
 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 13, No 2

Sofia • 2013 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2013-0011

Modeling and Simulation of Systems of Systems – a Survey

Anjel Tzanev

University of Chemical Technology and Metallurgy (UCTM) – Sofia. Dept. of Industrial Automation
Email: atzanev@uctm.edu

Abstract: The paper surveys the current state of the art and perspectives in the
theoretical and practical achievements at the area of Systems of Systems (SoS) and
SoS Engineering (SoSE). The conceptions about SoS simulation modeling,
subsystem integration and practical implementation issues in the face of main three
tendencies for development (academic, military and industrial) are considered.
Comprehensive generalized methodology for design, testing and efficiency
evaluation of SoS, named DEVS Unified Process (DEVSUP), is briefly summarized.

Keywords: Systems of Systems, distributed simulation, experimental frames,
System-of-Systems engineering, simulation modeling, discrete-event systems.

1. Large-scale systems and Systems of Systems

1.1. State of the art in large-scale complex systems development

Since the early 70-es of the past century the industrial, technical and social systems
have changed into large-scaled and highly sophisticated technological production
conglomerates. These systems have restrictions on information structure and critical
sensitivity to risks [19]. In reply to the emerging features and increased demands for
control, the paradigm of Large-Scale Systems (LSS) has appeared in system theory.

A system is considered as large-scale, when it submits three general LSS
concepts: ability to decomposition, centrality theorem for geographical distribution
and property of complexity. These features require new system solutions for

 4

operation in intensive network environments and need of integrating modern
technologies to diverse applied aspects (economic, social, technical, natural, etc.).

Traditional LSSs deal with power, gas and water supply; robotics and CIMS;
transportation systems; industrial processes; communication/computer networks;
space/military missions. Three groups of theoretical control problems for LSS exist:

(i) Define specific performance indicators [33]: coordinability, identifyability,
decentralizability, connectability, global and internal functional stabilizability.

(ii) Multicriterial and polycomponent efficiency indices.
(iii) Solving emerging problems: intelligent network systems for decision and

control of critical infrastructures, autonomous AGVS, security systems, etc.
Generally said, large-scale systems become larger and more sophisticated.

Practical solutions are still necessary, aiming at to include new technical progress.

1.2. The concept for Systems of Systems

The notion for System of Systems (SoS) is a new idea in Systems Engineering (SE).
It arises after the endless complications of LSS. SoS is a natural extension of LSS in
systems engineering. The paradigm of SoS represents a mix of independently
operating and actively interacting large systems, integrated with sophisticated
goal(s). SoS applications refer to Air Traffic Management Systems, Space
exploration, ground support flight equipment, robotic space colonies, AGVS [22],
communications and Internet [3, 24, 37], scientific researches (Modeling and
simulation of SoS) [25], coast and border guard, modern army combat systems, etc.

The investigations at SoS are mainly due to the changing aerospace and
defense industries, on the large-scale system integration by solutions to complex
problems. SoS consists in a mix of intensively interacting independent systems with
common goals during task execution. No firmly acknowledged definition for SoS
exists up to now. A non-strict postulation has been given by K e a t i n g et al. [18]:
Metasystems, comprised of multiple autonomous embedded complex systems
(probably LSSs), that diverse in technology, operation, context, geographical
disposition and conceptual frame (but aimed to a common general goal) [18].

The specific problems of SoS can be generalized in the following directions:
• Determine appropriate list of independent LSSs for execution of particular

task;
• Heavily uncertain environment during SoS operation;
• Operative compatibility (interoperability) has to exist between SoS

components.
The distinctions between SoS and LSS have been declared initially by [21] in

March, 1998, and consist in the following general properties and characteristics:
(i) Operational independence of the components in a SoS.
(ii) Evolutionary development. Necessary changes in a SoS could be made.

New functions are adding, existing ones removing or updating. SoS undergoes
persistent evolution, in contrast to multi-step non-cyclic irreversible design of LSS.

(iii) Emergent, suddenly changing and non-predictable behavior [32].

 5

(iv) Geographical distribution. E i s n e r [13], in 1993, denoted SoS as large
geographically dispersed complexes. This property is adopted in all SoS
publications.

(v) Guaranteed interoperability between two or more systems and components
to exchange information and operate independently by utilizing this information
[16]. Only a SoS is able to interoperate its component systems.

(vi) Complementarity. Each system should complement the other members
within SoS. The multiple perspectives ensure robust approach and design [19].

(vii) Guaranteed integrity and On-line membership optimization.
(viii) Holism. The overall entity is more informative than the sum of its parts.
The comparison between LSS and SoS modeling processes shows opposite

directions. The typical LSS modeling process evolves from top to bottom of the
hierarchy. On the contrary, considerable difficulties arise during the SoS modeling,
where the appropriate development is oriented “from bottom to top” of the system.

The problems to SoS progress are set by the general consumers and promoters:
• Tendency of fragmented perspectives for practical development;
• Lack of rigorous investigations and extensive theoretical backgrounds;
• Domination of IT and technical achievements in comparison to theoretical

results;
• Limitations by the adopted conception of SE, focusing on a single system;
• Lack of theory or methodology for integrated systems analysis.

2. System of Systems Engineering

The first descriptive characteristic for the notion of the System of Systems
Engineering (SoSE) is made primarily by K e a t i n g et. al. [18] and J a m s h i d i
[17], both giving the following suggestions:

“Design, deployment, operation and transformation of metasystems, that must
function as an integrated complex system to produce desirable results.”

Although there is no firmly accepted definition for SoSE up to now, actually
SoSE is an integrated approach to upgrade existing systems to newer, more
powerful and improved systems for command, control, communications, computer
hardware intelligence, surveillance, reconnaissance and innovative logistic support.
So, the main research areas of SoSE are organized around the following topics [28]:

(i) Defining structure optimization, combinatorial design solving and control.
(ii) Assessing, uncertain decision making in stochastic operating environment.
(iv) Domain-specific modeling and simulation. Identify the areas of potential

risk and additional analysis. Sets the operational development, mission rehearsal.
The field of SoSE does not seem to comply precise logical organization for the

different descriptions, conceptions and suggestions of what constitutes a SoS and
what SoSE is [18, 31]. A divergence in SoSE between hard system solutions and
soft system inquiry has been achieved [31]. It consists mainly in the following [19]:

• General omission of what constitutes a SoS. It is currently a subject of
disputes;

 6

• No strict definition of SoSE. The methods and standards are not widely
ratified;

• Research works continue to be fragmented and mainly application-oriented;
• The relationships of SoSE to the cognitive area of SE are rather weak;
• The significance of information technology (interoperability) is strongly

overestimated, while underrating human, social, organizational and other policies.
SoSE development is a complex task, faced by a staff of system researchers.

Main characteristics of this domain are consisted in the following items:
• Information systems and technologies, originally not dedicated to SoS

tasks;
• Various local operators with incompatible requirements and distinct

objectives;
• Insufficient, varying uncertain resources and potential instabilities during

tasks;
• Shifting conditions and necessity of holding the emerged events and effects.

Thus, the stability requirements to life cycle driven approaches is unreliable;
• Technology advances from the capabilities and infrastructure compatibility,

necessary to support the development, integration, maintenance and progress of
SoS;

• Urgent demand for response actions to prevent task crisis and failures;
• Increasing complexities and uncertainties, calling in question the ability of

classical systematic approaches to effectively deal with SoS problems.
These specifications are not reachable in the near future and are expected to

become more complicated. Shift from the classical SE approaches is mandatory.
This examination gives variety of perspectives and applied developments, but

considers the fragmented nature of SoSE. A general problem remains the invention
of a framework for creating rough structure to SoSE developments. It must provide
an overview on the central design problems and their implication for progress.

The SoSE area encompasses three main perspectives: military, academic and
industrial. This reveals the source of fragmentation and future divergent developing.

The term “SoS” has already been adopted with significant generality, but
insufficient number of sources provide reliable tests for approving what can be
accepted as “System of Systems”. Actually, SoSE paradigm has no large succession
to be distinguished from other related analysis and design areas, like SE for
instance. SoSE appears to be a necessary extension and evolution of classic SE. The
general distinctions between SE and SoSE refer to the following points [28]:

• Greatly expanded SoS requirements for ranking level of strictness and
rigor;

• Centralized in substance (although distributed in space) control structure in
LSS versus decentralized control and component disposition of SoS;

• Comparing a standard stand-alone large-scale system with well-defined
final states, fixed budget (resources), clearly planned schedules, technical baselines
and homogenous structure, to a typical SoS with vaguely defined end states,
periodical budget variations (supply, delivery) and heterogenous structure of
equipment.

 7

The research on SoSE exists in a lot of tasks. Although the area lacks
conceptual completion, a conclusion has to be made for its commonly accepted
assumptions:

• Higher level of interactions among component systems;
• SoS provides services, behavior or performance, impossible to any single

system;
• Each subsystem operates independently to its own goals, different by that of

SoS;
• A SoS is often constituted by multiple LSSs, functioning in a common

mission;
• Intended and random chains of events are emerging as a result of the

interactions between the LSSs, jointed in a SoS.
The SoSE requirements are summarized in ensuring compatibility and intero-

perability of the system components with highest levels of operational efficiency.
Three perspective directions are examined as a proof of the observed field

fragmentation [11]: academic, military and industrial developments:
(i) Military perspective. It is issued by the US Department of Defense (DoD)

Architectural Framework DoDAF and focused on the interoperability of technical
command and control systems. The set of individual systems requires integration of
the separate “technology” components in an overall SoS.

(ii) Academic perspective. It is the weakest trend of progress, but demonstrates
potential for future rigorous development in philosophic and theoretical aspects.

(iii) Industrial perspective. It possesses a more robust view of SoSE and
considers an industrial enterprise as a SoS, existing well beyond the technology.

