
 77

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 12, No 4

Sofia • 2012

Pattern Synthesis Using Multiple Kernel Learning
for Efficient SVM Classification

Hari Seetha1, R. Saravanan2, M. Narasimha Murty3

1School of Computing Science and Engineering, VIT University, Vellore-632014
2School of Information Technology and Engineering, VIT University, Vellore-632 014
3Department of Computer Science and Automation, IISc, Bangalore-12
Email: hariseetha@gmail.com

Abstract: Support Vector Machines (SVMs) have gained prominence because of
their high generalization ability for a wide range of applications. However, the size
of the training data that it requires to achieve a commendable performance
becomes extremely large with increasing dimensionality using RBF and polynomial
kernels. Synthesizing new training patterns curbs this effect. In this paper, we
propose a novel multiple kernel learning approach to generate a synthetic training
set which is larger than the original training set. This method is evaluated on seven
of the benchmark datasets and experimental studies showed that SVM classifier
trained with synthetic patterns has demonstrated superior performance over the
traditional SVM classifier.

Keywords: SVM classifier; curse of dimensionality, synthetic patterns; multiple
kernel learning.

1. Introduction

In most of the real world data sets, the dimensionality of the data exceeds the
number of training patterns. It is generally recommended that the ratio of training
set size to the dimensionality be large [1]. Earlier studies reported that the number
of training samples per class should be at least 5-10 times the dimensionality of the
data ([1, 2]). D u d a et al. [3] mentioned that the demand for a large number of

 78

samples increases exponentially with the dimensionality of feature space. This
results in the curse of dimensionality.

SVM classifier lacks perfectness in case of real life data sets where the size of
the data is generally lower than that of dimensionality, though the available
literature confirms its prominent performance using only linear SVMs. H a s t i e et
al. [4] discussed that whether using linear or nonlinear kernels, SVMs are not
immune to the curse of dimensionality. The reasons could be insufficient training
data and noise in the training data. In order to demonstrate that kernel based pattern
recognition is not entirely robust against high dimensional input spaces;
S i l v e r m a n [5] reported the difficulty of kernel estimation in high dimensions as
shown in Table 1.

Table 1. Dimensionality vs. sample size

Dimensionality Required sample size
1 4
2 19
5 786
7 10 700

10 842 000

Typically, SVM performs classification using linear, polynomial and RBF
(Gaussian) kernels. All of them use inner products. The most popular kernel used
for classification is Gaussian kernel

2 2
1 2(|| ||) / 2

1 2(,) .x xk x x e σ− −= The square of the
Euclidean distance (||x1 – x2||)2 affects the Gaussian kernel. B e y e r et al. [6]
illustrated that the maximally distant point and minimally distant point converge
which is a problem with Euclidean distance in high dimensionality. In [7] is shown
that the linear kernel is a special case of Gaussian kernel. Further, the relationship
between Gaussian and linear kernel can be given as follows:

()2 2
1 2

2
1 2(|| ||) / 2

21
2

x x x x
e σ

σ
− −

−
= − (neglecting higher order terms) =

() ()()1 2 1 22

11
2

tx x x x
σ

= − − − =

()2 2
1 2 2 1 1 22

11
2

t tx x x x x x
σ

= − + − − =

()()1 22

11 2 2 .
2

x x
σ

= − −

(
.
.
.
 ||x1

2||=||x2
2||=1, as the datasets are generally normalized to have unit length).

F i l l i p o n e et al. [8] explained that the linear kernel leads to the computation
of the Euclidean norm in the input space. E v a n g e l i s t a et al. [9] showed that
increasing dimensionality degrades the performance of the linear, Gaussian and
polynomial kernels and also demonstrated that each variable (feature) added affects
the overall behaviour of the kernel. H a s t i e et al. [4] discussed that if the
dimensionality is large and the class separation occurred only in the linear subspace,

 79

spanned by the first two features then the polynomial kernel would suffer from
having many dimensions to search over.

Synthetic pattern generation is a novel approach to overcome the curse of
dimensionality. Very few studies were reported in literature regarding artificial
pattern generation. V i s w a n a t h et al. [10, 11] proposed a pattern synthesis
approach for efficient nearest neighbor classification. A g r a w a l et al. [12]
applied prototyping as an intermediate step in the synthetic pattern generation
technique to reduce classification time of K nearest neighbour classifier.

It is evident from the literature that almost no effort has been made to generate
synthetic patterns for improving the performance of SVM classifier; although it is
widely believed that achieving a given classification accuracy needs a large training
set when the dimensionality of the data is high. But such a study would be helpful
in the classification of real world data because getting real world large datasets is
difficult. Hence, the main objective of this investigation is to simulate smoothed
training patterns using Multiple Kernel Learning (MKL) approach, such that the
size of the new training set is larger than that of the original training set, and
thereby it improves the classification performance of SVM on high dimensional
data. In MKL approach several kernels are synthesized into a single kernel while
classical kernel-based algorithms are based on a single kernel. Although MKL has
recently been a topic of interest ([13, 14]), it was not earlier applied (as far as
authors knowledge goes) to generate synthetic patterns.

This paper is organized as follows: Section 2 describes the proposed method
with an example, Section 3 explains the block diagram of the proposed system used
to simulate new training patterns, Section 4 discusses the feature separation and
Section 5 explains the bootstrapping technique. Experimental studies are shown in
Section 6 with conclusions in Section 7.

