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Abstract: Multiobjective optimization based on genetic algorithms and Pareto 
based approaches in solving multiobjective optimization problems is discussed in 
the paper. A Pareto based fitness assignment is used −  non-dominated ranking and 
movement of a population towards the Pareto front in a multiobjective optimization 
problem. A MultiObjective Genetic Modified Algorithm (MOGMA) is proposed, 
which is an improvement of the existing algorithm. 
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1. Introduction 

Genetic algorithms are nowadays a very popular tool to solve optimization 
problems. They are based on the application of evolutionary principles in the search 
for an optimal solution. These algorithms have been recognized as most appropriate 
for the purposes of multiobjective optimization [3]. The genetic algorithm is 
regarded as an optimizing element in the multicriteria optimization process, 
including also a Decision Maker (DM). It represents interaction between the two, 
leading to a satisfactory solution.  

The basis of this article is multiobjective optimization using genetic 
algorithms. In multicriteria optimization problems several criteria (objective 
functions) in the feasible set of solutions (alternatives) are simultaneously 
optimized. 



 24

The multiobjective optimization problem can be described in the following 
way: 

to find a vector ( )1 2, ,..., nx x x x=  that is a solution of 

( ) ( ) ( ) ( )( )T
1 2Min , ,...,x mF x f x f x f x∈Ω =  
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where Ω  is the set of the solutions vectors, m is the number of the criteria, 
( ) , 1,2,..., ,iq x i k=  are  k inequality constraints, and    ( ) , 1, 2,..., ,jh x j l=  

are l equality constraints. 
In the general case there does not exist one solution optimizing all the criteria. 

However, there is a set of solutions in the variables space and a corresponding set of 
criteria values in the criteria space, which are characterized by the following 
feature: any improvement in the value of one criterion leads to worsening of the 
value of at least one other criterion. These sets are called Pareto optimal sets [11]. A 
Pareto optimal set of variables is also called an efficient set, and the Pareto optimal 
set of criteria – a non-dominated set. Each element of these sets could be a solution 
of the multiobjective problem. In order to choose one element, additional 
information is required, that is set by the so called Decision Maker. The information 
that the DM specifies reflects his/her global preferences with respect to the quality 
of the solution sought. 

A modification of one Pareto based algorithm – the MultiObjective Genetic 
Algorithm (MOGA) [4, 5, 15] is discussed in the paper. The idea of the modified 
algorithm is to avoid the hardly computed parameters. This is achieved by 
determining the distance of the solutions up to the ideal point of the Pareto front     
(a Pareto front means the non-dominated vectors distributed in the criteria space). 
The algorithm differs from the standard genetic algorithm only in the fitness 
assignment procedure, which is Pareto based. This means that it accomplishes non-
dominated ranking and movement of a population towards the Pareto front in the 
multiobjective optimization problem. 

2. Genetic algorithms 

The Genetic Algorithm (GA) is a stochastic method for solving optimization 
problems with or without constraints based on natural selection, i.e., the process 
underlying the biological evolution [13]. They are an attempt to model the 
Darwinian evolution in terms of a computer program [10]. Thus, for a given 
optimization problem several arbitrary sub-optimal solutions are initially built [8]. 
The most successful of them remain, and on their base new ones are constructed 
with the intention that they will prove even better. In this way the sub-optimal and 
non-promising solutions are isolated from further consideration. The analogy with 
the process of the evolution of species is obvious − in nature this model is known as 
“survival of the fittest”. 
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The Genetic Algorithms are becoming still more popular and used in variable 
fields [1, 9, 12, 14, 16]. The Genetic Algorithms may be applied to solve numerous 
optimization problems, the solution of which cannot be realized by the existing 
standard optimization methods, including those, in which the objective function is 
not continuous, non-differentiable, stochastic or definitely nonlinear. 

3. Pareto based approaches 

The idea to use a Pareto based fitness assignment was first proposed by Goldberg 
[6]. He suggested the use of non-dominated ranking and movement of a population 
towards the Pareto front in a multiobjective optimization problem.  