2.1. Military perspectives of SoSE

The SoSE investigations are most closely linked to the military applications. In
addition, the military perspective has evidently dictated to a large extent the former
directions in SoSE progress, thus concentrating them in four main topics:

(i) Adopting the technological aspects as primary. The SoS in military
applications is focused on supporting the command and control activity through
integrated use of SoS technologies to achieve success in the planned operations.

(ii) Imposing interoperability as a central design objective. In addition to
technical perfection, the military specifications require all technical (sub)systems in
a SoS membership to be interoperable.

(iii) Extrapolation from SE. Related to demands, traceability and architecture.
(iv) Strong attention on technical devices. The military perspective of SoSE is

interesting mainly for obtaining (technical) equipment, able to operate jointly.
The military orientation complicates the advances on the SoSE area. In recent

US DoD publications [10, 20], the SoSE future is recognized by the next notions:
(i) There is no clear difference between SE for systems and SoS;
(ii) The single difference consists only in the fact, that no one controls a SoS;
(iii) There is no novelty in a SoS, moreover, any system composed by

subsystems, is a SoS. This tendency originates since the statement of SE.

 8

The promotion and perspective development of SoS is mainly pursued by the
US military department, as declared in the Systems Engineering Guide for SoS [11],
where there is a suggestion for SoSE as an extension of SE. This tendency is
approved by some important definitions about the military perspectives of SoS and
SoSE:

Definition 1. SoSE deals with planning, analyzing, organizing and integrating
the potentialities of a group of existing and new systems into SoS capability, thus
exceeding the sum of resources in the constituent elements.

Definition 2. The general objective for developing a SoS consists in satisfying
the demanded system capabilities, that can only be created with a mix of multiple,
autonomous and interacting systems.

Definition 3. A set of interdependent systems, that are related or connected
together to provide a given capability, is a SoS. The loss of any system component
will significantly degrade the overall performance or potentials. The development
of a SoS is a compromise between the systems and their individual system
performance.

The military oriented concept of SoSE is focused only on extrapolation from
SE. Influence from the military perspective to SE and SoSE also exists (Table 2.1).
Table 2.1. Important areas in SE and SoSE [34]

Characteristic Classic SE SoSE

Aim

Development of a single system
submitting the client’s require-
ments and necessary preset
performance

Obtaining new SoS capabilities by
activating the force of coherent action
between the participating systems and
emerging properties

System
architecture

Adopted early in the life cycle
period. The set of expectations
remains relatively stable

Dynamic adaptation when emergent
needs appear

System
interoperability

Interface requirements are
defined and implemented for
integration of the components in
the system

All component systems can operate
independently in a SoS by suitable
manner. To enable an interoperable
system, the protocols and standards are of
essential importance

System properties

Reliability, maintainability,
availability. Coordinability,
detectability, identifiability,
internal functional stability,
decentralized stabilizability [33]

Extension to special properties: flexabi-
lity, adaptability, composability [33],
integriability, structural controllability,
connectability, global and structural
stabilizability

Acquisition and
management

Centralized acquisition and
management of the system

Separate inclusion of the component
systems, still remaining independently
managed and operated

Anticipated needs Determination of the system
needs at the concept phase

Intensive concept phase analysis,
followed by continuous anticipation and
forecasting, aided by real-time
experiments

Related costs

Single or homogenous financial
group with stable cost/funding
profile and similar measures of
success evaluation

Multiple heterogenous financial groups
with unstable cost/funding profiles and
different measures for success evaluation

 9

2.2. The academic perspectives of SoSE
The academic researches represent a distinguished and more comprehensive
approach to the SoSE area. These developments are in three main directions:

(i) Investigate theoretical and conceptual differentiations. The investigations
on this problem are insufficient till now, with exception of a few works [19, 20, 31].

(ii) Theoretical exploration of the phenomena. In contrast to the other two
SoSE perspectives, the academic interests are taking more analytical orientation. In
the existing theoretical works the investigations, inquiry and analysis of SoSE
phenomena with their origins and explanations [19, 31] are treated.

(iii) Foundations in systems theory. The principles, laws and concepts of this
theory provide the background for academic development of SoSE and links to
theoretical knowledge, but the SoSE practical developments are largely ignored.

The academic contributions to SoSE are performed in some definitions [9]:
“The design, installment, operation and transformation of metasystems, that

operate as an integrated complex system to perform new desirable results. The
metasystems are comprised of autonomous embedded complex systems, that can
diversify in technology, context, operation, geography and conceptual frame.”

2.3. Industrial trends in SoSE development
The industrial development of SoSE provides considerable distinctions. The
enterprise perspectives are omitting the engineering activity from the contributors
on SoS. This brings in a distance between the SE and the enterprise applications on
SoS. So, an enlargement of the SoS engineering is obtained. Some features include:

(i) Expanding the technical specifications. The enterprise developments often
include strategic and social components by a technology oriented environment.

(ii) De-emphasizing the engineering tendency. The industrial tendency in
SoSE diminishes the significance of engineering approaches.

(iii) Domination of architecture. A central level of the enterprise SoS trends is
occupied by the system architecture, that is a dominant paradigm in SE [21].

These tendencies are the framing perspectives for SoSE. Due to the inability to
reconcile the different flows, SoSE becomes a fragmented set of clustered areas.

2.4. Continuing divergence in the SoSE area

While military, academic and private industrial tendencies prove the potential needs
and use of SoSE, the related references offer diverse but divergent nature. The
ongoing distinctions within SoS perspectives are met in the following topics [19]:

• Omitting some statements, no broad agreement for SoS composition is
accepted;

• The SoSE philosophy, methodology or standards are not generally
acknowledged;

• Research methodology in SoS and SoSE is fragmented, with many
applications, but having little theoretical developments in the fundamental
knowledge;

• Current goals, originating from the SoS area, are not convincingly argued.

 10

2.5. Framing suitable structure to SoSE area

A particular framework, proposed for organization, integration and understanding
the R&D activities to SoS, takes a holistic (voluntary) form and simultaneously
orientates the area towards several fundamental directions. On Fig. 2.1 the holistic
relationships for integrated knowledge development [19, 20] are performed.

Fig. 2.1. Directions of development in SoSE area

Following, a brief review of the various interrelated topics in SoSE is
provided:

• Philosophy. Its aim is research directed to developing theoretically
consistent meanings of the paradigms in SoSE in the near future for reaching the
maturity.

• Theory. Concerns the explanation of all phenomena in relation to SoSE,
investigation of explanatory models and testable conceptual frameworks.

• Axiological developments. Axiology has a human-subjective component
for establishing the underlying valuables via value judgment frameworks and belief
propositions, that are fundamental to understand the perspectives of the SoSE area.

• Axiomatic point of view. Axiomatic concerns with investigating new
principles, concepts and laws that constitute the basic knowledge of the prospective
area [19].

• Methodology considerations. They concern the research activity to
develop theoretically relevant frameworks that provide powerful guidance for
design, analysis, implementation and advances of SoSE projects [19, 20]. There is
no SoSE methodology that is dominating in the area. Each SoSE concept is only
appropriate for particular application, but it is not necessarily the best one.

• Methods for investigation. They concern developing specific models,
technologies, processes and tools for practitioners in SoSE. Most of the used
approaches are adapted or extended from other research domains to be applied at
the SoSE area.

• Application development. It considers the progress in practical
implementations of SoSE via installations of science-based technologies and
methods. Untill now, there is not known any large list of illustrative examples, the
so called “benchmarks” on the topic.

Support

PHYLOSOPHY

AXIOLOGY

AXIOMATICS

THEORY

APPLICATION

METHOD

METHODOLOGY

Info
Support

Info
Info

Info

Info

Info

Info

Info

Support

Support

Validation

Validation

Validation

 11

To appreciate whether or not an application belongs to the SoSE area, the
clarifying of some conceptual understandings must be considered:

• Problem: nature, features and definition of contents in an applied SoSE
task;

• Context: aspects of the applied domain, embedding SoS and SoSE
problems;

• Overview: compatibility of the SoSE application, that define the problem
framing, approach and interpretation of results;

• Approach: creation of an appropriate methodological approach to solve a
problem.

Limitations on SoSE applicability to particular problems should also be
placed. Evidently, not each problem is suitable for SoSE application. But up to now,
there is no valid set of distinguishing features to classify the problems as suitable.

3. Fundamentals of the Modeling and Simulation for SoS

It is necessary to show how Modeling and Simulation (M&S) helps in solving
particular SoS problems.

3.1. Model based engineering

The process of model-based software engineering is generally referred to as Model-
Driven Architecture (MDA) or Model-Driven Engineering (MDE). The basic idea
in this approach is to develop a conceptual model before the actual state of the art
or product is been designed and then transform the model into an actual product.
The MDA approach defines the system functionality using Platform-Independent
Model (PIM) and domain-specific language. Then, given a Platform Definition
Model (PDM), the PIM is translated to one or more Platform-Specific Models
(PSMs). MDA encompasses various standards – UML, Meta-Object Facility
(MOF), XML Metadata Interchange (XMI), Common Warehouse Model (CWM),
etc. [20]. An MDA tool is used to develop, interpret, compare, align, etc., models or
metamodels (CWM metamodel). This tool may be one or more of the following
types:

• Creation utility. Used to generate initial models and/or edit derived models;
• Analysis utility. Used to check models for completeness and inconsistency;
• Transformation utility to other types of models or into software code;
• Composition utility. Serves to group few source models into a large

metamodel;
• Testing utility. Helps to test models. Gives a mechanism how the test cases

are derived from a model, that describes some features of the system under test;
• Simulation tool. Contains a mechanism to execute system models;
• Reverse engineering tool. Transforms a particular inheritance or

information product to a completed model.
A utility needs not to contain all the features of MDE. For instance, UML in

MDA is a small subset of the general UML. Being a subset of MDA, the UML is

 12

bounded to its specific UML metamodel. Recent developments have obtained
executable UML models, but without wide industrial acceptance yet, due to some
limitations. Potential problems with the current MDA achievements include:

• MDA is based on technical standards, yet to be specified (e.g., executable
UML);

• Utilities developed by different vendors are not interoperable;
• MDA is a theoretical approach, lacking iterative features for software

engineering;
• The practical realization of MDA needs skillful industrial engineers. The

design imposes strict engineering rigor, not generally available by applied
programmers;

• The supported by CORBA MDA initiative failed to become an accepted
standard.