2. Notations and description of the method proposed

Let us suppose that the data under consideration has n features ()1 2, , ..., .nF f f f=
Each of the samples in the data belongs to one of the classes given by

()1 2, ,..., iC C C C= . The data is divided into training and testing sets, such that
the training set is independent on the testing set. The m-th training sample of class

iC is represented by ()1 2
, ,...,

nmi mi mi miX x x x= where
1mix is the value of the

training sample miX for feature 1f ,
2mix is the value of the training sample miX

for feature 2f , and
nmix is the value of the training sample miX for feature nf . If

1Ω is the set of the training samples of class 1C , 2Ω is the set of the training
samples of class 2C , and iΩ is the set of the training samples of class iC , then

1 2 ... iΩ = Ω ∪Ω ∪ ∪Ω is the set of all training samples. For each class of data,

the set of n features F is separated into p blocks { }1 2, , ..., pB B B B= FBq ⊆∋

 80

for 1, 2, ..., ,q p= and FBq

p

q
=∪

=1
, as well as φ=∩ rq BB for , .q r q r≠ ∀ ∀

Thus each training pattern of each class is partitioned into p sub-patterns. Let p
miX

represents the sub pattern of m-th training sample p
miX of class iC that belongs to

block pB . Let 1 2, ,...,p p p
i i riX X X be its r nearest neighbours in the block pB of

class iC . Then ∑=
=

r

h

p
hi

bp
mi X

r
X

1

1
is the artificial bootstrap pattern generated for bp

miX

[1]. This process is repeated for each training sub pattern of the block pB without
selecting it more than once. Applying one class of a SVM classifier on bootstrapped
samples of pB of class iC , the support vectors SV p

i of block pB of class iC are
determined. This procedure is repeated for every block of each class. Thus a single
kernel function, i.e. either linear, RBF or polynomial kernel is applied commonly
on each classwise feature partition. Firstly, a linear kernel is applied commonly on
all classwise blocks, then RBF and later the polynomial separately. The Cartesian

product { }1 2SV SV ... SV p
i i i i
′Ω = × × × is the new synthetic training set generated

for class iC . This procedure is repeated for each class generating 1 2., ,..., i′ ′ ′Ω Ω Ω
new training patterns for each class. In this way a novel approach of multiple kernel
learning is used for generating synthetic patterns.

Example. To illustrate the proposed method, let us accept that the dataset has
six training patterns, with five features, represented by the set of features

()54,321 ,,, fffffF = and each of the training pattern belongs to any one of the

classes having class labels 1C and 2C . Let the set of training samples of class 1C

be () () (){ }1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5, , , , , , , , , , , , , ,a a a a a d d d d d e e e e eΩ = and let the

set of training samples of class 2C be

() () (){ }2 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5, , , , , , , , , , , , , ,α α α α α β β β β β γ γ γ γ γΩ = .

Then the original training set is
() () ()
() () ()⎭

⎬
⎫

⎩
⎨
⎧

=Ω∪Ω=Ω
543215432154321

543215432154321
21 ,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,
γγγγγβββββααααα

eeeeedddddaaaaa
.

Let { }1 2,B B B= be the partition of the features F, such that

1 1 3 4{ , , }B f f f= and 2 2 5{ , }B f f= .

Then, () () (){ }1
1 1 3 4 1 3 4 1 3 4, , , , , , , ,a a a d d d e e eΩ = represents the sub-

patterns of block 1B of class 1C . () () (){ }2
1 2 5 2 5 2 5, , , , ,a a d d e eΩ = represents

the sub-patterns of block 2B of class 1C , and

 81

() () (){ }1
2 1 3 4 1 3 4 1 3 4, , , , , , , ,α α α β β β γ γ γΩ = ,

() () (){ }2
2 2 5 2 5 2 5, , , , ,α α β β γ γΩ =

represent the sub-patterns of block 1B and 2B of class 2C respectively. Let

() () (){ }1
1 1 3 4 1 3 4 1 3 4, , , , , , , ,b b b b b b b b b ba a a d d d e e eΩ = represent the

bootstrapped sub-patterns of block 1B of class 1C . Let

() () (){ }2
1 2 5 2 5 2 5, , , , ,b b b b b b ba a d d e eΩ =

represent the bootstrap sub-patterns of 2B of class 1C . Similarly,

() () (){ }1
2 1 3 4 1 3 4 1 3 4, , , , , , , , ,b b b b b b b b b bα α α β β β γ γ γΩ =

() () (){ }2
2 2 5 2 5 2 5, , , , ,b b b b b b bα α β β γ γΩ =

represent the bootstrap sub-patterns of block 1B and 2B of class 2C respectively.

Let () (){ }1
1 1 3 4 1 3 4SV , , , , ,b b b b b ba a a d d d= be the support vectors obtained by

applying one class of a SVM classifier to block 1B of class 1C using any one of the

kernels, i.e. linear, RBF or polynomial. Similarly, () (){ }2
1 2 5 2 5SV , , ,b b b ba a e e= be

the support vectors obtained from block 2B of class 1C . In the same way,

() (){ }1
2 1 3 4 1 3 4SV , , , , ,b b b b b bα α α β β β= and () (){ }2

2 2 5 2 5SV , , ,b b b bα α β β= be the

support vectors obtained from block 1B and 2B of class 2C respectively. Then the
synthetic training set for class 1C is generated by performing the Cartesian product

1 2
1 1 1SV SV′Ω = × and rearranging the features in the original order of features. The

new simulated set of the training patterns for class 1C is

() (){
() ()}
1 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

, , , , , , , , , ,

, , , , , , , , , .

b b b b b b b b b b

b b b b b b b b b b

a a a a a a e a a e

d a d d a d e d d e

′Ω =

Similarly, the new training set generated for class 2C is 1 2
2 2 2SV SV′Ω = × , i.e.,

() (){
() ()}

2 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

, , , , , , , , , ,

, , , , , , , , , .

b b b b b b b b b b

b b b b b b b b b b

α α α α α α β α α β

β α β β α β β β β β

′Ω =

The synthetic training set generated is given by

 82

() (){
() () ()

() () ()}

1 2 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

, , , , , , , , , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , .

b b b b b b b b b b

b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b

a a a a a a e a a e

d a d d a d e d d e α α α α α

α β α α β β α β β α β β β β β

′ ′ ′Ω = Ω ∪Ω =

The synthetic training set Ω´ having eight patterns is larger in size than the
original training set Ω, having six patterns. In this way the training set size can be
increased by multiple kernel learning.

