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Abstract: Support Vector Machines (SVMs) have gained prominence because of 
their high generalization ability for a wide range of applications. However, the size 
of the training data that it requires to achieve a commendable performance 
becomes extremely large with increasing dimensionality using RBF and polynomial 
kernels. Synthesizing new training patterns curbs this effect. In this paper, we 
propose a novel multiple kernel learning approach to generate a synthetic training 
set which is larger than the original training set. This method is evaluated on seven 
of the benchmark datasets and experimental studies showed that SVM classifier 
trained with synthetic patterns has demonstrated superior performance over the 
traditional SVM classifier. 

Keywords: SVM classifier; curse of dimensionality, synthetic patterns; multiple 
kernel learning. 

1. Introduction 

In most of the real world data sets, the dimensionality of the data exceeds the 
number of training patterns.  It is generally recommended that the ratio of training 
set size to the dimensionality be large [1].  Earlier studies reported that the number 
of training samples per class should be at least 5-10 times the dimensionality of the 
data ([1, 2]).  D u d a et al. [3] mentioned that the demand for a large number of 



 78

samples increases exponentially with the dimensionality of feature space. This 
results in the curse of dimensionality.   

SVM classifier lacks perfectness in case of real life data sets where the size of 
the data is generally lower than that of dimensionality, though the available 
literature confirms its prominent performance using only linear SVMs.  H a s t i e  et 
al. [4] discussed that whether using linear or nonlinear kernels, SVMs are not 
immune to the curse of dimensionality.  The reasons could be insufficient training 
data and noise in the training data. In order to demonstrate that kernel based pattern 
recognition is not entirely robust against high dimensional input spaces; 
S i l v e r m a n [5] reported the difficulty of kernel estimation in high dimensions as 
shown in Table 1. 

Table 1. Dimensionality vs. sample size 

Dimensionality Required sample size 
1 4 
2 19 
5 786 
7 10 700 

10 842 000 

Typically, SVM performs classification using linear, polynomial and RBF 
(Gaussian) kernels. All of them use inner products. The most popular kernel used 
for classification is Gaussian kernel 

2 2
1 2(|| ||) / 2

1 2( , ) .x xk x x e σ− −=  The square of the 
Euclidean distance (||x1 – x2||)2 affects the Gaussian kernel. B e y e r  et al. [6] 
illustrated that the maximally distant point and minimally distant point converge 
which is a problem with Euclidean distance in high dimensionality.  In [7] is shown 
that the linear kernel is a special case of Gaussian kernel.  Further, the relationship 
between Gaussian and linear kernel can be given as follows:   
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2||=1, as the datasets are generally normalized to have unit length).  

F i l l i p o n e  et al. [8] explained that the linear kernel leads to the computation 
of the Euclidean norm in the input space. E v a n g e l i s t a  et al. [9] showed that 
increasing dimensionality degrades the performance of the linear, Gaussian and 
polynomial kernels and also demonstrated that each variable (feature) added affects 
the overall behaviour of the kernel.  H a s t i e  et al. [4] discussed that if the 
dimensionality is large and the class separation occurred only in the linear subspace, 
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spanned by the first two features then the polynomial kernel would suffer from 
having many dimensions to search over.  

Synthetic pattern generation is a novel approach to overcome the curse of 
dimensionality. Very few studies were reported in literature regarding artificial 
pattern generation.  V i s w a n a t h et al. [10, 11] proposed a pattern synthesis 
approach  for efficient nearest neighbor classification.  A g r a w a l et al. [12] 
applied prototyping as an intermediate step in the synthetic pattern generation 
technique to reduce classification time of K nearest neighbour classifier.  

It is evident from the literature that almost no effort has been made to generate 
synthetic patterns for improving the performance of SVM classifier; although it is 
widely believed that achieving a given classification accuracy needs a large training 
set when the dimensionality of the data is high. But such a study would be helpful 
in the classification of real world data because getting real world large datasets is 
difficult. Hence, the main objective of this investigation is to simulate smoothed 
training patterns using Multiple Kernel Learning (MKL) approach, such that the 
size of the new training set is larger than that of the original training set, and 
thereby it improves the classification performance of SVM on high dimensional 
data. In MKL approach several kernels are synthesized into a single kernel while 
classical kernel-based algorithms are based on a single kernel. Although MKL has 
recently been a topic of interest ([13, 14]), it was not earlier applied (as far as 
authors knowledge goes) to generate synthetic patterns. 

This paper is organized as follows: Section 2 describes the proposed method 
with an example, Section 3 explains the block diagram of the proposed system used 
to simulate new training patterns, Section 4 discusses the feature separation and 
Section 5 explains the bootstrapping technique.  Experimental studies are shown in 
Section 6 with conclusions in Section 7. 