Model-based testing is a fitting procedure, organized on explicit behavior
models, giving intended system reactions under the assumed environmental
behavior [23]. The input/output pairs of the models are interpreting as test cases for
the implementation: the model output is the expected output of the system under
test. This methodology considers added abstractions and design goals, dealing with
various summarized aspects, as these cannot be tested separately via the developed
model. The model-based testing process consists in the following steps (Fig. 3.1):

(i) Test system model with desired abstraction is built upon the specifications;
(ii) Test selection criteria detect more or less severe faults at plausible costs;
(iii) The selection criteria are coded to test specifications. The documentation

is turned into operational instructions. Automatic test case generators are also used;
(iv) A separate test module is built via the system model and test

specifications;
(v) Various trial cases from the generated test module are running on the test

system after appropriate priority selection. Each simulation run produces an
appreciation of “passed” or “failed”, or “inconclusive”.

Fig. 3.1. Model-based testing process

Requirements
Test Selection

Criteria

Model(s)

Test
Module

Model
base Investigated System

(Model/Plant)Test case(s)

Execution/Simulation

Final
Decision

 13

3.2. Levels of interoperability

The SoS concept is proposed as a method to describe the use of different intercon-
nected systems, integrated to achieve specific goals, unattainable to each of them
separately [8, 9]. A common attribute of a SoS, distinguishing it from a LSS, is its
interoperability, or the lack of thereof between the constituent disparate systems.

The variety of perspectives for the SoS problems is evident in [26, 28] and
suggests that interoperability may take the form of integration to the constituent
systems or interoperation between the composing subsystems (e.g., two or more
separately independent elements or systems without established hierarchy).

Systems theory, as formulated by W y m o r e [35], provides a conceptual basis
about formulating the interoperability problems in SoS. Systems are considered as
components having to be coupled together to form a higher level system, i.e., SoS.
The components have input and output ports, that provide coupling to be defined
for information flows from the output ports to the input ports.

The review of interoperability for distributed simulation and the linguistic
approach to SoS interoperability is given in [4, 9]. In [29] a parallel between the
structure of SoS as a federation of systems and a set of systems, supported by the
High Level Architecture (HLA), is suggested. HLA is an IEEE standard, proposed
by DoD to enable composition of simulations [7]. It is a network middleware layer,
that supports message exchanges between simulations (federates) in a neutral
format. HLA provides also a set of services to support the executing of a number of
simulations. The practical use of HLA is very unsatisfactory, so two distinct notions
for interoperability are defined: the data exchange between heterogenous
simulations (technical interoperability), and exchanging meaningful data to realize
concerted interactions between system federates (substantive interoperability).

The notion for Levels of Conceptual Interoperability Model (LCIM) sets up
seven levels of interoperability between co-operating systems. These are
developments of the operational interoperability, defined in [8].

To attain interoperation in a federation of SoS, during development LCIM is
mapped onto three pseudolinguistic levels: syntactic, pragmatic and semantic [37].
The pragmatic level describes how the information in the messages is used. The
semantic level represents a common understanding of the meaning in the messages.
The syntactic level provides common rules for managing contents and transmission
of messages.

In the interoperability framework, the M&S problem is how all three linguistic
levels of interoperability to be achieved. The formal foundations of M&S allow
discussing the support, now available, and that awaiting in the future.

3.3. Modeling and simulation in the SoS framework
The theory of M&S [8] provides conceptual framework and computational
approach for M&S methodology. It supplies a set of elements (real system, model,
simulator, experimental frame) and due relations between them (model validity,
simulator correctness) to perform ontology of the M&S domain.

The computational approach lies on the mathematical Theory of systems and
features object orientation and other programming paradigms. It provides

 14

manipulation on the framework elements and ability to derive logical relationships
between them in simulation modeling. The framework elements are due to the
system specifications in system theory. The framework relations are formulated in
terms of morphism (preservation laws) between the system specifications.
Conversely, the abstractions, supplied by mathematical systems theory, require
interpretation, as provided by the framework, applicable to practical problems.

In a computational aspect, the modeling and simulation theory lies upon the
formalism of Discrete Event Systems (DEVS). It is implemented in various object-
oriented environments. By using the Unified Modeling Language (UML) technique,
the M&S framework is described as a set of classes and relations (Figs 3.2, 3.3).
Various implementations have the feature to support different subsets of classes and
relations. The implementation of DEVS via the Service Oriented Architecture
(SOA) environment (DEVS/SOA) is further outlined [23].

Fig. 3.2. M&S framework expressed by UML

The building components in SoS interact to each other due to interoperability,
incorporated during the overall system integration. The interactions are achieved by
reliable data interchanges between the systems via peer-to-peer communication or
through centralized coordinator in SoS. Due to operational independence of the
systems in SoS, interactions between them are generally asynchronous. A simple
robust solution to serve such asynchronous interactions (message receiving) is by
setting events at the receiving end to pick up the messages from the contacting
systems. These system interactions can be described efficiently by discrete-event
models.

Fig. 3.3. M&S framework classes and relations in UML form

to satisfy CASES

M&S
Framework

classes

UML

Software code
(Java)

Classes Creation

Implemented
M&S Environment

(Instances of classes)

Used CASES

CLASSES

Relationships
Constraints

Construction
mechanism

Sythesis

Applicability

Source
system

PF

EF

Ontology

Model
ValidityApplicability

Verification

Simulator

EF
Valid
Model

Abstraction
Verified
Model

Abstract
Model

EF

Source
system

Ontologies

Simulators

Models
Experimental
& Pragmatic

Frames

 15

3.4. Modeling of SoS architectures

A preferred medium for structure specifications in industrial applications is the
UML for its comprehensive multi-model power. But the UML primitives are not
sufficient for full specification of SoSE operations. The better organization and
support of the SoSE process require a more extensive architectural framework.
Examples for implementing UML in the SoSE concept are the Wymore’s
Framework [35, 36], the DoD Architecture Framework (DoDAF) [12], the
Zachman’s Framework, IDEF functional modeling method, etc. UML has gained
large support as a powerful graphical performer of multiple SE subprocesses in
SoSE frameworks.

M&S takes integrated role in the SoSE design with respect to the theory of
systems engineering. The DEVS technology serves as a mediator, placed between
the I/O requirements and the technological specifications, aiming to provide M&S
design level much before any design is considered as feasible. DEVS is a
component-based modeling and simulation formalism, based on “port” recognition
of events. It intersects the three regions of Wymore’s theory for systems
Engineering (SE) – Fig. 3.4.

Fig. 3.4. Role of M&S in the three-component theory for Systems engineering

3.5. DoDAF design standard for SoSE

DoDAF (US Department of Defense Architectural Framework) is a conception for
integrated architectures (DoD Instruction 5000.2 [10]). It provides specifications to
operational, system and technical levels of design. Integrated architectures are the
background for interoperability in the Joint Integrated Utilities and Development
Systems at service in the US army. DoDAF aims to overcome the variety of old-
fashioned design models. Integration of such models is necessary because systems,
families of systems and SoS have heterogenous capabilities and integration of the
models, developed on languages with various syntax and semantics, is a serious
problem. Another goal of DoDAF is adopting the SOA paradigm, supported in the
Network Centric Enterprise Service (NCES). DoDAF conception consists of three
components: Operational Level (OL), System Level (SL) and Technical Level (TL).

OL is a description of the tasks and activities, operational elements and infor-
mation transfers, necessary to accomplish DoD missions. Such missions combine

I/O Feasible
Design Technology

Feasible Design

DEVS
M&S

I/O Functional
Requirements

Technology
Requirements

Feasible
System Design

 16

both war-fighting targets and business tasks, together with humanitarian constraints.
All the components are further decomposed to separate mission threads.

The SL itself is a set of graphical and textual products for describing systems
and interconnections that support general mission functions. SL associates all
system resources, available to the tasks and produced by the OL.

TL is a minimal set of rules and knowledge, arranging the organization,
interaction and interdependency of the system components or elements. Its purpose
is to ensure that a particular system satisfies the special set of requirements.

M&S design tasks help to link up the desired goals and their possible relations,
i.e., organize the transition from abstraction (OL specifications) to reality (SL
implementations). M&S contributes also to the system design process.

Although the current DoDAF specification provides an extensive methodology
for system architectural development, it is suffering some important shortcomings:
absence of integrated M&S support for model-continuity principles throughout the
development process and lack of associated testing support. To overcome these
disadvantages, specification of DoDAF architectures within a development
environment, founded on DEVS-based M&S, is introduced. The enhanced DoDAF
specifications [23, 37] contain M&S as a tool for developing “executable
architecture” and providing detailed DoDAF to DEVS mapping in simulation and
feasibility analysis. The result is an improved system lifecycle development that
contains model-continuity based design and testing in an integral form.

4. DEVS and DEVS for SoS
The modeling formalism DEVS underlies the high performance simulation-based
environment for SoS. The main concepts of the DEVS formalism [39] and
simulation methodology describe the modeling/simulation phenomena via four
basic objects:

Object 1. The real system, existing or designed, is regarded as a general data
source.

Object 2. The model is a set of program instructions for generating relevant
data, compatible to observations from the real system. The structure of the model is
transferred by a set of instructions. The model behavior contains a set of all possible
data that can be generated by correct executions of the model instructions.

Object 3. The simulator executes the model instructions to generate the actual
feasible behavior of the system.