3. Proposed system

Fig. 1. Generating synthetic patterns using multiple kernel learning. The proposed system

The proposed system is shown in Fig. 1. The features of the class wise
partitions of the training set are separated into p blocks where p =2, 3, and 4, using
the correlation based feature separation method explained in Section 3. The class
wise data is represented as Ω1, Ω2, …, Ωi corresponding to class labels C1, C2, …,
Ci respectively and each of them is partitioned into p blocks denoted by

1 2 1 2 1 2
1 1 1 2 2 2, ,..., , , , ..., , ..., , , ...,p p p

i i iΩ Ω Ω Ω Ω Ω Ω Ω Ω respectively. Bootstrapping,
suggested by H a m a m o t o et al. [1] is applied on each of these blocks. Thus

 83

each of these blocks now contains bootstrapped data given by
1 2 1 2 1 2

1 1 1 2 2 2, , ..., , , , ..., , ..., , , ...,b b bp b b bp b b bp
i i iΩ Ω Ω Ω Ω Ω Ω Ω Ω . Support vectors are

generated from each of these blocks with one class of SVM classifier
1 2 1 2 1 2
1 1 1 2 2 2SV , SV ,..., SV , SV , SV ,..., SV ,..., SV , SV ,..., SVp p p

i i i . Thus, a single
kernel, i.e., either linear, RBF or polynomial kernel is applied commonly on each
of these blocks. Then the Cartesian products of the support vectors of all the
class wise blocks generate a new data set for each class, i.e.,

{ }1 2
1 1 1 1SV SV ... SV ,p′Ω = × × × { }1 2

2 2 2 2SV SV ... SV ,...,p′Ω = × × ×

{ }1 2SV SV ... SV p
i i i i′Ω = × × × .

The class wise simulated patterns are then used to generate a larger training set
represented by 1 2 ... i′ ′ ′ ′Ω = Ω ∪Ω ∪ ∪Ω . This synthetic training set is used for the
final SVM classification with the same kernel function that is used on each of the
blocks. Thus a novel multiple kernel learning approach is applied to generate
synthetic patterns.

4. Feature separation method
In this paper we used the partitioning method suggested by V i s w a n a t h et al.
[10] for efficient nearest neighbour classification, in order to separate the features of
each class of the training data into uncorrelated blocks. This method is based on
pair-wise correlation between the features and therefore is suitable for data, having
numerical feature values only. The objective of this method is to find blocks of
features in such a way that the average correlation between the features within a
block is high and that between features of different blocks is low. Since this
objective is a computationally demanding one, a greedy method which can find
only a locally optimal partition was suggested by V i s w a n a t h et al. [10].

5. Bootstrapping
The bootstrapping method that we employed in this paper is different from the
ordinary bootstrapping in the manner in which the bootstrap samples are generated.
The ordinary bootstrapping is a method of resampling the given data and has been a
successful method for error estimation [15-18]. The bootstrapping method that
creates (not selects) new training samples was proposed by H a m a m o t o et al. [1]
that acts as a smoother of the distribution of the training samples and was
successfully applied in the design of 1NN classifier, particularly in high
dimensional spaces. Further, H a m a m o t o et al. [1] generated bootstrap samples
by combining the training data locally and illustrated that the NNC (Nearest
Neighbour Classifier) based on bootstrap patterns performed better than that of
K-NNC (K-nearest-neighbor classifier) based on the original data [18].

In the present work, we applied the bootstrapping method suggested by
H a m a m o t o et al. [1] to each block as shown by the following algorithm.

 84

Algorithm 1. Generating bootstrapped sub-patterns
Input: { }1 2, , ...,j j jj

w w w NwX X XX = , the original set of sub-patterns from block

jB of class wC .

Step 1. Select a block jB of class wC and initialize, where φ=X bj
w , where

X bj
w represents the set of bootstrapped sub-patterns of block jB of class wC ..

Step 2. Set m =1.
Step 3. Select m-th sub-pattern j

mwX from block jB of class wC .

Step 4. Find the r nearest neighbour sub-patterns 1 2, , ...,j j j
w w rwX X X of j

mwX
in block jB of class wC using Euclidean distance.

Step 5. Determine m-th bootstrapped sub-pattern ∑=
=

r

h

j
hw

bj
mw X

r
X

1

1
.

Step 6. { }bj
mw

bj
w

bj
w XXX ∪= .

Step 7. Repeat Steps 3-5 for 2, ...,m N= .
Step 8. Output the synthetic set { }1 2, , ...,bj bj bjbp

w w w NwX X XX = of bootstrapped

sub-patterns generated for block jB of class wC .
Step 9. Repeat Steps 1-7 for 1, 2, ...,j p= .
Step 10. Repeat Steps 1-8 for 1, 2, ...,w i= .
In Step 3 the sub-patterns from block jB are selected so that no sub-pattern is

chosen more than once. Thus a synthetic set of bootstrap sub-patterns is generated
for each of the blocks belonging to every class. The bootstrapping technique has
the ability to remove outliers which therefore reduces the variability in the data, as
well as removes noise. This in turn increases the distance between two close
patterns belonging to different classes and thereby improves the generalization
performance of the classifier [18].

6. Experimental study

The proposed system is implemented with seven of the benchmark datasets viz.,
Thyroid, Ionosphere, Glass, Wine, Breast Cancer and Sonar obtained from UCI
machine learning repository [19]. OCR data set was also used by V i s w a n a t h
et al. [10]. The characteristics of these datasets, i.e., the number of features, the
number of the training patterns, the number of the testing patterns and the number
of the classes are shown in the Table 2. (It is noted that in Glass data there is no
data corresponding to class label 4). For Thyroid and OCR datasets the training and
testing set are separately available. For all the other datasets, approximately the first
60% of the data of each class is used for training and the remaining data of each
class is utilized for testing. The features of all these datasets have numerical values.

 85

Except OCR, the features of Thyroid, Glass, Wine, Breast Cancer and Sonar
datasets are normalized to zero mean and unit variance.

