulting distributed simulation, or 
alternatively, a real-time distributed run of the coupled model is the final point of 
the design process. 

 
Fig. 7.1. Network-oriented collaboration and execution using DEVSML and DEVS/SOA 

7.1. DEVSML collaborative development 
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Fig. 7.2. DEVS Transparency and Network-oriented Model Interoperability using DEVSML. Client 

and Server categorization is done for DEVS/SOA implementation 
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(i) Upload the models to particular IP locations, i.e. make partitioning; 
(ii) Performing run-time compilation at respective sites; 
(iii) Simulating the coupled model; 
(iv) Obtaining the simulation output at client’s finish. 
The specified main server houses the top level coupled model and emulates a 

coordinator that generates simulators in the same residence and/or on other servers. 
An important feature of DEVS/SOA is the multi-platform simulation 

capability. It organizes distributed simulation among different DEVS platforms or 
simulator utilities, (DEVS-JAVA, DEVS-C++, etc.), on Windows or Linux 
platforms. The system is supplied with simulation services on specific platforms, 
managed by a single coordinator. In simulation, the overall model is partitioned 
according to the application platforms and executed by the appropriate simulation 
service. This is a form of interoperability, where multi-platform simulations are 
executed with DEVSML integration facilities. DEVSML is used to describe the 
whole hybrid model. At this stage, the message passing is realized by means of an 
adapter pattern in the design of the “message” class [24]. In Fig. 7.4, the 
Interoperability DEVS Simulation protocol is shown. The platform-specific 
simulator generates messages or event flags, but the simulation services transform 
them into PIMs, according to DEVS/SOA. Hence, the DEVS/SOA framework can 
be extended for network testing. It needs to have multi-platform simulation 
capabilities to achieve interaction as Services for concurrent test models on any 
DEVS environment (e.g., Java, C++). 

      
  Fig. 7.3. Executing DEVS/SOA-based M&S task            Fig. 7.4. Interoperable DEVS Simulation 

              protocol in DEVS/SOA 
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(iv) Following Step (ii), either coupled model is simulated via DEVS/SOA, or 
a test image of the DEVS models is generated; 

(v) The simulation is running in real-time or in logical time on a stand-by 
machine or distributed environment using SOA middleware for network execution; 

(vi) The test image of the DEVS models is executed as described in Step (v); 
(vii) The results are comparing in a Verification and Validation process. 
The system development of DEVS by the Branching Model Continuity-based 

Life-cycle process for system engineering is performed on Fig. 7.5. 

 
Fig. 7.5. Overall DEVS unified process development 

Since up to now, a large number of case studies are based on the DEVSUP 
conception and many projects are at a final stage or currently active at disposal of 
the Joint Interoperability Test Command (JITC). By extending DEVS with 
Branching Model-continuity Life-cycle process, systems theory becomes able to 
support new generation network-based developments and software engineering test 
solutions. 
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