Object 4. Experimental frames establish how the researcher objectives
influence the model structure, experimentation practice and validation results. The
frames are formulated as model objects, such as the general models. So, the pairs
“model – experimental frame” are composing coupled model objects to simulate
model behaviors.

All these basic objects are bound together by two relations.
(i) Modeling relation. It links the real system and the model by defining how

well the model represents the system or the subject being modeled. In general, a
model can be approved as valid if the data, generated by this model, approaches
sufficiently near the data obtained by the real system in an experimental frame.

 17

(ii) Simulation relation associates the model and the simulator by representing
how successfully the simulator can execute the program instructions of the model.

The basic data, generated by a system or a model, are multiple time segments.
They represent mappings from defined specified time intervals to values of different
variables. The variables can either be measured or observed by software observers.

The model structure may be expressed in a particular mathematical language,
called formalism. In brief, formalism defines how to generate new values for the
variables and the particular time moments when these new values should appear.

The discrete event modeling formalism generates changes in the variables as
piecewise constant time segments. So, a discrete event is a sudden jump in values of
the variables, occurring instantaneously. Important feature of the DEVS formalism
is that the time intervals between the discrete random events are varying, in contrast
to the discrete-time simulation with generally fixed quantized time steps.

The independence from fixed time steps gives valuable advantages to DEVS
regarding heterogenous modeling and simulations. Multiprocess models contain a
number of sub-processes, operating at different time scales. The calculation of such
set of models is difficult under a common discretization time step, because the
simulation procedure would behave inherently inefficient with the uniform smallest
time increment to all states of the processes and frequent updating would be time-
consuming to the slower sub-processes. In contrast, when a discrete-event model is
used, every component organizes its own time control till the next internal event.
Thus, the component models demand processing resources just at an extent imposed
only by their own dynamics or necessary speed to responses on external events.

DEVS are regarded to the formalism of H o [15] for Discrete Event Dynamic
Systems (DEDS) [40]. DEVS were introduced for discrete-event dynamic modeling
and simulation [39]. Due to their theoretical backgrounds, DEVS are adopted as
formal abstract notation for specifying systems with sudden jumps (discontinuities)
in their piecewise continuous trajectories of inputs, outputs and states.

Discrete event models provide also a natural theoretical framework to include
discrete formalisms for intelligent systems – neural networks, fuzzy logic,
qualitative reasoning and expert systems. But the conventional differential equation
models remain basic paradigm for performing technical environments to intelligent
agents. The DEVS-based systems theory of mixed discrete-continuous formalisms
provides a general powerful framework for modeling, simulation, design and
analysis of technical and computerized systems. Any causal dynamic system,
possessing piecewise continuous inputs and outputs, belongs to the class of DEVS-
representable systems. In particular, systems specified by differential equations, are
equally used to describe both the controlled system and the controller, the latter
demonstrating a genuine DEVS behavior as decision making element.

DEVS approach supports creation of new combined models by interconnecting
stand-alone models as components. This interconnection is specified in a well-
defined manner, contained in the formalism of the coupled models. The closure
property under coupling guarantees that coupling of a class of instances results in a
system of the same class. The class of DEVS-representable dynamic systems is
closed under coupling [40]. Closure is a substantial property since it justifies

 18

hierarchical, modular structures of both DEVS models and the original system
(continuous or discrete) they describe.

4.1. Discrete-event modeling and simulation of SoS
The DEVS formalism [5, 38], based on systems theory, provides a computational
framework and tool to support systems concepts in application to SoS. In discrete-
event modeling, the events are generated at random time intervals. More precisely,
the state variations of a DEVS appear only when events are detected (or generated),
though not necessarily appearing at constant times. So, the DEVS model is a
feasible approach for simulating the overall SoS framework and its interactions.

Information flow in DEVS formalism is implemented on an object-oriented
basis by the DEVS message concept via container classes for bounding port-value
pairs. In a message, sent from component A to component B, a port-value pair
contains an output port of A, and the value is an instance of the base class (or any of
its subclasses) from a DEVS implementation. A coupling is a successive quadruple
of the form
(1) (send component A, output port of A, receive component B, input port of B)

So, the coupling sets up a path through which a value is placed by an output
function to an output port of A and immediately (in zero time) is transmitted to the
input port of B for further processing by the latter’s external transition function.

In systems or simulation tasks, running in DEVS environments, the port-
message-coupling (p-m-c) concept is explicitly coded. However, for systems or
simulation implementations, created earlier without the systems theory background,
in existing or non-DEVS environments, the p-m-c concept is not straightforward
and needs to be designed with the constructs of the particular environment.

In SoS engineering, application of existing components is very often used. It is
then suitable to start with clear concepts and modern methodology, based on
systems theory and DEVS formalism, to deal with the interoperability requirements,
then translate the whole problem back to the non-DEVS outdated frameworks.

A. Implementation of confluent DEVS simulators

The main goal in designing DEVS-based high performance simulation environment
for optimization of large complex systems is the portability of models across
different platforms, though at deep abstraction level. So, DEVS models are not to
be recoded for execution on serial, parallel or distributed environments. Ideally,
such platform independence exists at deep abstraction level, e.g., set theory, where
DEVS models are defined. But the computational platform, encompassing all these
features does not yet exist, although some efforts appear. Close to these
requirements is the computer ability to port DEVS models, coded on a common
programming language across various platforms. There are numerous advantages
following the portability:

(i) Models developed on serial machines with their whole convenient
development support, can be easily transferred after appropriate verification on
parallel systems for executing high performance simulation runs (Fig. 4.1);

(ii) In both parallel or distributed environment, the identical models can be
applied to perform interactions between the components, executed within serial

 19

nodes and in the same way for parallel interactions of the model components on
different nodes.

Object-Oriented Programming (OOP) approach is the key for achieving
DEVS portability, while retaining software flexibility on lower programming costs.
The most notable feature of OOP is its ability to separate behavior from
implementation, thus enabling distinct implementations with the same behavior to
coexist [6].

As shown on Fig. 4.1, DEVS are implemented in an object-oriented form to
enable execution on serial or parallel platforms. The DEVS formalism is expressed
as objects and their interactions with details of serial or parallel implementations,
are hidden within the objects. The user interacts only with interfaces, ensured in the
DEVS structures while being encapsulated by the ultimate execution environment.

The DEVS formalism is modified to enable parallel execution of heterogenous
large-scale simulation problems. This revised version of DEVS is the basis of a
high-performance simulation environment, denoted as DEVS-C++ [5]. Due to its
rapidly growing availability, C++ language is usually applied as an object-oriented
descriptive instrument. DEVS is implemented via a set of classes (containers). In
their simulated serial version, such classes provide a well-defined tool for
specifying list data structures and their manipulation. A more abstract and
generalized description of the container functionality provides services to group the
objects into collections and coordinate the activity within groups.

B. Specification of containers classes in OOP descriptions to DEVS [6]
In Fig. 4.2, the primitives to coordinate the object behavior in a container are
shown:

• tell-all. Send uniform command to each object in a container;
• ask-all. Send query to each object and return a container, holding the

responses;
• which? Return subcontainer with all object responses TRUE to a Boolean

query;
• which one? Return a container object, responding TRUE to a Boolean

query;
• reduce. Aggregate the object responses in a container to a single one (e.g.,

sum).

 Fig. 4.1. Object-oriented implementation Fig. 4.2. Containers classes with basic
 of DEVS on various platforms with C++ primitives

Parallel

PLATFORM

Serial

DEVS

C++

CM-5PC
 UNIX

 PVM
 Cluster

OOP Language

OOP
Containers Classes Assembly Methods

= ask-all

CONTAINER
parallel type

Container
serial type

= tell-all

= which?

= which-one?

= reduce

Basic
primitives

 20

These Assembling methods seem rather parallel than sequential by nature, but
having abstract specifications, independent from the particular implementation. So,
applying the C++ polymorphism, two abstract container subclasses are defined:

• Lower-case class: implement a set of assembling methods in a serial form;
• Upper-case class: implement same assembling methods in a parallel form

(Fig. 4.2).
The serial implementation can be executed in any architecture having C++

compiler. In particular, if the nodes of a system can execute C++, then the serial
type Containers will be compatible with them. However, the implementation of a
parallel type CONTAINERS involves physical (as opposed to virtual) message
passing between objects on different nodes. This kind of message exchange must be
realized within the communication primitives, admissible by the parallel or distribu-
ted system. For example, a parallel CM-5 implementation applies the message-
passing library CMMD in CM-5. Similarly, a network of workstations, linked with
PVM technology, offers communication primitives supplied by the PVM itself.

C. DEVS engines and platforms
The computational organization of modeling the subsystem processes in program
simulation environments is shown in Fig. 4.3. The internal structure and system
interrelations between subsystems, as well as the simultaneous functioning on
different time-scales, are clearly denoted. In a separate discrete time-period during
the simulation run of each subsystem, a specific data exchange takes place and the
computational processes start inside its particular (micro)time-scale between t and
t+h time intervals. Evidently, the system in the federation of LSS has also complex
structure, built up by the component modules (sub-subsystems), executed in a
definite step. This shows the binding condition for hierarchicity in simulation of the
overall task. The large time-scale of the system is the range between Т0 и Т1 time
intervals.

Fig. 4.3. Functional diagram for subsystem simulation of a large-scale system

A Java-based application of DEVS formalism − DEVS-JAVA, is used to
atomic or coupled models [30]. In addition, distributed tasks for simulating multiple
hetero-genous systems at the SoS framework, implement the DEVS-HLA
environment.

Request for
 variables

at t+h

System simulation
between moments

To and T1
with time step h

SYSTEM MODEL

Subsystem 1

Simulation
of single subsystem

between moments t and
 t+h with local time

step

:

SUBSYSTEM 2

Sent
 variables

at moment t
Subsystem 2

Subsystem n Sub-subsystem n

Sub-subsystem 2

Sub-subsystem 1

:

 21

Up to now, multiple discrete-event simulation engines are known (XDEVS,
Matlab Simulink, NS-2, OMNET++, etc.). They are suitable to simulate
interactions in heterogenous groups of independent systems. The advantage of
DEVS to distributed simulation tasks is its powerful mathematical description and
feasible support using middleware products, such as the software suit HLA of DoD.