Table 2. Characteristics of datasets used

Data Set Number of
features

Number of
training patterns

Number of
testing patterns

Number
of classes

Thyroid 21 3772 3428 3
Ionosphere 34 216 135 2

Wine 13 108 70 3
Glass 9 130 84 6

Breast Cancer 30 342 227 2
Sonar 60 125 83 2
OCR 192 300 3333 10

The experiments are performed as follows:
Scheme 1. Generating synthetic patterns based on the proposed system using a

linear kernel and performing SVM classification using the linear kernel finally.
Scheme 2. Synthesizing new patterns applying the proposed approach using

RBF kernel and performing SVM classification using RBF kernel.
Scheme 3. Producing artificial patterns using the proposed system with a

polynomial kernel and finally performing SVM classification using the polynomial
kernel.

In all these schemes, initially each dataset is partitioned classwise. The
classwise partition of each dataset is then divided into p blocks using the
algorithm for the correlation based feature partitioning discussed in Section 3. Each
block consists of features that are better correlated with each other than the features
in different blocks. Each block of data is bootstrapped. xperiments are performed
varying the number of blocks, i.e., p =2, 3 and 4 only because earlier studies [10]
showed that increasing the number of blocks does not improve the performance.
The experiments are implemented in MATLAB, and LIBSVM is used both as one
class of a SVM classifier on the blocks of features and also for the final SVM
classification using a synthetic training set [20].

The same C parameter value was used for SVM classification on the original
data and for the final SVM classification using a synthetic training set in case of a
linear, RBF and polynomial kernel respectively. This value of C was chosen to be a
default value (i.e., C=1) for all the data sets using a linear kernel. In case of RBF
and Polynomial for all the data sets except OCR, this value of C was chosen to be a
default value (and the other parameters, such as γ in case of RBF and degree in
case of a polynomial were also chosen to have default values of LIBSVM tool as
shown in Table 15 Appendix). For OCR data C = 0.5 in case of RBF and
C = 0.03125 in case of a polynomial kernel are used. These values are respectively
determined by varying C, and noting the CA% (classification accuracy) of the
proposed system, as well as CA% of the original data and fixing C to the value
where the CA% of the proposed system was higher than the CA% of the original
data.

 86

In Scheme 1, varying ν parameter of one class of SVM classifier (with other
parameters of one class of a linear SVM classifier being default values, as given by
LIBSVM as shown in Table 15 in Appendix) and the number of nearest neighbours
(k) for bootstrapping, appropriate number of support vectors are selected from each
block for each class of data and then Cartesian product is performed such that the
new training data is generated for that class. For the value of C (used on the original
data and for the final SVM classification), the cbν parameter values for each block
b of each class c is fixed at those values for which the CA% of the proposed method
is higher than the CA% of the original data. These values are shown in Tables 6-8
of the Appendix respectively. The number of the nearest neighbours rm for which
the maximum CA% is obtained, using the method proposed, is also noted and
shown in Tables 3-5 respectively.

Table 3. CA% obtained by applying proposed system with a linear kernel

Data Set On original
data CA%

On applying proposed system
Number of

partitions (p) rm CA%

Thyroid 93.0572
2 21 97.287
3 37 97.4037
4 53 97.3454

Ionosphere 91.1111
2 66 91.8519
3 27 91.8519
4 44 91.8519

Wine 97.2222
2 7 100
3 11 98.611
4 12 98.611

Glass 57.1429
2 5 72.619
3 4 72.619
4 5 71.4286

Breast Cancer

96.4758

2 54 98.2379
3 64 97.7974
4 84 97.3568

Sonar 62.6506
2 4 72.2892
3 9 74.6988
4 30 81.9277

OCR 81.4881
2 6 82.6283
3 6 82.6883
4 28 70.4770

The same procedure is followed for RBF and polynomial kernels in Scheme 2
and Scheme 3 respectively. For Thyroid data using RBF, γ parameter values, for
p = 2 and p = 3 blocks (for each block using one class of a SVM classifier) chosen
different from the default values, as shown in Tables 9-10 whereas for other data
sets the γ parameter (for each block using one class of a SVM classifier) were
chosen to have default values (as given in LIBSVM tool). For a polynomial kernel,
except the nu (vcp) parameter, all others were chosen to have default values of
LIBSVM tool in case of one class of a SVM classifier as shown in Tables 12-15 in
the Appendix. The experimental results of Scheme 2 and Scheme 3 are shown in
Tables 4-5 respectively.

 87

Table 4. CA% obtained by applying the proposed system with RBF kernel

Data set On original
data CA%

On applying proposed system
Number of

partitions (p) rm CA%

Thyroid 94.895
2 6 97.4329
3 34 96.0035
4 50 95.4492

Ionosphere 93.3333
2 12 96.2963
3 2 94.8148
4 2 94.0741

Wine 98.6111
2 4 100
3 24 100
4 12 100

Glass 66.6667
2 3 78.5714
3 3 72.619
4 3 72.619

Breast Cancer 96.4758
2 4 98.6784
3 13 97.7974
4 34 96.9163

Sonar 49.3976
2 24 74.6988
3 3 74.6988
4 37 84.3373

OCR(C=0.5) 76.9277
2 2 84.0684
3 2 84.1884
4 2 75.6076

Table 5. CA% obtained by applying the proposed system with a polynomial kernel

Data set On original
data CA%

On applying proposed system
Number of

partitions (p) rm CA%

Thyroid 93.7573
2 78 93.9615
3 50 94.049
4 63 93.9032

Ionosphere 64.4444
2 5 91.8519
3 15 91.1111
4 2 77.037

Wine 91.6667
2 6 95.8333
3 4 98.6111
4 9 94.4444

Glass 51.1905
2 4 72.6190
3 2 71.4286
4 5 71.4286

Breast Cancer 91.63
2 54 98.2379
3 30 97.3568
4 40 96.0352

Sonar 46.988
2 32 75.9036
3 7 75.9036
4 16 80.7229

OCR 77.0777
2 2 79.8080
3 2 79.5380
4 26 69.0669

 88

From Tables 3-5 it can be summarized that RBF kernel showed better
performance for all the datasets. Generally, the linear kernel is preferred as it
performs well when the number of features is large when compared to the size of
the data, but the experimental results showed that RBF kernel showed good
performance on using the proposed system. This may be because of the sufficiently
available training patterns. The disadvantage of a linear kernel is that it performs
poorly in case of noisy data. In the proposed system the noise is removed by
bootstrapping and hence, it showed better performance using the proposed system
as shown in Table 3. Hard margin classifier is easily affected by noise. Although
soft margin SVM classifiers were introduced to overcome this difficulty, the set of
support vectors may have noisy patterns. The preprocessing that is applied in the
proposed method, i.e bootstrapping, reduces the impact of such noisy patterns.