2. Notations and description of the method proposed 

Let us suppose that the data under consideration has n features ( )1 2, , ..., .nF f f f=  
Each of the samples in the data belongs to one of the classes given by 

( )1 2, ,..., iC C C C= .  The data is divided into training and testing sets, such that 
the training set is independent on the testing set.  The m-th training sample of class 

iC  is represented by ( )1 2
, ,...,

nmi mi mi miX x x x=  where 
1mix  is the value of the 

training sample miX  for feature 1f ,  
2mix  is the value of the training sample miX  

for feature 2f , and  
nmix  is the value of the training sample miX  for feature nf .  If 

1Ω is the set of the training samples of class 1C , 2Ω  is the set of the training 
samples of class 2C , and iΩ is the set of the training samples of class iC , then 

1 2 ... iΩ = Ω ∪Ω ∪ ∪Ω  is  the set of all training samples. For each class of data, 

the set of n  features F  is separated into p  blocks { }1 2, , ..., pB B B B= FBq ⊆∋  
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for 1, 2, ..., ,q p=  and FBq

p

q
=∪

=1
, as well as φ=∩ rq BB  for , .q r q r≠ ∀ ∀   

Thus each training pattern of each class is partitioned into p  sub-patterns. Let p
miX  

represents the sub pattern of m-th training sample p
miX  of class iC   that belongs to 

block pB .  Let 1 2, ,...,p p p
i i riX X X  be its r  nearest neighbours in the block pB  of 

class iC . Then ∑=
=

r

h

p
hi

bp
mi X

r
X

1

1
is the artificial bootstrap pattern generated for bp

miX  

[1].  This process is repeated for each training sub pattern of the block pB  without 
selecting it more than once. Applying one class of a SVM classifier on bootstrapped 
samples of pB  of class iC , the support vectors SV p

i  of block pB  of class iC  are 
determined.  This procedure is repeated for every block of each class. Thus a single 
kernel function, i.e. either linear, RBF or polynomial kernel is applied commonly 
on each classwise feature partition. Firstly, a linear kernel is applied commonly on 
all classwise blocks, then RBF and later the polynomial separately.  The Cartesian 

product { }1 2SV SV ... SV p
i i i i
′Ω = × × ×  is the new synthetic training set generated 

for class iC . This procedure is repeated for each class generating 1 2., ,..., i′ ′ ′Ω Ω Ω  
new training patterns for each class. In this way a novel approach of multiple kernel 
learning is used for generating synthetic patterns. 

Example.  To illustrate the proposed method, let us accept that the dataset has 
six training patterns, with five features, represented by the set of features 

( )54,321 ,,, fffffF =   and  each  of the  training pattern belongs to any one of the 

classes having class labels 1C  and 2C . Let the set of training samples of class 1C  

be ( ) ( ) ( ){ }1 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5, , , , , , , , , , , , , ,a a a a a d d d d d e e e e eΩ =  and let the 

set of training samples of class 2C  be  

( ) ( ) ( ){ }2 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5, , , , , , , , , , , , , ,α α α α α β β β β β γ γ γ γ γΩ = . 

Then the original training set is 
( ) ( ) ( )
( ) ( ) ( )⎭

⎬
⎫

⎩
⎨
⎧

=Ω∪Ω=Ω
543215432154321

543215432154321
21 ,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,
γγγγγβββββααααα

eeeeedddddaaaaa
. 

Let { }1 2,B B B=  be the partition of the features F,  such that  

1 1 3 4{ , , }B f f f=  and 2 2 5{ , }B f f= . 

Then, ( ) ( ) ( ){ }1
1 1 3 4 1 3 4 1 3 4, , , , , , , ,a a a d d d e e eΩ =  represents the sub-

patterns of block 1B  of class 1C .   ( ) ( ) ( ){ }2
1 2 5 2 5 2 5, , , , ,a a d d e eΩ =  represents 

the sub-patterns of block 2B  of class 1C , and  
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( ) ( ) ( ){ }1
2 1 3 4 1 3 4 1 3 4, , , , , , , ,α α α β β β γ γ γΩ = , 

( ) ( ) ( ){ }2
2 2 5 2 5 2 5, , , , ,α α β β γ γΩ =  

represent the sub-patterns of block 1B  and 2B  of class 2C  respectively. Let 

( ) ( ) ( ){ }1
1 1 3 4 1 3 4 1 3 4, , , , , , , ,b b b b b b b b b ba a a d d d e e eΩ =  represent the 

bootstrapped sub-patterns of block 1B  of class 1C . Let  

( ) ( ) ( ){ }2
1 2 5 2 5 2 5, , , , ,b b b b b b ba a d d e eΩ =  

represent the bootstrap sub-patterns of 2B of class   1C . Similarly,  

( ) ( ) ( ){ }1
2 1 3 4 1 3 4 1 3 4, , , , , , , , ,b b b b b b b b b bα α α β β β γ γ γΩ =  

( ) ( ) ( ){ }2
2 2 5 2 5 2 5, , , , ,b b b b b b bα α β β γ γΩ =  

represent the bootstrap sub-patterns of block 1B  and 2B  of class 2C  respectively. 

Let ( ) ( ){ }1
1 1 3 4 1 3 4SV , , , , ,b b b b b ba a a d d d=  be the support vectors obtained by 

applying one class of a SVM classifier to block 1B  of class 1C using any one of the 

kernels, i.e. linear, RBF or polynomial. Similarly, ( ) ( ){ }2
1 2 5 2 5SV , , ,b b b ba a e e=  be 

the support vectors obtained from block 2B  of class 1C .  In the same way, 

( ) ( ){ }1
2 1 3 4 1 3 4SV , , , , ,b b b b b bα α α β β β= and ( ) ( ){ }2

2 2 5 2 5SV , , ,b b b bα α β β=  be the 

support vectors obtained from block 1B and 2B  of class 2C respectively.  Then the 
synthetic training set for class 1C  is generated by performing the Cartesian product 

1 2
1 1 1SV SV′Ω = ×  and rearranging the features in the original order of features. The 

new simulated set of the training patterns for class 1C  is  

( ) ( ){
( ) ( )}
1 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

, , , , , , , , , ,

, , , , , , , , , .