4.2. Application of DEVS in a test and evaluation of SoS

The capabilities of DEVS for SoS Testing and Evaluation (T&E) lie in the DEVS
Unified Process (DEVSUP). The T&E process is included in SOA due to numerous
tasks by DoD. In Table 4.1 the general DEVS features to T&E are performed.

Aiming to solve the problem for war mission thread testing at the second and
third system levels, a Collaborative Distributed Environment (CDE) is proposed in
[3]. It is a combined toolbox of new and existing utilities from commercial, military
and non-profitable issues. In this environment, M&S technologies are applied to
support model-continuity and Model-Driven Design (MDD) development, making
the test and evaluation an integral part of the design and operations life-cycle.

The development of such a distributed testing environment has to comply with
the recent DoD trends, that require DoDAF to be adopted to describe all high-level
system and operational requirements and architectures [10]. Unfortunately, DoDAF
and DoD network-oriented specifications bring in significant difficulties in T&E
process, since these requirements must be clearly estimated to guarantee meeting
the objectives, but they all are not expressed in a strict form for evaluation.

DoDAF however, does not provide a formal algorithm to support this
integration. Without such process DoDAF is non-applicable to SOA ideas and GIG
in particular. There are some efforts to map DoDAF products to SOA, but with no
clear methodology to develop a SOA project directly from DoDAF, though nothing
is mentioned to their testing and evaluation.
Table 4.1. General DEVS resources and capabilities

M&S capabilities for
T&E of SoS DEVS solutions

Support to DoDAF for
executable architectures via
M&S (mission testing for
GIG/SOA)

DEVSUP [23] methodology and SOA infrastructure for
integrated development/testing, extending DoDAF requirements
[25].

Interoperability and platform-
independent M&S using
GIG/SOA

Layered simulation architecture to accomplish technology
advances and run various technological versions [23, 26].
Network-oriented composition and integration of validated via
DEVS models using Simulation Web Services [23].

Automatic test generation and
implementation in distributed
simulation problems

Model separated from the simulation process (executed on
single or multiple distributed platforms).
Randomized test and development process.

Testing product continuity and
traceability between phases of
system development

Rapid tool for applying model-continuity principles like
“simulation reality”

Real time observation and
manipulation of test
environments

Dynamic variable-structure component modeling to perform
control and reconfiguration of the simulations at run. Dynamic
simulation tuning, interoperability testing and benchmarking
applications.

 22

5. SoS Test and evaluation via DEVS modeling and simulation

SoS test and evaluation is accomplished by modeling and simulation of the large
sets of systems, performed as DEVS with particular properties.

5.1. Branching Model-Continuity based Life-Cycle Methodology for SoSE design

The generalized solution of SoSE design is obtained by combining the system
theory, M&S framework and model-continuity concepts. This introduces the
Branching Model-Continuity based Life-Cycle process at the following steps:

• Behavior requirements at lowest levels of system specification. The
hierarchy of system specifications [38] sets well-defined goals for the system
behavior. The process is iterative and follows improved formal description.

• Model structures at higher level specification. The formal requirements
become model implementations, e.g., DEVS-based transformation in C++, Java,
C#, etc.

• Simulation execution. The developed model is copied from the Software
Program base to the simulation module. Separation of the model from the simulator
allows independent development, contrasting to the tight coupling in some older
systems.

• Real-time execution. The simulation must be executable in Real-time mode
and according to Model-Continuity principles. The model is a final application
code.

• Test models/Federations. By working out the branching system model
process, the formalized models, which might be developed at the atomic or the
coupled level, turn into test models and become organized federations. For checking
the system specifications, experiments and test cases are accomplished. DEVS aids
the invention of experimental frames at this step of developing a test tool.

• Verification and validation. The simulation provides correctness check of
the system specifications over a wide range of execution platforms. The test tool is
verifying the consistency of such implementations in a testing infrastructure. Both
operations consist in Verification and Validation design step.

5.2. Analysis capabilities

A DEVS coupled model allows the use of analysis tools to obtain useful
information on the testing support. A mission thread model contains upper and
lower bounds on the time duration for individual activities. Time windows are
derived for the random events and entering of the messages. During analysis, more
strictly than in simulation, it is important to select the events and messages of
particular interest, derived by the performance and efficiency measures in the
experimental frame. This is necessary for appropriate constraining the analysis,
since it suffers from “global state explosion”. For this reason, the algorithms are so
developed, that under restrictions on the model class, they derive time window
specifications to inform the DEVS agents during monitoring of the related mission
thread performers [23, 41].

 23

6. Experimental frames for SoS

6.1. Experimental frames concepts

An Experimental Frame (EF) is a specification of the conditions for observation
orexperiment, which must be conducted with the system. So, EF is an operational
definition of the objectives in a modeling and simulation project.

For a particular system (source system or model), several experimental frames
might be defined, and vice-versa, a single experimental frame may be applied to
different systems. This is due to the various designer objectives in modeling a
particular system, or having identical goals to different systems. This conception
considers the frame as a definition of the data element types, contained into a data
base.

Another formulation suggests the frame as a system that interacts with the
tested system to obtain data of interest under specified conditions. Here the frame is
described by its implementation as a measurement system or state observer.

In this treatment, a frame contains three types of components (Fig. 6.1 (a)):
• Generator for generating input sequences to the system;
• Acceptor for experiment monitoring: meeting desired experimental

conditions;
• Transducer for observing the output sequences and analyzing the system

behavior.
In Fig. 6.1 (b), illustration of a standard type experimental frames is shown. In

the web context, a generator produces messages for service request at a given rate.
The elapsed time between sending a request and its return back from a given server
is the RTT. Data throughput for the observation period To is measured.

The Transducer notifies the departure and arrival times of the requests and
computes the average RTT, statistics, throughput DT and the unattended requests.

The Acceptor monitors performance and achieved objectives (e.g.,
throughput).

The experimental frames transform the objectives into precise experimental
conditions [38], regarding the original system or its valid models. For given
objectives, there is a suitable preciseness level in model description. Thus the
appropriate model abstraction depends on the objectives and experimental frame.

In SoSE, modeling objectives determine the development and testing of SoSs.
The Measures Of Efficiency (MOE) in SoS allow the evaluation of the
architectural and design alternatives. MOEs are computing via model output
variables, which are obtained during repeated simulation runs. The mapping of the
output variables into the outcome measures is performed by the transducer in the
experimental frame. For some systems, more than one layer of parameters between
the outputs and outcome measures exists. In sophisticated control solutions (third
hierarchical level), the Measures Of Performance (MOP) (integral error, damping,
settling time) are output parameters of the system operation and directly enter the
MOE.

The interoperability conception of DoD [10, 11] for planning military missions
with mutual participation of various services (army, navy, air force, etc.) offers

 24

numerous SoS problems to investigate how the joint critical threads will perform in
real situations. Obtaining numerical efficiency measures for joint missions requires
multiple runs of the mission threads in live or virtual simulation environments.

The EF approach enables simulated and real-time data in the system
information exchange and processing. Relevant MOPs refer to shared situational
clarification, quality and non-delayed operative information, range and effective-
ness of co-operation. The efficiency measures cover power increase, decision-
making capabilities and command speed. Such abstract indices are to be modeled
mathematically and precisely computed to support repeatable and consistent T&E.

The thread starts when the Combat Command HQ receives a mission order,
exposed to the HQ Staff. The Staff performs mission analysis with results back to
the commandment (Fig. 6.2). Then the Joint Planning Group and the Development
Teams investigate the operations and predict the expected effects. The thread ends
with an issue of orders. The performance indices include measures of collaboration
and interrelations. The efficiency estimates the speed of command and goals
execution.

 (a) (b)

Fig. 6.1. Experimental frames for SoS testing and evaluation: building components (a);
functionality (b)

Fig. 6.2. Joint mission thread and its components

EXPERIMENTAL FRAME

System or
Model

TransducerAcceptorGenerator

GENERATOR
Agent EF Portal (Server)

Time

Service
request

Service Level
Arrangement

Satisfied

Acceptor

Transducer
Lost Requests

Throughput

Round Trip time

Products

Strategic HQ Planning
Mission Thread

Application Types:
= Planning Process
= Orders Development
= Building Demolition
 Process

Scenario Environments:
= Humanitary Support
= Disaster Overcome
= Major Combat Operations

Outputs

Action Development
Analysis & Comparison

Selection

Joint Planning Group

Development & Issueing
Operational Orders

Effects Development
Development Teams

Combat Command HQ
Mission Order Mission Analysis

HQ Staff

 25

All measures might be combined together to assess the collaboration support
system in an operational real treatment. The performed mission thread is further
used as a template for specifying a large set of instances (Fig. 6.3). As shown, the
instances can vary in several directions, including the objectives of interest (desired
MOP and MOE), the type of application, the participants involved and the
operational environment for testing. Various mission threads can be nested one into
another. For example, Analysis is a sub-thread, executed within the Planning thread.

A collaborative mission thread can be described as a coupled model in DEVS,
where all components are participants in the collaboration and the coupling between
them represents the available information exchanges that can occur.

The implementation of the joint mission threads as test model federations is
simulated in network-oriented integrated infrastructures as GIG/SOA [4]. This
infrastructure ensures an environment for the mission thread components together
with network and web services, allowing collaboration to them (Fig. 6.3). The
formulation of a mission thread as coupled model ensures the thread simulation
within the infrastructure. The defined MOEs and MOPs for assessing the mission
execution need to be transformed to a distributed EF, possessing observers for
check of the component activities and message exchanges, as well as generators,
transducers and acceptors. The assessment of an integrated infrastructure to support
the collaboration of a mission thread is presented in Fig. 6.3 as design of an
Instrumented Test System (SoS). It can be solved with the M&S approach.

