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Abstract: Legged robots are uniquely privileged over their wheeled counterparts in 
their potential to access rugged terrain. However, designing walking gaits by hand 
for legged robots is a difficult and time-consuming process, so we seek algorithms 
for learning such gaits to automatically using real world experimentation. 
Numerous previous studies have examined a variety of algorithms for learning 
gaits, using an assortment of different robots.  It is often difficult to compare the 
algorithmic results from one study to the next, because the conditions and robots 
used vary. With this in mind, we have used an open-source, 3D printed quadruped 
robot called QuadraTot, so the results may be verified, and hopefully improved 
upon, by any group so desiring. Because many robots do not have accurate 
simulators, we test gait-learning algorithms entirely on the physical robot. Previous 
studies using the QuadraTot have compared parameterized splines, the HyperNEAT 
generative encoding and genetic algorithm. Among these, the research on the 
genetic algorithm was conducted by (G l e t t e et al., 2012) in a simulator and tested 
on a real robot. Here we compare these results to an algorithm called Policy 
learning by Weighting Exploration with the Returns, or RL PoWER. We report that 
this algorithm has learned the fastest gait through only physical experiments yet 
reported in the literature, 16.3% faster than reported for HyperNEAT. In addition, 
the learned gaits are less taxing on the robot and more repeatable than previous 
record-breaking gaits. 

Keywords: Evolvable splines, parameterized gaits, HyperNEAT, machine learning, 
quadruped. 
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1. Introduction 

Various learning algorithms have been proved to be effective for legged robots.  Al- 
gorithms, such as HyperNEAT (Y o s i n s k i  et  al. [12]), Genetic Algorithms  
(C h e r n o v a  and V e l o s o [10]) and others (H o r n b y  et al. [7]; Z y k o v et 
al. [13]; T e´ l l e z  et al. [2]; V a l s a l a m  and  M i i k k u l a i n e n [11]) have 
been tested to be effective for automatic learning gaits for robots. Despite 
competitive performance, a major task is usually hidden in the published results: 
tuning the parameters for these evolutionary algorithms (K o r m u s h e v  et al. 
[9]).  Here we present results using a different way of learning gaits:  a 
Reinforcement Learning algorithm called Policy learning by Weighting Exploration 
with the Returns, or RL PoWER, proposed by K o b e r  and  P e t e r s [8]. In our 
experiment, the main focus of the research is on the applicability of RL PoWER to 
quadruped robot gait learning. Another motivation is to compare the state-of-the-art 
neural network algorithm, HyperNEAT, with our proposed method in quadruped 
robot gait learning. 

 
Fig. 1. The open source, 3D printed QuadraTot robot used in this research. The white 

printed booties are new additions to prevent sliding on surfaces and to minimize 
measurement error 

2. Problem definition 
As in Y o s i n s k i et al. [12], we define the gait learning problem to be the search 
for a gait that maximizes some specific metric. Mathematically, we define a gait as 
a function that specifies a vector of commanded motor positions for a robot over 
time. Gaits without a feedback − also called open-loop gaits, can be defined as 

࢞ ൌ ݃ሺݐሻ 
According to this definition, open-loop gaits are deterministic. One particular 

gait should behave exactly the same when it is run from a trial to a trial. However, 
the actual robot motion and fitness measured will vary due to the errors and 
uncertainty of the real world physics. In our trials, the gaits generated were sent to the 
robot and executed in an open loop manner. We will measure and analyze the 
performance between HyperNEAT and RL PoWER, the latter of which will be the 
focus of discussion in this paper. The metric used for the fitness in this paper will be 
described later.  
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3. Related work 

Many attempts have been made on robot gaits learning using machine learning 
algorithms, producing competitive results (C h e r n o v a  and  V e l o s o [2]; 
H o r n b y  et al. [7]; Z y k o v  et  al. [13]; C l u n e  et  al. [3, 4]; T e l l e z  et al. [10]; 
V a l s a l a m  and  M i i k k u l a i n e n [11]). In fact, Jason et al. tested and 
compared six different algorithms for quadruped robot gait learning in their studies. 
HyperNEAT, a generative encoding neural network algorithm, achieved the best 
performance among all six methods. A following research done by Kyrre et al., 
using a tuned simulator, generated even more competitive results. In K o r m u s h e v 
et al. [9] bipedal robot energy reduction research, a reinforcement learning 
algorithm was used to optimize the performance. The results from Kormushev’s 
research showed this algorithm’s potential for walking problems. This 
reinforcement learning method still needs more tests for explorations.  