b b b b b b b b b b

b b b b b b b b b b

a a a a a a e a a e

d a d d a d e d d e

′Ω =
 

Similarly, the new training set generated for class 2C is 1 2
2 2 2SV SV′Ω = × , i.e., 

( ) ( ){
( ) ( )}

2 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

, , , , , , , , , ,

, , , , , , , , , .

b b b b b b b b b b

b b b b b b b b b b

α α α α α α β α α β

β α β β α β β β β β

′Ω =
 

The synthetic training set generated is given by 
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( ) ( ){
( ) ( ) ( )

( ) ( ) ( )}

1 2 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

, , , , , , , , , ,

, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , .

b b b b b b b b b b

b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b

a a a a a a e a a e

d a d d a d e d d e α α α α α

α β α α β β α β β α β β β β β

′ ′ ′Ω = Ω ∪Ω =

 

The synthetic training set Ω´ having eight patterns is larger in size than the 
original training set Ω, having six patterns. In this way the training set size can be 
increased by multiple kernel learning. 

3. Proposed system 

 
Fig. 1. Generating synthetic patterns using multiple kernel learning. The proposed system 

The proposed system is shown in Fig. 1. The features of the class wise 
partitions of the training set are separated into p blocks where p =2, 3, and 4, using 
the correlation based feature separation method explained in Section 3. The class 
wise data is represented as Ω1, Ω2, …, Ωi corresponding to class labels C1, C2, …, 
Ci respectively and each of them is partitioned into p blocks denoted by 

1 2 1 2 1 2
1 1 1 2 2 2, ,..., , , , ..., , ..., , , ...,p p p

i i iΩ Ω Ω Ω Ω Ω Ω Ω Ω  respectively. Bootstrapping, 
suggested by H a m a m o t o  et al. [1] is applied on each of these blocks. Thus  
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each of these blocks now contains bootstrapped data given by 
1 2 1 2 1 2

1 1 1 2 2 2, , ..., , , , ..., , ..., , , ...,b b bp b b bp b b bp
i i iΩ Ω Ω Ω Ω Ω Ω Ω Ω . Support vectors are 

generated from each of these blocks with one class of SVM classifier 
1 2 1 2 1 2
1 1 1 2 2 2SV , SV ,..., SV , SV , SV ,..., SV ,..., SV , SV ,..., SVp p p

i i i . Thus, a single 
kernel, i.e., either linear, RBF or polynomial kernel is applied commonly on each  
of these blocks. Then the Cartesian products of the support vectors of all the  
class wise blocks generate a new data set for each class, i.e.,  

{ }1 2
1 1 1 1SV SV ... SV ,p′Ω = × × ×  { }1 2

2 2 2 2SV SV ... SV ,...,p′Ω = × × ×  

{ }1 2SV SV ... SV p
i i i i′Ω = × × × . 

The class wise simulated patterns are then used to generate a larger training set 
represented by 1 2 ... i′ ′ ′ ′Ω = Ω ∪Ω ∪ ∪Ω .  This synthetic training set is used for the 
final SVM classification with the same kernel function that is used on each of the 
blocks. Thus a novel multiple kernel learning approach is applied to generate 
synthetic patterns. 

4. Feature separation method 
In this paper we used the partitioning method suggested by V i s w a n a t h  et al. 
[10] for efficient nearest neighbour classification, in order to separate the features of 
each class of the training data into uncorrelated blocks.  This method is based on 
pair-wise correlation between the features and therefore is suitable for data, having 
numerical feature values only.  The objective of this method is to find blocks of 
features in such a way that the average correlation between the features within a 
block is high and that between features of different blocks is low. Since this 
objective is a computationally demanding one, a greedy method which can find 
only a locally optimal partition was suggested by V i s w a n a t h  et al. [10]. 

5. Bootstrapping 
The bootstrapping method that we employed in this paper is different from the 
ordinary bootstrapping in the manner in which the bootstrap samples are generated. 
The ordinary bootstrapping is a method of resampling the given data and has been a 
successful method for error estimation [15-18]. The bootstrapping method that 
creates (not selects) new training samples was proposed by H a m a m o t o  et al. [1] 
that acts as a smoother of the distribution of the training samples and was 
successfully applied in the design of 1NN classifier, particularly in high 
dimensional spaces. Further, H a m a m o t o  et al. [1]  generated bootstrap samples 
by combining the training data locally and illustrated that the NNC (Nearest 
Neighbour Classifier) based on bootstrap patterns performed better than that of      
K-NNC (K-nearest-neighbor classifier) based on the original data [18].   

In the present work, we applied the bootstrapping method suggested by 
H a m a m o t o  et al. [1] to each block as shown by the following algorithm. 
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Algorithm 1. Generating bootstrapped sub-patterns  
Input: { }1 2, , ...,j j jj

w w w NwX X XX = , the original set of sub-patterns from block 

jB  of class wC .  

Step 1.  Select a block jB  of class wC  and initialize, where φ=X bj
w , where 

X bj
w  represents the set of bootstrapped sub-patterns of block jB  of class wC ..  

Step 2.  Set m =1. 
Step 3.  Select m-th sub-pattern j

mwX  from block jB  of class wC  .  

Step 4.  Find the r nearest neighbour sub-patterns 1 2, , ...,j j j
w w rwX X X  of j

mwX  
in block jB  of class wC  using Euclidean distance. 

Step 5.  Determine m-th bootstrapped sub-pattern ∑=
=

r

h

j
hw

bj
mw X

r
X

1

1
. 