Fig. 6.3. Mission thread implementation in an integrated environment

6.2. Distributed test federations
A distributed DEVS federation consists of coupled DEVS models with components
residing on different network nodes and coupling guaranteed by the middleware
connectivity of the programming environment, such as SOAP for GIG/SOA. The
federation models are executed on DEVS simulator nodes, with time and data
exchange coordination as specified in the DEVS simulator protocol. According to
the general concept of EF, the generator sends inputs to the tested SoS, the
transducer collects outputs of the SoS to calculate statistics, and the acceptor
monitors SoS for decisions to continue or terminate the test [41]. The EF is distribu-
ted between all SoS components (Fig. 6.4). Each system might be coupled to a
particular EF, consisting of generator, transducer and acceptor subsets. An observer
couples the EF to the component via interface from the integrated infrastructure.

Experimental
Frame

Efficiency
&Performance

Measures

Participants,
Interactions

MOPs, MOEs

Mission Thread

Integrated
Infrastructure

Implementation
Coupled
Model

Assessing the
Infrastructure support

to Test&Evaluation In
st

ru
m

en
te

d
Te

st
 sy

st
em

Acceptors

Generators

Transducers

Observers

 26

Thus the DEVS model is built by an observer and EF, both embedded in a test
agent.

Fig. 6.4. Distributing experimental frame agents and observers

The network-based SOA provides a technical realization of the concept. The
DEVS/SOA infrastructure enables DEVS models and test agents, located on pres-
cribed network nodes. In Fig. 6.4 the network inputs from the EF generators are
SOAP messages, sent to other EFs. The distributed EFs are arranged as DEVS
models (software agents) on many network nodes (Fig. 6.5): emulated on web
servers DEVS simulators exchange messages on a specified time within the models.

6.3. Distributed multi-level test federations

The linguistic interoperability provides structure improvements to test system. Test
federations operate simultaneously at syntactic, semantic and pragmatic levels [32].

A. Syntactic level – network fault monitoring

From a syntactic level point of view, the testing consists in assessing the
possibilities of an infrastructure to support the speed and accuracy, necessary for
higher level information exchange by multimedia data types. This is a continuous
assessment whether the network is sufficiently reliable to support the planned
collaboration.

Fig. 6.5. DEVS test federation in GIG/SOA distributed environment

Agent
 EF

Integrated Network Infrastructure

Agent
 EF

 SoS
Component
 System
 (Web
Server-Client)

Observer SoS
Component
 System
 (Web
Server-Client)

Observer

Mission Thread

Service
under
Test

DEVS
Test

Federation

DEVS
Simulator

Node

DEVS
Observer

Agent

SOA

Service Description: WSDL
Service Discovery: UDDI

Messaging: SOAP
Packaging: XML
Communication: HTTP

Network-oriented
Environment
(GIG/SOA)

SOAP-
XML

Live
Test

Player

Test Architecture
DEVS Simulator

 27

Nodal generator agents activate the check of the Quality of Service (QoS)
specifications according to the information, supplied by the higher layer test agents.
These probes return statistics and alarm monitoring data to the transducer-
acceptors at the DEVS fault diagnosis layer, which cancels the virtual experiment at
the test layer when QoS measures are violated. In an EF for real time network
diagnostics, the test system is the network infrastructure (OSI layers 1-5) It supports
higher session and application layers. QoS measures have values for meaningful
testing at the higher layers: transit times and other statistics for quality. For
messages in XML and transferred by SOAP middleware, such measures are directly
produced by DEVS generators and utilized by the DEVS transducers/acceptors.
Such messages investigate the network secrets and bottlenecking conditions,
experienced by the message exchange procedure between higher level web
servers/clients. Under certain QoS conditions, however, video streams and other
types of data packets, may experience different conditions than the SOAP-produced
messages. For these cases, lower layer monitoring is necessary under control of the
nodal EFs.

Fig. 6.6. Multi-layer testing with Network fault monitoring

The agent-based EFs have the objective to assess the network functionality
according to QoS and provide for concurrent higher level tests. In this way a
distributed EF is being informed about the nature of a concurrent test.

B. Semantic level – information exchange in collaborations

Mission threads consist of sequences of discrete information exchanges. A
collaboration service supports such exchanges by enabling the participants to use a
variety of media instruments, such as text, audio and video, in multiple
combinations. At the next stage, the service supports establishing of producer/user
relationships. For example, the graphical/audio combination might be directed to
one or more participants interested in that particular topic. From a multilevel
perspective, testing of such exchanges involves pragmatic, semantic and syntactic
aspects all together. From a pragmatic point of view, however, the benefit of an
exchange is how well it contributes to the successful and in-time completion of a
mission thread. From a semantic perspective, the performance measures involve the

Concurrent
Higher layer

Tests

Probe Layer

DEVS Network
Fault layer

DEVS Acceptors Alert
to Higher layer Agents:
Test Invalidation due to
 Net conditions

 Higher
Layer Test Agent

 Higher layer Agents
 to EF Nodal Agents:
Fault Monitor Objectives

Generator Agent
at Lower layer:
Probe Activation

DEVS Transducers/
 Acceptors:
 Alarms and Statistics
 after Net probing

 28

speed and accuracy of sending an information item from the producer to the user.
Accuracy may be estimated by comparing the received item to the sent one, using
appropriate metrics. To automate the process of comparing, metrics must be
selected to be both discriminative and fast for computing. If translation takes place,
the meaning of the item must be preserved as declared. The delay, involved in
sending an item from the sender to the user, must be within preset limits, defined by
human abilities. Such limits are more severe where random exchanges are observed
on immediate priority, such as in a conversation. The instrumentation of such tests
is similar to one at the syntactic level. There must be understanding that the
complexity of accuracy and speed testing is of higher order at the semantic level.

C. Pragmatic level – mission thread testing
A test federation observes the agreement of web services to verify if the message
flow traffic among participants conforms to information exchange requirements. A
mission thread is a series of activities, executed by the operational nodes and
engaging the information processing functions of the web services. Test agents
watch the messages, sent and received by the services that host the participating
operational nodes. Depending on the mode of testing, the test architecture may, or
may not have information about the running mission thread under test. When thread
knowledge is available during execution of a mission thread, the test process has
more opportunities than in case of lacking information.

D. Measuring mission thread performance execution
The ultimate test for efficiency of an integrated infrastructure is its ability to support
successful goal achievement of mission thread executions. To measure such
efficiency, the test instrumentation system must be informed about the possible
events and messages to be expected during execution, including those that provide
acknowledgement for success or failure. The test system must also be able to detect
and track these events and messages during the execution. It is often considered that
success of a mission depends on the obtained relevant information. So, a perfor-
mance objective is the ability of an integrated infrastructure to measure the extent of
delivering the right information to the necessary place at the precise time moment.

6.4. Layered high-performance environment for SoS simulation
The complexity of behavior, that modern large systems can exhibit, demands
computing power for simulation-based design, far exceeding that of standard
workstation technology. In order to be able to solve such hard computing problems
using high-resolution and large-scale representations of both natural and artificial
subsystems, high performance simulation-based design environments are used with
two levels of intensive knowledge and information processing. At the Decision-
making level, searches are performed through vast problem parameter spaces of
alternative design configurations and associated model structures. At the Execution
level, simulations generate and evaluate complex candidate model behaviors,
possibly interacting with human participants in real time. To represent both
continuous and discrete processes, the DEVS modeling formalism is used. This is
due to its significant performance and conceptual advantages. The simulation-based

 29

task solver is a layered system of functions, containing modeling, simulation,
optimization and decision making. Decision makers draw their inferences on
experiments with alternative strategies (reducing the risk, minimizing the time of
task execution, etc.), where the best ones, according to some criteria, are put into
analysis. Experiments on models are preferred to those, carried out in reality. For
realistic models such experiments cannot be worked out analytically, therefore they
require direct simulation. The design of an environment to support all these
activities is based on a layered collection of services, where each level uses the
options of lower levels to realize its functionality. To provide generic and robust
search capabilities, special algorithms are implemented for the searcher in the
model space. The optimization layer employs the searcher to find reasonable or
even optimal system designs. The experience with different computing
environments shows, that only a large number of interconnected processing nodes
can provide memory to hold the enormous amount of knowledge or data for
modeling complex systems and simulation speed to provide reliable solutions in
reasonable time. Currently, such large numbers of computing nodes, dedicated to a
single problem, can be organized only on scalable, high-performance platforms, like
Connection Machine, CM-5 or IBM SP2, containing up to 1024 processors.
However, at least a million times increase in either speed or numbers of nodes is
necessary for such systems to support optimization of large-scale models.
Unfortunately, the cost of such platforms is beyond most of the potential users. The
other solution to networking large number of distributed computing resources
(network clusters) results in 130 workstations, connected with Parallel Virtual
Machine (PVM) over Ethernet [27], which is less than the parallel computer
platforms. So, the technical barriers in the design of simulation environment are
heterogeneity, portability and dimensions. A multilayered hierarchical environment
for high precision simulation of large complex systems is applicable only if meets
the high-level requirements towards its computational abilities and quality of
results. The structure of such environment consists of three mayor layers: modeling,
simulation and searching layer.

Fig. 6.7. High performance simulation environment for distributed modeling and optimization of LSS

Process 1

...

Experimental
frame

Intelligent
control

Simulator

GA agent

: :

Process 2 Process n...

Model 1

:
Model 2

Model m

Computing environment

 30

The simulation layer executes concurrent processes in heterogenous and
distributed computing multiagent environment. Single process optimization is run
by an independent agent on separate algorithm in individual simulator for a model-
based experiment (Fig. 6.7). Although each simulator is shown as a separate stand-
by element, it could be allocated everywhere in a multiprocessor distributed
computational system. Thus an experiment is consisting of numerous simulation
trials, aiming to determine how well the particular intelligent controlling
(monitoring, managing) agent operates. The functional environment is performed as
a simulation model, governed and observed by the agent via “experimental” frame.