For Breast Cancer data using all three kernels the CA% decreased with
increasing the number of blocks. This may be due to overlearning, as the size of the
training data increases with increase in the number of blocks. An almost similar
observation could be made on Glass data using all three kernels, Wine, Ionosphere
& OCR data using a polynomial kernel, Thyroid &Ionosphere data using RBF
kernel. For Thyroid data using a linear kernel, OCR data using RBF and linear
kernels, the maximum CA% using the proposed system, it was obtained for p =3
blocks. This shows that if insufficient training data (for p = 2) is used then the
output will not be a true representative of the input and if the size of the training
data is more (for p = 4) then it causes overfitting. For Sonar data using all three
kernels the highest CA% is obtained for p = 4 blocks. This may be due to the
requirement for a larger number of training patterns.

Figs 2-4 have been plotted to study the effect of bootstrapping for different
number of blocks used for pattern synthesis, on the classification performance of
the SVM classifier using linear, RBF and polynomial kernels respectively. Fig. 2
shows the influence of the number of the nearest neighbours (r) chosen for
bootstrapping, on CA% of a SVM classifier using the linear kernel for Thyroid data,
for p = 2, 3 and 4. Similarly, Figs 3 and 4 display the variation in CA% of the
SVM classifier with a varying number of the nearest neighbors used for
bootstrapping, for p =2, 3 and 4, using RBF and a polynomial kernel for the
Thyroid data respectively.

0 20 40 60 80 100
94

94.5

95

95.5

96

96.5

97

97.5

r

C
A

%

 0 20 40 60 80 100
86

88

90

92

94

96

98

r

C
A

%

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

r

C
A

%

p=2 p=3 p=4

Fig. 2. CA% vs r using a linear kernel for Thyroid data

 89

0 20 40 60 80 100
95

95.5

96

96.5

97

97.5

r

C
A

%

0 20 40 60 80 100
30

40

50

60

70

80

90

100

r

C
A

%

0 20 40 60 80 100
40

50

60

70

80

90

100

r

C
A

%

p=2 p=3 p=4

Fig. 3. CA% vs r using RBF kernel for Thyroid data

0 20 40 60 80 100
82

84

86

88

90

92

94

96

r

C
A

%

 10 20 30 40 50 60 70 80 90
88

89

90

91

92

93

94

95

r

C
A

%

0 20 40 60 80 100
80

82

84

86

88

90

92

94

r
C

A
%

p=2 p=3 p=4

Fig. 4. CA% vs r using a polynomial kernel for Thyroid data

From Figs 2-4 it is clear that as the number of the nearest neighbours (r)
increases, the CA% first increases, reaches maximum at mr and then decreases.
This is explained by the different number of blocks (p =2, 3 and 4) using a linear,
RBF and polynomial kernels respectively. A similar observation was made even in
case of other data sets. This is because if the number of the nearest neighbors is
less, then smoothing is less, causing overfitting and increasing the number of the
nearest neighbors causes excessive smoothing leading to underfitting of the data
(see [21, 22]).

7. Conclusions

In the present work a novel method to synthesize training patterns is proposed based
on multiple kernel learning approach to subdue the effects of high dimensionality
on classifying small samples of data with a SVM classifier. This method increases
the size of the training samples to vanquish the effect of ‘Curse of dimensionality’.
Experimental studies are performed on seven standard datasets viz., Thyroid,
Ionosphere, Glass, Wine, Breast Cancer, Sonar and OCR data, using linear, RBF
and polynomial kernels separately. The main findings are summarized below:

• Experimental results showed that the SVM classifier, trained using
synthetic patterns outperformed the conventional SVM classifier trained on original
data and hence it can be concluded that the synthetic pattern generation improves
the generalization performance of the SVM classifier.

• Experimental observations demonstrated that synthetic pattern generation
reduced the effect of the curse of dimensionality that occurs when the

 90

dimensionality is larger than the size of the data and hence, the CA% obtained by a
SVM classifier using the proposed system was better than the CA% obtained by the
conventional SVM classifier.

• The size of the training set can be increased by increasing the number of
blocks of features, but it is shown experimentally that it may not increase the
performance of the classifier always, which may be due to the increase in the
deviation from the original training set.

• The proposed method is suitable for the datasets having high
dimensionality, but not very high dimensionality, as the computational time and the
memory resources for finding the correlation (used for partitioning the features)
between the features of the data increases with dimensionality.

• The experimental results were in good agreement with the results reported
by V i s w a n a t h et al. [10, 11] on pattern synthesis for nearest neighbour
classification.

• The figures showed the variation of CA% with variation in the number of
the nearest neighbors and demonstrated the profound effect of smoothing of the
training patterns on the performance of the SVM classifier. These results were in
good agreement with the report made by H a m a m o t o et al. [1], that
bootstrapping technique removes noise by smoothing training patterns, particularly
in high dimensional spaces.

Synthetic pattern generation suggested in this paper is helpful, because it is
costly to get large real world patterns. Our future work will be directed to overcome
the limitation of the proposed method (that is increase in the training time of the
SVM classifier due to increase in the size of the training set) by using greedy
methods, instead of Cartesian product, to generate synthetic patterns .

Acknowledgements: The authors gratefully acknowledge Dr. P. Viswanath (Dean (R & D), Dept. of
CSE, RGMCET, Nandyal, A. P., India) for giving OCR data.