Step 6. { }bj
mw

bj
w

bj
w XXX ∪= . 

Step 7.  Repeat Steps 3-5 for 2, ...,m N= . 
Step 8. Output the synthetic set { }1 2, , ...,bj bj bjbp

w w w NwX X XX =  of bootstrapped 

sub-patterns generated for block jB  of class wC . 
Step 9.  Repeat Steps 1-7 for 1, 2, ...,j p= . 
Step 10.  Repeat Steps 1-8 for 1, 2, ...,w i= . 
In Step 3 the sub-patterns from block jB  are selected so that no sub-pattern is 

chosen more than once. Thus a synthetic set of bootstrap sub-patterns is generated 
for each of the blocks belonging to every class.  The bootstrapping technique has 
the ability to remove outliers which therefore reduces the variability in the data, as 
well as removes noise. This in turn increases the distance between two close 
patterns belonging to different classes and thereby improves the generalization 
performance of the classifier [18]. 

6. Experimental study 

The proposed system is implemented with seven of the benchmark datasets viz., 
Thyroid, Ionosphere, Glass, Wine, Breast Cancer and Sonar obtained from UCI 
machine learning repository [19]. OCR data set was also used by V i s w a n a t h   
et al. [10]. The characteristics of these datasets, i.e., the number of features, the 
number of the training patterns, the number of the testing patterns and the number 
of the classes are shown in the Table 2. (It is noted that in Glass data there is no 
data corresponding to class label 4). For Thyroid and OCR datasets the training and 
testing set are separately available. For all the other datasets, approximately the first 
60% of the data of each class is used for training and the remaining data of each 
class is utilized for testing.  The features of all these datasets have numerical values. 
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Except OCR, the features of Thyroid, Glass, Wine, Breast Cancer and Sonar 
datasets are normalized to zero mean and unit variance.  

Table 2. Characteristics of datasets used 

Data Set Number of 
features 

Number of 
training patterns 

Number of 
testing patterns 

Number 
of classes 

Thyroid 21 3772 3428 3 
Ionosphere 34 216 135 2 

Wine 13 108 70 3 
Glass 9 130 84 6 

Breast Cancer 30 342 227 2 
Sonar 60 125 83 2 
OCR 192 300 3333 10 

The experiments are performed as follows: 
Scheme 1. Generating synthetic patterns based on the proposed system using a 

linear kernel and performing SVM classification using the linear kernel finally. 
Scheme 2. Synthesizing new patterns applying the proposed approach using 

RBF kernel and performing SVM classification using RBF kernel. 
Scheme 3. Producing artificial patterns using the proposed system with a 

polynomial kernel and finally performing SVM classification using the polynomial 
kernel. 

In all these schemes, initially each dataset is partitioned classwise.  The 
classwise partition of each dataset is then divided into p  blocks using the 
algorithm for the correlation based feature partitioning discussed in Section 3.  Each 
block consists of features that are better correlated with each other than the features 
in different blocks. Each block of data is bootstrapped.  xperiments are performed 
varying the number of blocks, i.e., p =2, 3 and 4 only because earlier studies [10] 
showed that increasing the number of blocks does not improve the performance. 
The experiments are implemented in MATLAB, and LIBSVM is used both as one 
class of a SVM classifier on the blocks of features and also for the final SVM 
classification using a synthetic training set [20]. 

The same C parameter value was used for SVM classification on the original 
data and for the final SVM classification using a synthetic training set in case of a 
linear, RBF and polynomial kernel respectively. This value of C was chosen to be a 
default value (i.e., C=1) for all the data sets using a linear kernel. In case of RBF 
and Polynomial for all the data sets except OCR, this value of C was chosen to be a 
default value (and the other parameters, such as γ in case of RBF and degree in 
case of a polynomial were also chosen to have default values of LIBSVM tool as 
shown in Table 15 Appendix). For OCR data C = 0.5 in case of RBF and  
C = 0.03125 in case of a polynomial kernel are used. These values are respectively 
determined by varying C, and noting the CA% (classification accuracy) of the 
proposed system, as well as CA% of the original data and fixing C to the value 
where the CA% of the proposed system was higher than the CA% of the original 
data. 
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In Scheme 1, varying ν  parameter of one class of SVM classifier (with other 
parameters of one class of a linear SVM classifier being default values, as given by 
LIBSVM as shown in Table 15 in Appendix) and the number of nearest neighbours 
(k)  for bootstrapping, appropriate number of support vectors are selected from each 
block for each class of data and then Cartesian product is performed such that the 
new training data is generated for that class. For the value of C (used on the original 
data and for the final SVM classification), the cbν  parameter values for each block 
b of each class c is fixed at those values for which the CA% of the proposed method 
is higher than the CA% of the original data. These values are shown in Tables 6-8 
of the Appendix respectively. The number of the nearest neighbours rm for which 
the maximum CA% is obtained, using the method proposed, is also noted and 
shown in Tables 3-5 respectively.  