The model in each simulator is selected by a set of related models with
different abstraction levels − from the lowest to the highest resolution of the
phenomena. The optimization agent performs initially coarser searching, starting
with the more abstract problem DEVS models, before going on to more precise
slower descriptions of high resolution. The experimental modeling frame ensures
various inputs to the process models for observing intermediate and final results.
The test effectiveness of all spatially distributed configurations is estimated and
reported by a GA agent and manipulated by distributed functional agent.

7. Service Oriented Application of the DEVS unified process
The Branching Model-Continuity process undergoes further refinement and
integrates together with various elements as automated DEVS model generation
tool or automated test-model generation utility via network-oriented simulation
procedure over SOA to produce the DEVSUP [23], built over the Branching Model-
Continuity based life-cycle methodology. The design of test simulation framework
is carried out in parallel with the model simulation of the system under design. The
DEVSUP process consists in the following components:

(i) Automated DEVS model generation in various requirement specifications;
(ii) Collaborative model developed by DEVS Modeling Language (DEVSML);
(iii) Automated generation of a test image from DEVS simulation model;
(iv) Network-oriented execution of the model and the test image over SOA.
Various forms of requirement specifications – state-based, natural language

based, rule-based, BPMN/BPEL-based and DoDAF-based are analyzed and the
automated process, used by each one to deliver DEVS hierarchical models and
DEVS state machines, is evaluated [33]. In this case the simulation execution is
more sophisticated than simple execution of a model on a single machine. With grid
applications and multiprocessor collaborative computing, a network-oriented
platform using XML as middleware results in an infrastructure, that supports the
distributed collaboration and model reuse. The infrastructure provides for platform-
free specification language, DEVSML and network-oriented execution using
Service-Oriented Architecture DEVS/SOA [24]. Both DEVSML and DEVS/SOA
provide a novel approach to integrate, collaborate and remotely execute complex
system models on SOA. This infrastructure supports automated procedures for test-
case generation leading to test models. Using XML for the system specifications in
a rule-based format, a new tool (Automated Test-Case Generator (ATC-Gen)) is
developed to facilitate the automated development of test models [37].

 31

The integration between DEVSML and DEVS/SOA is shown in Fig. 7.1.
Various model specification formalisms are supported and mapped onto DEVSML
models: UML state charts, exhibit-driven state-based approach [24], Business
Process Modeling Notations (BPMN), Business Process Execution Language
(BPEL) [2] or DoDAF-based specifications [25]. A translated DEVSML model is
supplied to the DEVSML client that makes coordination together with the
DEVSML server utility. When the client operates with DEVS-JAVA models, a
DEVSML server can be used to compile the client’s model with the other models
available at other sites to obtain an enhanced integrated DEVSML file that can
produce a coupled DEVSML model. The adopted DEVS/SOA server can use this
integrated DEVSML file to distribute the component models at selected DEVS
web-server simulation engines. The resulting distributed simulation, or
alternatively, a real-time distributed run of the coupled model is the final point of
the design process.

Fig. 7.1. Network-oriented collaboration and execution using DEVSML and DEVS/SOA

7.1. DEVSML collaborative development

DEVSML represents DEVS models in XML language format. The DEVSML utility
is built on JAVAML (Java Modeling Language), which is XML implementation of
Java. The current development popularity of DEVSML follows from the underlying
JAVAML, that serves for specifying the “behavior” logic of atomic and coupled
models in a SoS application. The DEVSML models have the unique feature of
being transformable back and forth to Java and to DEVSML. This feature provides
interoperability between various models and an option to create dynamic scenarios.

The DEVSML concept is represented in Fig. 7.2. It demonstrates a layered
architecture. At the top level, the application layer is situated. It contains a system
model in one of the several formats at DEVS-JAVA or DEVSML. The second level
contains the DEVSML layer. It provides integration, composition and dynamic
scenario constructing, that results in fully completed portable DEVSML models.
They are transferred to any remote location via the network-oriented infrastructure
and are able for execution there. Another advantage of such capability is the total
simulator transparency during model execution on network-oriented infrastructures.

6

 DEVS
Web-Service Engines

 DEVS
coupled in
DEVSML

4b Simulation-based
Testing

DEVSML
Integration

Distributed DEVS
Execution over SOADEVS

Server

5

Simulation
Services

Automated
DEVS
Atomic
Behavior

Automated
DEVS
Coupled
Scenario

DEVS Model
Generator
in DEVSML

3

DEVSML
Composition

DEVS Atomic
in DEVSML

4a

Simulation with BPEL
Simulation with
Web Port Hooks

21 State-based
Specifications

DoDAF based
Scenario Speci-
fications

Message-based
Scenario Specs.
with restricted
NPL (Natural
Language Pro-
cessing)

BPMN/BPEL
based Scenario
Specifications

X
M

L
 based D

ata E
xtraction tow

ards D
E

V
S E

lem
ents

 32

Fig. 7.2. DEVS Transparency and Network-oriented Model Interoperability using DEVSML. Client

and Server categorization is done for DEVS/SOA implementation

The DEVSML model files in XML description contain meta-data information
about the compliance with other simulation components or software versions to
provide interoperability between various simulator engines. This property is
achieved for at least a couple of independent simulation engines, as they have
DEVS protocol to contact each other. This feature is realized by applying a single
atomic DTD and a single coupled DTD for validating the DEVSML descriptions,
generated by these two implementations. This type of run-time interoperability
provides advantages when composing larger coupled models from models on
different nodes using the DEVSML integration capabilities [24].

7.2. DEVS/SOA: Network-oriented execution using simulation services

The fundamental concept of web-based services aims to integrate the software
applications as series of tasks. The use of Web services allows the application to
communicate with others via open standards. The DEVS-based simulators are
applying as Web service. They must incorporate the following standard options:

• Communication protocol (Simple Object Access Protocol, SOAP);
• Service description (Web Service description Language, WSDL);
• Service discovery tool (Universal Description, Discovery and Integration,

UDDI).
The complete set of components requires one or more servers for DEVS

simulation services (Fig. 7.3). The ability of running simulations is provided by the
server design with DEVS Simulation protocol, supported by DEVS-JAVA, Version
3.1 [1]. The framework for simulation is organized as a two-layered application.
The top level contains the user coordination layer, which executes the task for
observation the subordinate lower layer. The lower level contains the simulation
service layer that executes the DEVS simulation protocol as a dedicated service.

At the next stage of the multistep DEVS model generation is the simulation of
generated models. The DEVS/SOA client obtains set of DEVS models to perform
series of operations via dedicated servers for web hosting of simulation services:

SERVER

CLIENT

Atomic
DEVSML
Model(s)

Coupled
DEVSML
Model(s)

Coupled
JAVA

Model(s)

Atomic
JAVA

Model(s)

Middle ware (SOAP, RMI, etc.)
Network-oriented Infrastructure

DEVS Modeling Language (DEVSML)
(Representation in XML. Validated by Standard DTDs)
Creation/Integration of Dynamic Coupling and Scenarios

JAVA Modeling Language
(JAVAML)

Based on XML

C++ Modeling Language
(CPlusML)

Based on XML

...
DEVS Simulator 2

(JAVA-based)
GENDEVS-ACIMS

DEVS Simulator 1
(JAVA-based)

xDEVS

DEVS Simulator n
(C++-based)

aDEVS

 33

(i) Upload the models to particular IP locations, i.e. make partitioning;
(ii) Performing run-time compilation at respective sites;
(iii) Simulating the coupled model;
(iv) Obtaining the simulation output at client’s finish.
The specified main server houses the top level coupled model and emulates a

coordinator that generates simulators in the same residence and/or on other servers.
An important feature of DEVS/SOA is the multi-platform simulation

capability. It organizes distributed simulation among different DEVS platforms or
simulator utilities, (DEVS-JAVA, DEVS-C++, etc.), on Windows or Linux
platforms. The system is supplied with simulation services on specific platforms,
managed by a single coordinator. In simulation, the overall model is partitioned
according to the application platforms and executed by the appropriate simulation
service. This is a form of interoperability, where multi-platform simulations are
executed with DEVSML integration facilities. DEVSML is used to describe the
whole hybrid model. At this stage, the message passing is realized by means of an
adapter pattern in the design of the “message” class [24]. In Fig. 7.4, the
Interoperability DEVS Simulation protocol is shown. The platform-specific
simulator generates messages or event flags, but the simulation services transform
them into PIMs, according to DEVS/SOA. Hence, the DEVS/SOA framework can
be extended for network testing. It needs to have multi-platform simulation
capabilities to achieve interaction as Services for concurrent test models on any
DEVS environment (e.g., Java, C++).

 Fig. 7.3. Executing DEVS/SOA-based M&S task Fig. 7.4. Interoperable DEVS Simulation

 protocol in DEVS/SOA

7.3. Overall DEVS unified process

The complete Overall DEVS Unified Process (DEVSUP) design procedure [32]
consists in the following general steps:

(i) Developing system requirements in format BPMN, DoDAF, Natural
Language Processing (NLP), UML or DEVS-based;

(ii) By the DEVS-based automated model generation utility, generate atomic
and coupled DEVS models from the requirement specifications via XML;

(iii) Validate obtained PIMs by DEVS V3C to prove their network capability
for collaborative development and implement via DEVSML;

INTERNET

5. Results

2. List of
 Resources

1. DEVSML
 Services?

3. CONFIG
 Simulation

4. Distributed
 Simulation
 over SOADEVS

Models
CLIENT APPLICATION

+
ROOT COUPLED MODEL

(XML)
+

MY MODELS

0. Next Tn 0. Next Tn

SIMULATION
SERVICE
DEVS-C++

2. PSMsg1. Next Tn

3. PIMsg
(serialized)

4. PSMsg'

External
TransitionInternal

Transition

SIMULATION
SERVICE

DEVSJAVA

SIMULATOR
DEVS-C++

SIMULATOR
DEVS-JAVA

Output
Propagation

COORDINATOR

 34

(iv) Following Step (ii), either coupled model is simulated via DEVS/SOA, or
a test image of the DEVS models is generated;

(v) The simulation is running in real-time or in logical time on a stand-by
machine or distributed environment using SOA middleware for network execution;

(vi) The test image of the DEVS models is executed as described in Step (v);
(vii) The results are comparing in a Verification and Validation process.
The system development of DEVS by the Branching Model Continuity-based

Life-cycle process for system engineering is performed on Fig. 7.5.