4. Methods 

4.1. Policy representation by splines 

The simplest model with back-compatibility is geometric splines. For example, for 
a given model f(x) with K knots, we can preserve the exact shape of the generated 
curve while adding extra knots to the original spline. If we put one additional knot 
between every two consecutive knots of the original spline, we end up with a 2K – 1 
knots and a spline that has the same shape as the original one. In order to do this, we 
need to define an algorithm for evolving the parameterization from K to L knots    
(L > K), which is formulated as in 1.  Without loss of generality, the policy 
parameters are normalized into [0, 1], and appropriately scaled and shifted as 
necessary upon use. 

Algorithm 1. EvolvePolicy-Spline (Pcurrent : current policy, 
L:  desired new number of parameters) 
1:  K ← Pcurrent numberOf P arameters 
2:  Xcurrent  ←[0,     1     ,     2     , ..., 1] 

                                                          K −1   K −1 
3:  Ycurrent  ← Pcurrent .parameter values 
4:  Scurrent  ← ConstructSpline(Xcurrent , Ycurrent ) 
5:  Xnew ← [0,    1     ,       2     , ..., 1] 

                                            L−1       L−1 
6:  Ynew  ← EvaluateSplineAtKnots(Scurrent , Xnew ) 
7:  Snew  ← ConstructSpline(Xnew , Ynew ) 
8:  Pnew .numberOf P arameters ← L 
9:  Pnew .parameterValues ← Snew .Ynew 

10:  return Pnew 
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4.2. Parameterized gaits by RL PoWER 

Here we used an RL approach to change the complexity of the policy representation 
dynamically while the trial is running. In earlier studies on reducing energy 
consumption for bipedal robots (K o r m u s h e v  et al. [9]), a mechanism that can 
evolve the policy parameterization was used. The method starts from a very simple 
parameterization and gradually increases its representational capability. The method 
was tested to be capable of generating an adaptive policy parameterization that can 
accommodate increasingly more complex policies. Presented in the studies of 
K o r m u s h e v et al. [9], the policy generated by this approach can reach the global 
optimum at a fast rate when applied to the energy reduction problem. Another 
property found about this method is its chance of converging to a suboptimal 
solution is reduced, because in the lower-dimensional representation this effect is 
less exhibited. 

K o b e r  and  P e t e r s [8] proposed a RL algorithm named Policy learning by 
Weighting Exploration with the Returns (RL PoWER).  

 
 
 
 

Number of knots = 4 
 
 
 
 

Number of knots = 8 
 
 
 
 

Number of knots = 16 
 
 
 
 

Number of knots = 32 

Fig. 2. An example for an evolving policy parameterization based 
on spline representation of the policy. The set of spline knots is the 

policy parameterization. The spline knots are the actual policy 
parameter values.  This original parameterization starts from 4 

knots and grows up to 32 knots 

Maximization algorithm. The reason for using this is its relatively fewer 
parameters that need tuning. We evolved the policy parameterization only on those 
past trials ranked the highest by the importance sampling technique used by the 
PoWER algorithm. The intuition behind is that highly ranked parameterizations 
have more potential to evolve even better in the future. Besides, evolving all the 
parameterizations increases the exploring space. Since our experiment is done on a 
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physical robot, exploring all the variations of every parameterization is not 
practical. Future work may incorporate simulations into the studies, as illustrated in 
B o n g a r d  et  al. [1]. 

For the experiment, we set the splines to have 3 knots for each servo, and 
there are 8 servos in total.  The servo in the hip is not used in our experiment.  
Previous work has verified that quadruped gaits perform better when they are 
coordinated (C l u n e  et  al. [4]; V a l s a l a m and M i i k k u l a i n e n  [11]). For 
each spline, we calculate its corresponding parameterized gait for one unit time cycle 
of 1.8 seconds and then apply the same pattern to every cycle throughout the 12 
seconds of one trial.  Specifically, each spline (a set of 3 knots) is interpreted to its 
corresponding servo positions as in the following equation and in Table 1. 