Table 3. CA% obtained by applying proposed system with a linear kernel 

Data Set On original 
data CA% 

On applying proposed system 
Number of 

partitions (p) rm CA% 

Thyroid 93.0572 
2 21 97.287 
3 37 97.4037 
4 53 97.3454 

Ionosphere 91.1111 
2 66 91.8519 
3 27 91.8519 
4 44 91.8519 

Wine 97.2222 
2 7 100 
3 11 98.611 
4 12 98.611 

Glass 57.1429 
2 5 72.619 
3 4 72.619 
4 5 71.4286 

Breast Cancer 
 

96.4758 
 

2 54 98.2379 
3 64 97.7974 
4 84 97.3568 

Sonar 62.6506 
2 4 72.2892 
3 9 74.6988 
4 30 81.9277 

OCR 81.4881 
2 6 82.6283 
3 6 82.6883 
4 28 70.4770 

The same procedure is followed for RBF and polynomial kernels in Scheme 2 
and Scheme 3 respectively. For Thyroid data using RBF, γ  parameter values, for  
p = 2 and p = 3 blocks  (for each block using one class of a SVM classifier) chosen 
different from the default values, as shown in Tables 9-10 whereas for other data 
sets the γ  parameter (for each block using one class of a SVM classifier) were 
chosen to have default values (as given in LIBSVM tool). For a polynomial kernel, 
except the nu (vcp) parameter, all others were chosen to have default values of 
LIBSVM tool in case of one class of a SVM classifier as shown in Tables 12-15 in 
the Appendix. The experimental results of Scheme 2 and Scheme 3 are shown in 
Tables 4-5 respectively. 
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Table 4. CA% obtained by applying the proposed system with RBF kernel 

Data set On original 
data CA% 

On applying proposed system 
Number of 

partitions (p) rm CA% 

Thyroid 94.895 
2 6 97.4329 
3 34 96.0035 
4 50 95.4492 

Ionosphere 93.3333 
2 12 96.2963 
3 2 94.8148 
4 2 94.0741 

Wine 98.6111 
2 4 100 
3 24 100 
4 12 100 

Glass 66.6667 
2 3 78.5714 
3 3 72.619 
4 3 72.619 

Breast Cancer 96.4758 
2 4 98.6784 
3 13 97.7974 
4 34 96.9163 

Sonar 49.3976 
2 24 74.6988 
3 3 74.6988 
4 37 84.3373 

OCR(C=0.5) 76.9277 
2 2 84.0684 
3 2 84.1884 
4 2 75.6076 

Table 5. CA% obtained by applying the proposed system with a polynomial kernel 

Data set On original 
data CA% 

On applying proposed system 
Number of 

partitions (p) rm CA% 

Thyroid 93.7573 
2 78 93.9615 
3 50 94.049 
4 63 93.9032 

Ionosphere 64.4444 
2 5 91.8519 
3 15 91.1111 
4 2 77.037 

Wine 91.6667 
2 6 95.8333 
3 4 98.6111 
4 9 94.4444 

Glass 51.1905 
2 4 72.6190 
3 2 71.4286 
4 5 71.4286 

Breast Cancer 91.63 
2 54 98.2379 
3 30 97.3568 
4 40 96.0352 

Sonar 46.988 
2 32 75.9036 
3 7 75.9036 
4 16 80.7229 

OCR 77.0777 
2 2 79.8080 
3 2 79.5380 
4 26 69.0669 
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From Tables 3-5 it can be summarized that RBF kernel showed better 
performance for all the datasets. Generally, the linear kernel is preferred as it 
performs well when the number of features is large when compared to the size of 
the data, but the experimental results showed that RBF kernel showed good 
performance on using the proposed system. This may be because of the sufficiently 
available training patterns. The disadvantage of a linear kernel is that it performs 
poorly in case of noisy data. In the proposed system the noise is removed by 
bootstrapping and hence, it showed better performance using the proposed system 
as shown in Table 3. Hard margin classifier is easily affected by noise. Although 
soft margin SVM classifiers were introduced to overcome this difficulty, the set of 
support vectors may have noisy patterns. The preprocessing that is applied in the 
proposed method, i.e bootstrapping, reduces the impact of such noisy patterns. 

For Breast Cancer data using all three kernels the CA% decreased with 
increasing the number of blocks. This may be due to overlearning, as the size of the 
training data increases with increase in the number of blocks. An almost similar 
observation could be made on Glass data using all three kernels, Wine, Ionosphere 
& OCR data using a polynomial kernel, Thyroid &Ionosphere data using RBF 
kernel. For Thyroid data using a linear kernel, OCR data using RBF and linear 
kernels, the maximum CA% using the proposed system, it was obtained for p =3 
blocks. This shows that if insufficient training data (for p = 2) is used then the 
output will not be a true representative of the input and if the size of the training 
data is more (for p = 4) then it causes overfitting. For Sonar data using all three 
kernels the highest CA% is obtained for p = 4 blocks. This may be due to the 
requirement for a larger number of training patterns. 

Figs 2-4 have been plotted to study the effect of bootstrapping for different 
number of blocks used for pattern synthesis, on the classification performance of 
the SVM classifier using linear, RBF and polynomial kernels respectively. Fig. 2 
shows the influence of the number of the nearest neighbours ( r ) chosen for 
bootstrapping, on CA% of a SVM classifier using the linear kernel for Thyroid data, 
for p = 2, 3 and 4.  Similarly, Figs 3 and 4 display the variation in CA% of the 
SVM classifier with a varying number of the nearest neighbors used for 
bootstrapping, for p =2, 3 and 4, using  RBF and a polynomial kernel for the 
Thyroid data respectively. 
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Fig. 2. CA% vs r using a linear kernel for Thyroid data 
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Fig. 3. CA% vs r  using RBF kernel for Thyroid data 
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Fig. 4. CA% vs r  using a polynomial kernel for Thyroid data 

From Figs 2-4 it is clear that as the number of the nearest neighbours ( r ) 
increases, the CA% first increases, reaches maximum at mr  and then decreases. 
This is explained by the different number of blocks ( p =2, 3 and 4) using a linear, 
RBF and polynomial kernels respectively. A similar observation was made even in 
case of other data sets. This is because if the number of the nearest neighbors is 
less, then smoothing is less, causing overfitting and increasing the number of the 
nearest neighbors causes excessive smoothing leading to underfitting of the data 
(see [21, 22]).  