Fig. 7.5. Overall DEVS unified process development

Since up to now, a large number of case studies are based on the DEVSUP
conception and many projects are at a final stage or currently active at disposal of
the Joint Interoperability Test Command (JITC). By extending DEVS with
Branching Model-continuity Life-cycle process, systems theory becomes able to
support new generation network-based developments and software engineering test
solutions.

R e f e r e n c e s
1. ACIMS Software Suite.

http://www.acims.arizona.edu/SOFTWARE/software.html
2. Business Process Execution Language (BPEL).

http://en.wikipedia.org/wiki/BPEL
3. C a r s t a i r s, D. J. Wanted: A New Test Approach for Military Net-Centric Operations. Guest

Editorial. – ITEA Journal, Vol. 26, October 2005, No 3.
4. C h a u m, E., M. R. H i e b, A. T o l k. M&S and the Global Information Grid. – In: Proc. of the

Interservice Industry Training, Simulation and Education Conference (I/ITSEC), 2005. Paper
2450.

5. C h o w, A., B. P. Z e i g l e r. Revised DEVS: A Parallel, Hierarchical, Modular Modeling
Formalism. – In: Winter Simulation Conference Proceedings, INSPEC Accession Number:
4869673, 11-14 December 1994, 716-722.

Test Models/
Federations

Verification
and

Validation

Experimental
Frames

Systems

Theory

Transparent
Simulators

DEVS
Behavior

Requirements
(Lower levels

System Specs.)

7
DEVS Model

Structures
(Higher levels
System Specs.)

1

4

3

Simulation
Execution

DEVS/SOA

Real-time
Execution

Model
to Service

2

6

DEVSML
Platform

Independent
Models (PIM)

5

Platform Specific
Models

8

State-based
Specifications

Message-based
Scenario Specs.,
restricted NPL

9
BPMN/BPEL
Scenario
Specifications

10
DoDAF based
Scenario
Specifications

11

XML based Data Extraction towards DEVS Components

 35

6. C h o, Y. Parallel Implementation of Container Using Parallel Virtual Machine. PhD. Th., Univ. of
Arizona, Tucson, 1995.

7. D a h m a n, J. S., F. K u h l, R W e a t h e r l y. Standards for Simulation: As Simple as Possible,
but not Simpler. The High Level Architecture for Simulation. – Simulation, Vol. 71, 1998,
No 6/7, 378-387.

8. D i M a r i o, M. J. System of Systems Interoperability Types and Characteristics in Joint
Command and Control. – In: Proc. of the International Conf. on System of Systems
Engineering IEEE/SMC’2006, TP3, Los Angeles, CA, April 2006, 236-241.

9. D i M a r i o, M. J. From Systems Engineering to System of Systems Engineering. SoSE
Discussion Panel Introduction. – In: IEEE International Conference on System of Systems
Engineering (SoSE), San Antonio, Texas, 16-18 April 2007.

10. DoD Instruction 5000.2 Operation of the Defense Acquisition System. 12 May 2003.
11. DoD. Systems Engineering Guide for Systems of Systems. Ver. 1.0. Office of the Deputy under

Secretary of Defense for Acquisition, Technology and Logistics. Washington, DC, 2008.
12. DoDAF Working Group. DoD Architecture Framework. Ver. 1.0. Vol. III: Deskbook. US

Department of Defense. Washigtnon, DC, 2003.
13. E i s n e r, H. RCASSE: Rapid Computer-Aided System of Systems Engineering. – In: Proc. of 3rd

International Symp. of the National Council of Systems Engineering, Vol. 1, Washington,
DC, 1993, 267-273.

14. F i l i p, F l.-G. Decision Support and Control for Large-Scale Complex Systems. – Annual
Reviews in Control, Vol. 32, 2008, No 1, 61-70.

15. H o, Y.-C. Special Issue on Discrete Event Dynamic Systems. – In: Proc. of IEEE, Vol. 77, 1989,
No 1, 3-6.

16. IEEE 610.12. Standard Glossary of Software Engineering Terminology. International Organization
for Standardization and IEEE. NY, 1990.

17. J a m s h i d i, M. System-of-Systems Engineering – A Definition. – In: IEEE International Conf.
on System, Man and Cybernetics (SMC), Waikoloa, Hawaii, Vol. 4, October 2005, 10-12.
http://ieeesmc2005.unm.edu/SoSE_Defn.htm

18. K e a t i n g, C., R. R o g e r s, R. U n a l, D. D r y e r, A. S o u s a-P o z a, R. S a f f o r d, W.
P e t e r s o n, G. R a b a d i. System of Systems Engineering. Engrng. – Management J., Vol.
15, 2003, No 3, 36-45.

19. K e a t i n g, C. Research Foundations for System of Systems Engineering. – In: IEEE International
Conf. on Systems, Man and Cybernetics, Waikoloa, Hawaii, October 2005, 2720-2725.

20. K e a t i n g, C., P. K a t i n a. Systems of Systems Engineering: Prospects and Challenges for the
Emerging Field. – International Journal on SoSE, Vol. 2, 2011, No 2/3, 234-252.

21. M a i e r, M. W. Architecting Principles for Systems-of-Systems. – Systems Engineering, Vol. 1,
1998, No 4, 267-284.

22. M a n s o u r i, M., B. S a u s e r, J. B o a r d m a n. Application of Systems Thinking for Resilience
Study in Maritime Transportation System of Systems. – In: 3rd Annual IEEE Systems
Conference, Vancouver, 2009, 211-217.

23. M i t t a l, S. DEVS Unified Process for Integrated Development and Testing of Service Oriented
Architectures. Ph. D. Thesis. University of Arizona, Arizona, 2007.

24. M i t t a l, S., J. L. R i s c o-M a r t i n, B. P. Z e i g l e r. DEVS-Based Simulation Web Services for
Net-Centric T&E. – In: Proc. of the Summer Computer Simulation Conference (SCSC’07),
San Diego, CA, 2007, 357-366.

25. M i t t a l, S. Extending DoDAF to Allow Integrated DEVS-Based Modeling and Simulation. –
Special Issue on DoDAF Journal of Defense Modeling and Simulation (JDMC):
Applications, Methodology, Technology, Vol. 3, 2006, No 2, 95-123.

26. M o r g a n w a l p, J., A. P. S a g e. Enterprise Architecture Measures of Effectiveness. –
International Journal of Technology, Policy and Management, Vol. 4, 2004, No 1, 81-94.

27. PVM Project Team. PVM User Survey Results. 1994.
http://comp.parallel.pvm

28. S a g e, A. P., C. D. C u p p a n. On the Systems Engineering and Management of Systems and
Federations of Systems. – Information, Knowledge, Systems Management, Vol. 2, 2001,
No 4, 325-345.

 36

29. S a g e, A. From Engineering a System to Engineering an Integrated System Family, from Systems
Engineering to SoS Engineering. – In: IEEE Int. Conf. on System of Systems Engineering
(SoSE), San Antonio, Texas, April 2007.

30. S a r j o u g h i a n, H. S., B. P. Z e i g l e r. DEVS and HLA: Complimentary Paradigms for M&S.
– Transactions of the SCS, Vol. 17, 2000, No 4, 187-192.

31. S o u s a-P o z a, A., S. K o v a c i c, C. K e a t i n g. System of Systems Engineering: An Emerging
Multidiscipline. – International Journal of System of Systems Engineering (SoSE), Vol. 1,
2009, No 1/2, 1-17.

32. System of Systems Engineering: Innovations for the 21st Century. Ed. Mo Jamshidi. Hoboken, NJ,
John Wiley, 2008.

33. T z a n e v, A. Large-Scale Systems. Lecture Notes in AIT Specialty, Masters Engineering Degree.
Published by UCTM – Sofia. 2010. 384 p. (in Bulgarian).

34. V a l e r d i, R., A. R o s s, D. R h o d e s. A Framework for Evolving System of Systems
Engineering. – Crosstalk., Vol. 20, 2007, No 10, 28-30.

35. W y m o r e, W. A. A Mathematical Theory of Systems Engineering: The Elements. Krieger. NY,
Huntington, 1967.

36. W y m o r e, W. A., B. C h a p m a n, T. B a h i l l. Engineering Modeling and Design. NY, CRC
Press, 1992.

37. Z e i g l e r, B. P., P. H a m m o n d s. Modeling & Simulation-Based Data Engineering:
Introducing Pragmatics into Ontologies for Net-Centric Information Exchange. NY,
Academic Press, 2007.

38. Z e i g l e r, B., T. G. K i m, H. P r a e h o f e r. Theory of Modeling and Simulation. NY, Acad.
Press, 2000.

39. Z e i g l e r, B. P. Theory of Modeling and Simulation. NY, John Wiley, 1976.
40. Z e i g l e r, B. P., W. S a n d e r s. Preface to Special Issue on Environments for Discrete Event

Dynamic Systems. – DEDS: Theory and Applications, Vol. 3, 1993, No 2, 110-119.
41. Z e i g l e r, B. P., D. F u l t o n, P. H a m m o n d s, J. N u t a r o. Framework for M&S-Based

System Development and Testing in a Net-Centric Environment. – ITEA Joutnal of Test and
Evaluation, Vol. 26, 2005, No 3, 21-34.