The basic idea is to find the set of strings in the population that are Pareto 
nondominated in relation to the rest of the population. These strings are then 
assigned the highest rank ir  and eliminated from further consideration. Another set 
of Pareto nondominated strings is defined from the remaining population and it is 
assigned the next highest rank. This process continues until the population is 
suitably ranked. Goldberg also suggested the use of some kind of a niching 
technique that keeps the GA from converging to a single point on the front. A 
niching mechanism, such as sharing [7] would enable the GA to preserve all the 
individuals around the non-dominated frontier. 

The main problem of Pareto ranking is that there is no efficient algorithm 
checking for a non-dominated solution in the set of feasible solutions [2]. The 
conventional algorithms seriously worsen their operation in cases when the 
population increases in size or in number of objectives. The use of sharing is also 
required to compute the value of shareσ  [4] which is not easy, but the 
implementation of the method relies significantly on this value. 

4. MultiObjective Genetic Modified Algorithm (MOGMA) 

This algorithm differs from the standard Genetic Algorithm in the way of 
evaluating the population. The remaining part of the algorithm is the same as in the 
classical Genetic Algorithm. 

Since MOGA gives certain inaccuracies in the fitness, it is modified with the 
purpose to improve the algorithm and to avoid the calibrated parameters, such as 

shareσ , Sh( )ijd , icη . The basis of the fitness assignment procedure of this algorithm 
is the ideal point. MOGMA fitness assignment procedure is described below in six 
steps. 

Step 1. Determine the ideal point f0 of the Pareto front with the objective 
function value, instead with the parameter values. It is denoted as ( ) 0jμ =  for all 
possible ranks 1,...,j N= . Set the solution counter 1i = . 
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Step 2. Compute the number of solutions ( iη ) that dominate the solution i . 
For solution i, the rank is equal to one plus the number of solutions iη  that 
dominate the solution, i : 1i ir = + η . In this way the non-dominated solutions are 
assigned a rank equal to 1, since no solution will dominate a non-dominated 
solution in the population. This means that in any population there must be at least 
one solution with a rank of one, and the maximal rank of every population member 
cannot exceed N (the population size).  

Step 3. If i < N, increment i by one and go to Step 1. Otherwise, go to Step 4. 
Step 4. The maximal rank *r  is identified by checking the largest ir  which has 

( ) 0irμ > . The sorting according to the rank and the averaging fitness yields the 
following problem of average fitness for each solution 1,...,i N= : 
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i i
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=

= − μ − μ −∑ . 

The average fitness of the ideal point is conditionally denoted as 0F N= . 

For each solution i  with a rank 1,ir =  the above equation assigns a fitness 

equal to ( )0.5 (1) 1 ,iF N= − μ −  which is the average value of (1)μ  successively 

integer from N  up to (1) 1.N − μ +  Set a rank counter 1r = . 
Step 5. For each solution i  with a rank r, compute the ideal fitness using 
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uses the distance up to the ideal point. In order to preserve the average fitness, the 
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Step 6. If *r r< , increment r  by one and go to Step 5. Otherwise, the 
process is complete. 

The avoiding of the parameters share ,σ Sh( ),ijd  icη  which аrе used in MOGA 

makes the algorithm simpler and easier to apply. Since the selection of shareσ  
requires additional time and is relatively difficult, its exclusion considerably 
facilitates the algorithm and reduces the time for its execution. 

The including of the ideal point on the Pareto-front guarantees that the 
solutions with smaller distance up to it will have a better ideal fitness. Because this 
distance is included in the denominator, the less it is, the greater the value of the 
fitness assessment will be. 
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5. Procedure for determining the next generation  

5.1. Transfer of the best solution 

Given that the best solution is well distinguished among the others, it would be a 
good step to directly transfer it to the new generation, thus ensuring that even in the 
worst case it will remain the best solution in the next generation as well. This means 
that the individuals of the new generation will not be worse than those in the current 
one. 

5.2. Mutation of the worst solution 

The mutation must be strategic – determined by the individual Decision Maker, the 
purpose of the mutation being the approaching of the solution towards the ideal 
point on the Pareto-optimal front. 

5.3. Participation of the DM in the selection of every generation 

The participation of the DM in the selection of each generation would provide 
him/her with better understanding of the problem and thus would facilitate his/her 
choice. It is not difficult, since there are not very complex calculations. 