7. Conclusions 

In the present work a novel method to synthesize training patterns is proposed based 
on multiple kernel learning approach to subdue the effects of high dimensionality 
on classifying small samples of data with a SVM classifier. This method increases 
the size of the training samples to vanquish the effect of ‘Curse of dimensionality’. 
Experimental studies are performed on seven standard datasets viz., Thyroid, 
Ionosphere, Glass, Wine, Breast Cancer, Sonar and OCR data, using linear, RBF 
and polynomial kernels separately. The main findings are summarized below: 

• Experimental results showed that the SVM classifier, trained using 
synthetic patterns outperformed the conventional SVM classifier trained on original 
data and hence it can be concluded that the synthetic pattern generation improves 
the generalization performance of the SVM classifier. 

• Experimental observations demonstrated that synthetic pattern generation 
reduced the effect of the curse of dimensionality that occurs when the 
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dimensionality is larger than the size of the data and hence, the CA% obtained by a 
SVM classifier using the proposed system was better than the CA% obtained by the 
conventional SVM classifier. 

• The size of the training set can be increased by increasing the number of 
blocks of features, but it is shown experimentally that it may not increase the 
performance of the classifier always, which may be due to the increase in the 
deviation from the original training set.  

• The proposed method is suitable for the datasets having high 
dimensionality, but not very high dimensionality, as the computational time and the 
memory resources for finding the correlation (used for partitioning the features) 
between the features of the data increases with dimensionality.  

• The experimental results were in good agreement with the results reported 
by V i s w a n a t h  et al. [10, 11] on pattern synthesis for nearest neighbour 
classification. 

• The figures showed the variation of CA% with variation in the number of 
the nearest neighbors and demonstrated the profound effect of smoothing of the 
training patterns on the performance of the SVM classifier. These results were in 
good agreement with the report made by H a m a m o t o  et al. [1], that 
bootstrapping technique removes noise by smoothing training patterns, particularly 
in high dimensional spaces. 

Synthetic pattern generation suggested in this paper is helpful, because it is 
costly to get large real world patterns. Our future work will be directed to overcome 
the limitation of the proposed method (that is increase in the training time of the 
SVM classifier due to increase in the size of the training set) by using greedy 
methods, instead of Cartesian product, to generate synthetic patterns . 
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Appendix 

Table 6. Parameter values chosen for one class of a SVM classifier in case of 
two partitions using a linear kernel 

Dataset Parameter values 
Thyroid v11=0.12, v12=0.1, v21=0.028, v22=0.07, v31=0.050, v32=0.4 
Ionosphere v11=0.08, v12=0.003, v21=0.3, v22=0.4 
Breast cancer v11=0.3, v12=0.3, v21=0.4, v22=0.4 
Sonar v11=0.3, v12=0.7, v21=0.009, v22=0.1 
Wine v11=0.2, v12=0.1, v21=0.2, v22=0.2, v31=0.1, v32=0.4 

Glass v11=0.2, v12=0.2, v21=0.1, v22=0.4, v31=0.1, v32=0.3, v51=0.2, 
v52=0.3, v61=0.3, v62=0.5, v71=0.2, v72=0.2 

OCR v11= v21= v31= v41= v51= v61= v71= v81= v91=0.9, 
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.9 
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Table 7. Parameter values chosen for one class of a SVM classifier in case of  three partitions 
using a linear kernel 

Dataset Parameter values 

Thyroid v11=0.1, v12=0.1, v13=0.1, v21=0.06, v22=0.06, v23=0.06, 
v31=0.003, v32=5×10–6, v33=0.002 

Ionosphere v11=0.1, v12=0.01, v13=0.1, v21=0.01, v22=0.2, v23=0.2 
Breast cancer v11=0.3, v12=0.1, v13=0.001, v21=0.04, v22=0.01, v23=0.01 
Sonar v11=1×10–5, v12=1.5×10–5, v13=0.01, v21=1.5×10–5, v22=1×10–5, v23=1.4×10–5 

Wine v11=0.1, v12=0.1, v13=0.1, v21=0.002, v22=0.06, v23=0.06, 
v31=0.1, v32=0.1, v33=0.4 

Glass 
v11=0.1, v12=0.15, v13=0.15, v21=0.3, v22=0.1, v23=0.08, 

v31=0.1, v32=0.02, v33=0.01, v51=0.01, v52=0.02, v53=0.5, 
v61=0.01, v62=0.35, v63=0.1, v71=0.2, v72=0.01, v73=0.01 

OCR 
v11= v21= v31= v41= v51= v61= v71= v81= v91=0.4, 
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.6, 
v13= v23= v33= v43= v53= v63= v73= v83= v93=0.9 

 
Table 8.  Parameter values chosen for one class of a SVM classifier in case of four partitions using  a 
linear kernel 

Dataset Parameter values 

Thyroid v11=0.05, v12=0.05, v13=0.05, v14=0.05, v21=0.03, v22=0.02, v23=0.02, v24=0.02, 
v31=9×10–6, v32=9×10–6, v33=9×10–6, v34=9×10–6 