R e f e r e n c e s

1. H a m a m o t o, Y., S. U c h i m u r a, S. T o m i t a. A Bootstrap Technique for Nearest Neighbor
Classifier Design. – IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 19, 1997, No 1, 73-79.

2. J a i n, A., B. C h a n d r a s e k h a r a n. Dimensionality and Sample Size Considerations in Pattern
Recognition Practice. – In: P. Krishnaiah, L. Kanal, Eds. Handbook of Statistics. Vol. 2.
North Holland, 1982, 835-855.

3. D u d a, R. O., P. E. H a r t, D. G. S t o r k. Pattern Classification. John Wiley & Sons, Inc., 2005.
4. H a s t i e, T., R. T i b s h i r a n i, J. F r i e d m a n. The Elements of Statistical Learning. Second

Edition. Springer Series in Statistics, 2009.
5. S i l v e r m a n, B. W. Density Estimation for Statistics and Data Analysis. London, Chapman

&Hall, 1986.
6. B e y e r, K. S., J. G o l d s t e i n, R. R a m a k r i s h n a n, U. S h a f t. When is “Nearest Neighbor”

Meaningful? –In: Proc. of 7th International Conference on Database Theory, ICDT’99,
London, UK, 1999. Springer Verlag, 217-235.

7. S a t h i y a, K. S., C h i h-J e n L i n. Asymptotic Behaviors of Support Vector Machines with
Gaussian Kernel. – Neural Computation, Vol. 15, 2003, No 7, 1667-1689.

 91

8. F i l l i p o n e, M., F. C a m a s t r a, F. M a s u l l i, S. R e v a t t a. A Survey of Kernel and Spectral
Methods for Clustering. – Pattern Recognition,Vol. 41, 2008, 176-190.

9. E v a n g e l i s t a, P. F., M. J. E m b r e c h t s, B. K. S z y m a n s k i. Taming the Curse of
Dimensionality in Kernels and Novelty Detection, Applied Soft Computing Technologies:
The Challenge of Complexity. A. Abraham, B. Baets, M. Koppen, B. Nickolay, Eds. Berlin,
Springer Verlag, 2006.

10. V i s w a n a t h, P., M. N. M u r t y, S. B h a t n a g a r. Partition Based Pattern Synthesis Technique
with Efficient Algorithms for Nearest Neighbor Classification. – Pattern Recognition Letters,
Vol. 27, 2006, No 14, 1714-1724.

11. V i s w a n a t h, P., M. N. M u r t y, S. B h a t n a g a r. Fusion of Multiple Approximate Nearest
Neighbor Classifiers for Fast and Efficient Classification. – Information Fusion, Vol. 5,
2004, 239-250.

12. A g r a w a l, M., N. G u p t a, R. S h r e e l e k s h m i, M. N. M u r t y. Efficient Pattern Synthesis
for Nearest Neighbor Classifier. – Pattern Recognition, Vol. 38, 2005, No 11, 2200-2203.

13. L a n c k r i e t, G., N. C r i s t i a n i n i, P. B a r t l e t t, L. E l G h a o u i, M. J o r d a n. Learning
the Kernel Matrix with Semi-Definite Programming. – Journal of Machine Learning
Research, Vol. 5, 2004.

14. S o n n e n b u r g, S., G. R ä t s c h, C. S c h ä f e r, B. S c h ö l k o p f. Large Scale Multiple Kernel
Learning. – Journal of Machine Learning Research, Vol. 7, 2006.

15. J a i n, A. K., R. C. D u b e s, C.-C. C h e n. Bootstrap Techniques for Error Estimation. – IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, 1987, 628-633.

16. C h e r n i c k, M. C., V. K. M u r t h y, C. D. N e a l y. Application of Bootstrap and Other
Resampling Techniques: Evaluation of Classifier Performance. – Pattern Recognition
Letters, Vol. 3, 1985, 167-178.

17. W e i s s, S. M. Small Sample Error Rate Estimation for k-NN Classifiers. – IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 13, 1991, 285-289.

18. S a r a d h i, V. V., M. N. M u r t y. Bootstrapping for Efficient Handwritten Digit Recognition. –
Pattern Recognition, Vol. 34, 2001, No 5, 1047-1056.

19. M u r p h y, P. M. UCI Repository of Machine Learning Databases. Department of Information and
Computer Science. University of California, Irvine, CA, 1994.
http://www.ics.uci.edu/mlearn/MLRepository.html

20. C h a n g, C.-C., C.-J. L i n. LIBSVM: A Library for Support Vector Machines. 2001.
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

21. S e e t h a, H., M. N. M u r t y, R. S a r a v a n a n. On Improving the Generalization of SVM
Classifier. – In K. R. Venugopal, L. M. Patnaik, Eds., ICIP’2011, CCIS 157, 2011, 11-20.

22. S e e t h a, H., M. N. M u r t y, R. S a r a v a n a n. A Note on the Effect of Bootstrapping and
Clustering on the Generalization Performance. – International Journal of Information
Processing, Vol. 5, 2011, No 4,19-34.

Appendix

Table 6. Parameter values chosen for one class of a SVM classifier in case of
two partitions using a linear kernel

Dataset Parameter values
Thyroid v11=0.12, v12=0.1, v21=0.028, v22=0.07, v31=0.050, v32=0.4
Ionosphere v11=0.08, v12=0.003, v21=0.3, v22=0.4
Breast cancer v11=0.3, v12=0.3, v21=0.4, v22=0.4
Sonar v11=0.3, v12=0.7, v21=0.009, v22=0.1
Wine v11=0.2, v12=0.1, v21=0.2, v22=0.2, v31=0.1, v32=0.4

Glass v11=0.2, v12=0.2, v21=0.1, v22=0.4, v31=0.1, v32=0.3, v51=0.2,
v52=0.3, v61=0.3, v62=0.5, v71=0.2, v72=0.2

OCR v11= v21= v31= v41= v51= v61= v71= v81= v91=0.9,
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.9

 92

Table 7. Parameter values chosen for one class of a SVM classifier in case of three partitions
using a linear kernel