(1) ݃ሺݐሻ ൌ  ቄܴ  ݂ሺ1ݏ, ,2ݏ 3ሻݏ  ܥ
0  ܿܥ

. 

Table 1. The RL PoWER motion model parameters 
Parameters in θ Description Range 

f ሺs1, s2, s3ሻ Spline function [0, 1] 
R Position multiplier [256, 768] 

5. Experimental setup 

The quadruped robot used, QuadraTot, was assembled from parts purchased online 
and parts printed by the Objet Connex 500 3D Printing System. The robot actuation 
system consists of 5 AX-18+ Dynamixel servos and 4 AX-12+ Dynamixel servos: 
one inner joint with one AX-18+ servo and one outer joint with AX-12+servo in 
each of the four legs, and one AX-18+ servo at the center. To avoid the formerly 
reported problem with AX-18+ servos are used in this robot because of their 
stronger actuation power than that of AX-12+. Each servo could be set to a position 
in the range [0, 1023] by using pydynamixel library, corresponding roughly to a 
physical range  [–120◦, +120◦]. Also, to prevent collisions with the robot body, the 
control module filter out the commands to a safe range. This range was [–85◦, +60◦] 
for the inner leg servos, [–113◦, +39◦] for the outer leg servos, and [–28◦, +28◦] for 
the central hip servo. In the studies of this paper, tethered cables powered both the 
computer and the servos. It measures approximately 39.5 centimeters from leg to 
opposite leg in the crouch position shown in Fig. 1. Our performance metric was the 
displacement over the evaluation period of 12 seconds for each. Same as 
Y o s i n s k i  et al. [12], the displacement was measured using a Wii remote that was 
placed on the ceiling. Different from the original model described in Y o s i n s k i et 
al. [12], the quadruped robot was equipped with a three-infrared-LED cluster on top 
rather than just one. The reason for this setup is that when fierce gaits were 
executed, the Wii remote loses tracking of the robot position due to the limited 
visible angle of a single LED. These three LEDs were placed tightly together to act 
as one signal emitter. Each LED was tilted outwards in order to maximize the 
visible range. A separate tracking server ran on the robot PC interacted with the Wii 
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6. Results
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exploring can be easily fixed by tuning the noise parameter.  RL PoWER 
converges to optimality at a higher rate. This is due to the more heuristically 
guided reinforcement learning of RL PoWER. HyperNEAT, on the other hand, has 
a larger dimension to explore due to its generative encoding method. While the 
evolvable spline representation used by RL PoWER has lower dimensions. The 
convergence of HyperNEAT is thus slower. 
 

700 
 

600 
 

500 
 

400 
 

300 
 

200 
 

100 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 

Time (s) 

Fig. 8. A typical well performing HyperNEAT gait’s pattern of motor positions, reproduced from 
Y o s i n s k i  et al. [12] 

7. Conclusions and future work 

We have presented results from a recently introduced reinforcement-learning-based 
algorithm for optimizing a quadrupedal gait for linear speed, tested on a physical 
robot. We implemented the algorithm, Policy learning by Weighting Exploration 
with the Returns (a.k.a RL PoWER), for parameterized gaits and compared its 
results with those produced by HyperNEAT generative encoding and GA in a 
refined simulator. Each of the three methods resulted in an improvement over the 
robots’ previous naı̈ve gaits.  

Over 900 trials have been made to investigate the applicability of RL PoWER 
to quadruped robots. It is difficult to gather the enough trials that would be 
necessary to properly rank the methods. One direction for future work could be to 
obtain many more trials. But due to the physical limitations, obtaining one solution 
to this is simulation. The results from Glette et al.’s GA algorithm, as seen in  
Table 2, show how simulation can help accelerate the experimentation process. 
Because of the low cost of simulation, it would produce the necessary volume of 
trials to allow the learning methods to be effective, and the hardware trials would 
serve to continuously ground and refine the simulator. 

One hypothesis supported by this study is that for feedback-oriented tasks, 
reinforcement learning methods are more fit by the nature of gait learning tasks. 
Despite the complexities of HyperNEAT, a structurally simpler algorithm, such as RL 
PoWER delivered better performance in general. Also, evolvable spline interpolation 
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is shown to be simple and representationally powerful at the same time. Evolvable 
splines can serve as a general representation for various other learning problems. 
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