Ionosphere v11=0.001, v12=0.01, v13=0.01, v14=0.00003,  
v21=0.01, v22=0.01, v23=0.01, v24=0.01 

Breast 
cancer 

v11=0.2, v12=0.01, v13=1×10–5, v14=0.001,  
v21=3×10–4, v22=0.001, v23=0.01, v24=0.01 

Sonar v11=1×10–4, v12=1×10–5, v13=1×10–5, v14=0.001,  
v21=3×10–6, v22=1×10–5, v23=0.004, v24=0.004 

Wine 
v11=0.1, v12=0.2, v13=0.01, v14=0.01, 

v21=0.002, v22=0.002, v23=0.001, v24=0.0001, 
v31=0.1, v32=0.01, v33=0.01, v34=0.01 

Glass 
v11=0.001, v12=0.003, v13=0.1, v14=0.1, v21=0.4, v22=0.1, v23=0.01, v24=0.001, 

v31=0.01, v32=0.001, v33=0.001, v34=0.0001, v51=0.001, v52=0.01, v53=0.01, v54=0.01, 
v61=0.01, v62=0.01, v63=0.3, v64=0.3, v71=0.02, v72=0.02, v73=0.01, v74=0.01 

OCR 

v11= v21= v31= v41= v51= v61= v71= v81= v91=0.25, 
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.125, 
v13= v23= v33= v43= v53= v63= v73= v83= v93=0.125, 

v14= v24= v34= v44= v54= v64= v74= v84= v94=0.5 
 

Table 9.  Parameter values chosen for one class of a SVM classifier in case of two 
partitions using RBF kernel 

Dataset Parameter values 

Thyroid v11=0.01, v12=0.01, v21=0.01, v22=0.03, v31=0.0001, v32=0.0009, 
γ11=0.9, γ12=0.9, γ21=0.4, γ22=0.4, γ31=0.9, γ32=0.9 

Ionosphere v11=0.1, v12=0.1, v21=0.3, v22=0.7 
Breast cancer v11=0.4, v12=0.1, v21=0.2, v22=0.2 
Sonar v11=0.1, v12=0.2, v21=0.1, v22=0.3 
Wine v11=0.1, v12=0.3, v21=0.1, v22=0.2, v31=0.02, v32=0.05 

Glass v11=0.2, v12=0.2, v21=0.3, v22=0, V31=0.1, v32=0.1, 
v51=0.2, v52=0.2, v61=0.3, v62=0.3, v71=0.2, v72=0.1 

OCR v11= v21= v31= v41= v51= v61= v71= v81= v91=0.9, 
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.99 

 



 93

Table 10.  Parameter values chosen for one class of a SVM classifier in case of  three partitions 
using RBF kernel 

Dataset Parameter values 

Thyroid 
v11=0.0001, v12=0.0003, v13=0.0004, v21=1.5×10–4,  

v22=0.0001, v23=0.03, v31=1×10–5, v32=1.5×10–5, v33=5×10–5,  
γ11=0.9, γ12=0.9, γ13=0.9, γ21=0.9, γ22=0.9, γ23=0.9, γ31=0.9, γ32=0.9, γ33=0.9 

Ionosphere v11=0.01, v12=0.2, v13=0.2, v21= v22= v23=0.1 
Breast cancer v11=3×10–4, v12=0.2, v13=0.1, v21=0.002, v22=0.0015, v23=0.0015 
Sonar v11=0.7, v12=1.5×10–4, v13= 0.9, v21=0.004, v22=0.001, v23 =0.9 

Wine v11=0.01, v12=0.01, v13=0.001, v21=1×10–4, v22= 0.001, v23=0.001,  
v31=0.001, v32=0.001, v33=0.00001 

Glass 
v11=0.35, v12=0.13, v13=0.11, v21=0.2, v22=0.02, v23=0.0008, 
v31=0.01, v32=0.01, v33=0.01, v51=0.03, v52=0.02, v53=0.001, 

v61=0.03, v62=0.03, v63=0.03, v71= v72= v73=0.001 

OCR 
v11= v21= v31= v41= v51= v61= v71= v81= v91=0.4, 

v12== v22= v32= v42= v52= v62= v72= v82= v92=0.7, 
v13= v23= v33= v43= v53= v63= v73= v83= v93=0.9 

Table 11. Parameter values chosen for one class SVM classifier in case of four partitions 
using RBF Kernel 

Dataset Parameter values 

Thyroid 
v11=1.5×10–5, v12=1.5×10–4, v13=2×10–4, v14=0.002,  

v21=3×10–5, v22=0.025, v23=2×10–4, v24=0.001,  
v31=1×10–4, v32=5×10–6, v33=3×10–6, v34=1×10–4 

Ionosphere v11=0.001, v12=0.01, v13=1×10–5, v14=0.0002,  
v21=0.004, v22=0.001, v23=0.001, v24=0.0001 

Breast 
cancer 

v11=1×10–4, v12=1×10–5, v13=1×10–4, v14=1×10–4,  
v21=3×10–5, v22=1×10–4, v23=1×10–5, v24=1×10–5 

Sonar v11=0.001, v12=0.001, v13=0.016, v14=0.38,  
v21=4×10–6, v22=0.015, v23=0.1, v24=0.85 

Wine v11=0.0001, v12=0.0001, v13=0.0001, v14=0.0001, v21=0.001, v22=0.001,  
v23=0.00001, v24=0.00001, v31=0.001, v32=0.001, v33=0.0001, v34=0.0001 