Dataset Parameter values

Thyroid v11=0.1, v12=0.1, v13=0.1, v21=0.06, v22=0.06, v23=0.06,
v31=0.003, v32=5×10–6, v33=0.002

Ionosphere v11=0.1, v12=0.01, v13=0.1, v21=0.01, v22=0.2, v23=0.2
Breast cancer v11=0.3, v12=0.1, v13=0.001, v21=0.04, v22=0.01, v23=0.01
Sonar v11=1×10–5, v12=1.5×10–5, v13=0.01, v21=1.5×10–5, v22=1×10–5, v23=1.4×10–5

Wine v11=0.1, v12=0.1, v13=0.1, v21=0.002, v22=0.06, v23=0.06,
v31=0.1, v32=0.1, v33=0.4

Glass
v11=0.1, v12=0.15, v13=0.15, v21=0.3, v22=0.1, v23=0.08,

v31=0.1, v32=0.02, v33=0.01, v51=0.01, v52=0.02, v53=0.5,
v61=0.01, v62=0.35, v63=0.1, v71=0.2, v72=0.01, v73=0.01

OCR
v11= v21= v31= v41= v51= v61= v71= v81= v91=0.4,
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.6,
v13= v23= v33= v43= v53= v63= v73= v83= v93=0.9

Table 8. Parameter values chosen for one class of a SVM classifier in case of four partitions using a
linear kernel

Dataset Parameter values

Thyroid v11=0.05, v12=0.05, v13=0.05, v14=0.05, v21=0.03, v22=0.02, v23=0.02, v24=0.02,
v31=9×10–6, v32=9×10–6, v33=9×10–6, v34=9×10–6

Ionosphere v11=0.001, v12=0.01, v13=0.01, v14=0.00003,
v21=0.01, v22=0.01, v23=0.01, v24=0.01

Breast
cancer

v11=0.2, v12=0.01, v13=1×10–5, v14=0.001,
v21=3×10–4, v22=0.001, v23=0.01, v24=0.01

Sonar v11=1×10–4, v12=1×10–5, v13=1×10–5, v14=0.001,
v21=3×10–6, v22=1×10–5, v23=0.004, v24=0.004

Wine
v11=0.1, v12=0.2, v13=0.01, v14=0.01,

v21=0.002, v22=0.002, v23=0.001, v24=0.0001,
v31=0.1, v32=0.01, v33=0.01, v34=0.01

Glass
v11=0.001, v12=0.003, v13=0.1, v14=0.1, v21=0.4, v22=0.1, v23=0.01, v24=0.001,

v31=0.01, v32=0.001, v33=0.001, v34=0.0001, v51=0.001, v52=0.01, v53=0.01, v54=0.01,
v61=0.01, v62=0.01, v63=0.3, v64=0.3, v71=0.02, v72=0.02, v73=0.01, v74=0.01

OCR

v11= v21= v31= v41= v51= v61= v71= v81= v91=0.25,
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.125,
v13= v23= v33= v43= v53= v63= v73= v83= v93=0.125,

v14= v24= v34= v44= v54= v64= v74= v84= v94=0.5

Table 9. Parameter values chosen for one class of a SVM classifier in case of two
partitions using RBF kernel

Dataset Parameter values

Thyroid v11=0.01, v12=0.01, v21=0.01, v22=0.03, v31=0.0001, v32=0.0009,
γ11=0.9, γ12=0.9, γ21=0.4, γ22=0.4, γ31=0.9, γ32=0.9

Ionosphere v11=0.1, v12=0.1, v21=0.3, v22=0.7
Breast cancer v11=0.4, v12=0.1, v21=0.2, v22=0.2
Sonar v11=0.1, v12=0.2, v21=0.1, v22=0.3
Wine v11=0.1, v12=0.3, v21=0.1, v22=0.2, v31=0.02, v32=0.05

Glass v11=0.2, v12=0.2, v21=0.3, v22=0, V31=0.1, v32=0.1,
v51=0.2, v52=0.2, v61=0.3, v62=0.3, v71=0.2, v72=0.1

OCR v11= v21= v31= v41= v51= v61= v71= v81= v91=0.9,
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.99

 93

Table 10. Parameter values chosen for one class of a SVM classifier in case of three partitions
using RBF kernel

Dataset Parameter values

Thyroid
v11=0.0001, v12=0.0003, v13=0.0004, v21=1.5×10–4,

v22=0.0001, v23=0.03, v31=1×10–5, v32=1.5×10–5, v33=5×10–5,
γ11=0.9, γ12=0.9, γ13=0.9, γ21=0.9, γ22=0.9, γ23=0.9, γ31=0.9, γ32=0.9, γ33=0.9

Ionosphere v11=0.01, v12=0.2, v13=0.2, v21= v22= v23=0.1
Breast cancer v11=3×10–4, v12=0.2, v13=0.1, v21=0.002, v22=0.0015, v23=0.0015
Sonar v11=0.7, v12=1.5×10–4, v13= 0.9, v21=0.004, v22=0.001, v23 =0.9

Wine v11=0.01, v12=0.01, v13=0.001, v21=1×10–4, v22= 0.001, v23=0.001,
v31=0.001, v32=0.001, v33=0.00001

Glass
v11=0.35, v12=0.13, v13=0.11, v21=0.2, v22=0.02, v23=0.0008,
v31=0.01, v32=0.01, v33=0.01, v51=0.03, v52=0.02, v53=0.001,

v61=0.03, v62=0.03, v63=0.03, v71= v72= v73=0.001

OCR
v11= v21= v31= v41= v51= v61= v71= v81= v91=0.4,

v12== v22= v32= v42= v52= v62= v72= v82= v92=0.7,
v13= v23= v33= v43= v53= v63= v73= v83= v93=0.9

Table 11. Parameter values chosen for one class SVM classifier in case of four partitions
using RBF Kernel

Dataset Parameter values

Thyroid
v11=1.5×10–5, v12=1.5×10–4, v13=2×10–4, v14=0.002,

v21=3×10–5, v22=0.025, v23=2×10–4, v24=0.001,
v31=1×10–4, v32=5×10–6, v33=3×10–6, v34=1×10–4