Glass 

v11=0.01, v12=0.0001, v13=0.0001, v14=0.0001,  
v21=0.0001, v22=0.0001, v23=0.001, v24=0.01, 

v31=0.01, v32=0.001, v33=0.001, v34=0.0001, v51=0.001, v52=0.01,  
v53=0.01, v54=0.01,v61=0.001, v62=0.001, v63=0.001, v64=0.001,  

v71=0.001, v72=0.001, v73=0.001, v74=0.001 

OCR 

v11= v21= v31= v41= v51= v61= v71= v81= v91=2×10–10, 
v12= v22= v32= v42= v52= v62= v72= v82= v92=2×10–10, 
v13= v23= v33= v43= v53= v63= v73= v83= v93=2×10–10, 
v14= v24= v34= v44= v54= v64= v74= v84= v94=2×10–10 

Table 12. Parameter values chosen for one class SVM classifier in case of  
two partitions using Polynomial Kernel 

Dataset Parameter values 
Thyroid v11=0.1, v12=0.08, v21=0.03, v22=0.03, v31=0.028, v32=0.02 
Ionosphere v11=0.4, v12=0.1, v21=0.1, v22=0.2 
Breast cancer v11=0.3, v12=0.2, v21=0.2, v22=0.4 
Sonar v11=0.3, v12=0.45, v21=0.5, v22=0.5 
Wine v11=0.2, v12=0.09, v21=0.35, v22=0.05, v31=0.5, v32=0.03 

Glass v11=0.2, v12=0.2, v21=0.3, v22=0.001, v31=0.01, v32=0.01, 
v51=0.3, v52=0.2, v61=0.3, v62=0.3, v71=0.2, v72=0.2 

OCR v11= v21= v31= v41= v51= v61= v71= v81= v91=0.9, 
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.99 
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Table 13. Parameter values chosen for one class SVM classifier in case of three 
partitions using Polynomial Kernel 

Dataset Parameter values 

Thyroid v11=0.2, v12=0.04, v13=0.0005, v21=0.03, v22=0.008, v23=0.0004, 
v31=1×10–5, v32=2×10–5, v33=2×10–5 

Ionosphere v11=0.01, v12=0.13, v13=0.2, v21=0.1, v22=0.1, v23=0.15 (neg) 
Breast cancer v11=0.2, v12=0.02, v13=0.04, v21=0.3, v22=0.02, v23=0.01 (pos) 
Sonar v11=0.04, v12=0.1, v13= 0.1, v21=0.003, v22=0.01, v23 =0.01(pos) 

Wine v11= 0.15, v12=0.1, v13=0.1, v21=0.04,  
v22= 0.01, v23=0.001, v31=0.1, v32=0.1, v33=0.2 

Glass 
v11=0.55, v12=0.01, v13=0.01, v21=0.55, v22=0.022, v23=0.01, 
v31=0.1, v32=0.001, v33=0.001, v51=0.1, v52=0.2, v53=0.001, 

v61=0.4, v62=0.3, v63=0.01, v71=0.3, v72=0.1, v73=0.1 

OCR 
v11= v21= v31= v41= v51= v61= v71= v81= v91=0.6, 
v12= v22= v32= v42= v52= v62= v72= v82= v92=0.74, 
v13= v23= v33= v43= v53= v63= v73= v83= v93=0.9 

 
Table 14. Parameter values chosen for one class SVM classifier in case of four partitions using 
Polynomial Kernel 

Dataset Parameter values 

Thyroid 
v11=0.002, v12=0.018, v13=0.011, v14=0.01, 
v21=0.03, v22=0.002, v23=0.002, v24=0.001, 

v31=5×10–4, v32=1.5×10–5, v33=1.5×10–5, v34=1×10–5 

Ionosphere v11=0.01, v12=0.035, v13=0.01, v14=0.05, 
v21=0.03, v22=0.03, v23=0.03, v24=0.03 

Breast cancer v11=0.12, v12=0.012, v13=0.014, v14=0.014, 
v21=0.032, v22=0.025, v23=0.025, v24=0.016 

Sonar v11=0.02, v12=0.01, v13=0.02, v14=0.1, 
v21=1×10–5, v22=0.001, v23=0.015, v24=0.52 

Wine 
v11=0.1, v12=0.1, v13=0.1, v14=0.1, 

v21=0.01, v22=0.01, v23=0.1, v24=0.2, 
v31=0.1, v32=0.1, v33=0.1, v34=0.3 

Glass 
v11=0.3, v12=0.001, v13=0.001, v14=0.001, v21=0.23, v22=0.02, v23=0.02, v24=0.02, 

v31=0.1, v32=0.1, v33=0.01, v34=0.02, v51=0.1, v52=0.1, v53=0.01, v54=0.02, 
v61=0.01, v62=0.01, v63=0.01, v64=0.2, v71=0.001, v72=0.001, v73=0.001, v74=0.001 

OCR 

v11= v21= v31= v41= v51= v61= v71= v81= v91= –4, 
v12= v22= v32= v42= v52= v62= v72= v82= v92= –4, 
v13= v23= v33= v43= v53= v63= v73= v83= v93= –3, 
v14= v24= v34= v44= v54= v64= v74= v84= v94= –2 

 
Table 15. Default parameter values chosen by LIBSVM 

Parameter Default value 
C 1 
γ  1/(number of features) 

Degree (d) 
(for polynomial kernel only) 3 

r coef  0 
(for polynomial kernel only) 0 

 