Ionosphere v11=0.001, v12=0.01, v13=1×10–5, v14=0.0002,
v21=0.004, v22=0.001, v23=0.001, v24=0.0001

Breast
cancer

v11=1×10–4, v12=1×10–5, v13=1×10–4, v14=1×10–4,
v21=3×10–5, v22=1×10–4, v23=1×10–5, v24=1×10–5

Sonar v11=0.001, v12=0.001, v13=0.016, v14=0.38,
v21=4×10–6, v22=0.015, v23=0.1, v24=0.85

Wine v11=0.0001, v12=0.0001, v13=0.0001, v14=0.0001, v21=0.001, v22=0.001,
v23=0.00001, v24=0.00001, v31=0.001, v32=0.001, v33=0.0001, v34=0.0001

Glass

v11=0.01, v12=0.0001, v13=0.0001, v14=0.0001,
v21=0.0001, v22=0.0001, v23=0.001, v24=0.01,

v31=0.01, v32=0.001, v33=0.001, v34=0.0001, v51=0.001, v52=0.01,
v53=0.01, v54=0.01,v61=0.001, v62=0.001, v63=0.001, v64=0.001,

v71=0.001, v72=0.001, v73=0.001, v74=0.001

OCR

v11= v21= v31= v41= v51= v61= v71= v81= v91=2×10–10,
v12= v22= v32= v42= v52= v62= v72= v82= v92=2×10–10,
v13= v23= v33= v43= v53= v63= v73= v83= v93=2×10–10,
v14= v24= v34= v44= v54= v64= v74= v84= v94=2×10–10

Table 12. Parameter values chosen for one class SVM classifier in case of
two partitions using Polynomial Kernel

Dataset Parameter values
Thyroid v11=0.1, v12=0.08, v21=0.03, v22=0.03, v31=0.028, v32=0.02
Ionosphere v11=0.4, v12=0.1, v21=0.1, v22=0.2
Breast cancer v11=0.3, v12=0.2, v21=0.2, v22=0.4
Sonar v11=0.3, v12=0.45, v21=0.5, v22=0.5
Wine v11=0.2, v12=0.09, v21=0.35, v22=0.05, v31=0.5, v32=0.03

Glass v11=0.2, v12=0.2, v21=0.3, v22=0.001, v31=0.01, v32=0.01,
v51=0.3, v52=0.2, v61=0.3, v62=0.3, v71=0.2, v72=0.2

OCR v11= v21= v31= v41= v51= v61= v71= v81= v91=0.9,
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.99

 94

Table 13. Parameter values chosen for one class SVM classifier in case of three
partitions using Polynomial Kernel

Dataset Parameter values

Thyroid v11=0.2, v12=0.04, v13=0.0005, v21=0.03, v22=0.008, v23=0.0004,
v31=1×10–5, v32=2×10–5, v33=2×10–5

Ionosphere v11=0.01, v12=0.13, v13=0.2, v21=0.1, v22=0.1, v23=0.15 (neg)
Breast cancer v11=0.2, v12=0.02, v13=0.04, v21=0.3, v22=0.02, v23=0.01 (pos)
Sonar v11=0.04, v12=0.1, v13= 0.1, v21=0.003, v22=0.01, v23 =0.01(pos)

Wine v11= 0.15, v12=0.1, v13=0.1, v21=0.04,
v22= 0.01, v23=0.001, v31=0.1, v32=0.1, v33=0.2

Glass
v11=0.55, v12=0.01, v13=0.01, v21=0.55, v22=0.022, v23=0.01,
v31=0.1, v32=0.001, v33=0.001, v51=0.1, v52=0.2, v53=0.001,

v61=0.4, v62=0.3, v63=0.01, v71=0.3, v72=0.1, v73=0.1

OCR
v11= v21= v31= v41= v51= v61= v71= v81= v91=0.6,
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.74,
v13= v23= v33= v43= v53= v63= v73= v83= v93=0.9

Table 14. Parameter values chosen for one class SVM classifier in case of four partitions using
Polynomial Kernel

Dataset Parameter values

Thyroid
v11=0.002, v12=0.018, v13=0.011, v14=0.01,
v21=0.03, v22=0.002, v23=0.002, v24=0.001,

v31=5×10–4, v32=1.5×10–5, v33=1.5×10–5, v34=1×10–5

Ionosphere v11=0.01, v12=0.035, v13=0.01, v14=0.05,
v21=0.03, v22=0.03, v23=0.03, v24=0.03

Breast cancer v11=0.12, v12=0.012, v13=0.014, v14=0.014,
v21=0.032, v22=0.025, v23=0.025, v24=0.016

Sonar v11=0.02, v12=0.01, v13=0.02, v14=0.1,
v21=1×10–5, v22=0.001, v23=0.015, v24=0.52

Wine
v11=0.1, v12=0.1, v13=0.1, v14=0.1,

v21=0.01, v22=0.01, v23=0.1, v24=0.2,
v31=0.1, v32=0.1, v33=0.1, v34=0.3

Glass
v11=0.3, v12=0.001, v13=0.001, v14=0.001, v21=0.23, v22=0.02, v23=0.02, v24=0.02,

v31=0.1, v32=0.1, v33=0.01, v34=0.02, v51=0.1, v52=0.1, v53=0.01, v54=0.02,
v61=0.01, v62=0.01, v63=0.01, v64=0.2, v71=0.001, v72=0.001, v73=0.001, v74=0.001

OCR

v11= v21= v31= v41= v51= v61= v71= v81= v91= –4,
v12= v22= v32= v42= v52= v62= v72= v82= v92= –4,
v13= v23= v33= v43= v53= v63= v73= v83= v93= –3,
v14= v24= v34= v44= v54= v64= v74= v84= v94= –2

Table 15. Default parameter values chosen by LIBSVM

Parameter Default value
C 1
γ 1/(number of features)

Degree (d)
(for polynomial kernel only) 3

r coef 0
(for polynomial kernel only) 0