5.4. Interactive procedure for determination of the next generation 

Let us compute the ideal fitness assignment in MOGMA, using a method of 
determining the next generation that could be realized in the following algorithmic 
scheme: 

Step 1. Let the ideal point be 0 0 0 0
1 2( , ,..., )pf f f f= , where 

0 min ( ),

.
j jf f x

x

=

∈Ω
 

 
Step 2. Determination by the Decision Maker of the solutions, which he/she 

wishes to be changed. 
Step 3. Depending on the determination process, the decisions are divided into 

three classes: 
• Class 

1I  – solutions which the decision maker is unwilling to change − they 

are directly transferred to the new generation; 
• Class 

2I  − solutions,  which the decision maker agrees  to be changed − 

they are subject to crossover; 
• Class I3 − solutions, which the decision maker wishes to be improved − they 

are transferred to the new generation through a controlled mutation, with the 
purpose to bring these solutions close to the ideal point of the Pareto front. 

 
 



 28

5.5. The stop criteria 

There must be defined criteria for algorithm end in order to prevent its cycling. 
They may be the following: 

• when a solution is reached that satisfies the preferences of the DM; 
in the case with the method determining the next generation, the class must contain 
all the solutions; 

• the presence of  high percentage of the states of the current population, 
identical or similar to each other; 

• if the fitness assignment values of the best solutions of the previous few 
populations are close or coincide; 

• if for several successive performances of MOGMA procedure no better 
solution can be found. 

6. Test problems 

Test problems [3] used to compare the performance of MOGA with MOGMA are 
described. The performance metrics are illustrated and the results are discussed. The 
population size was set to 20 in all the problems. The encoding in value is used and 
the proposed interactive method is applied to determine the next generation.  

Figs 1-10 show the 200-th final generation and the Pareto-optimal front. These 
figures demonstrate the ability of MOGMA and MOGA to approach the true 
Pareto-front and to find diverse solutions in the front.  
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      Fig. 1. MOGA                 Fig. 2. MOGMA 
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Fig. 1 shows distinctly one point, which is more distant from the Pareto front, 
while in Fig. 2 this point belongs to the Pareto front. It can be seen that MOGMA 
manages to preserve the diversity of the solutions, like MOGA, which makes it 
more appropriate for the solution of this problem. 

In Fig. 4 three of the points do not belong to the Pareto-front, as in Fig. 3. 
Since the idea of MOGMA is to provide the DM with the points located most 
closely to the ideal point for his/her selection, this is not of great importance. The 
remaining points are equally well ranked and the diversity of the solutions is again 
preserved.  
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            Fig. 3. MOGA    Fig. 4. MOGMA 
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Fig. 5. MOGA    Fig. 6. MOGMA 

 
Fig. 6 shows that more points belong to the Pareto front in comparison with 

Fig. 5. This proves that MOGMA operates better than MOGA.  
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Fig. 7. MOGA    Fig. 8. MOGMA 

 
The number of the points belonging to the Pareto front in Figs 7 and 8 is equal. 

Since MOGMA is more simplified and comprehensible to the DM, it is more 
appropriate for this problem. 
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ZDT5: 
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Fig. 9. MOGA    Fig. 10. MOGMA 

 
In this problem stop criteria are activated, executing the maximal number of 

iterations – 200. Though in Fig. 9 there are more points, relatively close to the 
Pareto front, only three points belong to it. In Fig. 10 four points belonging to the 
Pareto front are observed, three of them being very close to the ideal point, so that 
the DM can easily choose one of them as the best solution.  

7. Conclusion 

The MOGMA algorithm is a more simpified algorithm in comparison with MOGA. 
Since some hardly identifiable parameters are avoided, its operation time is shorter.  
Moreover, it ensures easier introduction of the Decision Maker into the problem. 
The parameters which are used, are easily determined and do not require very 
complicated knowledge. That is why it would be easy to train the Decision Maker 
during the execution of the algorithms. The basic idea is to focus the attention of the 
DM on the Pareto optimal front by providing external information for the selection 
algorithm − the ideal point of the Pareto front. By determining the distance of each 
solution to it, the advantages of the separate solutions are revealed. The resulting 
scores are easily identifiable, allowing the DM to be easily convinced in the quality 
of the best solution. It is easy to see its benefits and to determine whether they 
satisfy the preferences of the DM.  

The proposed procedure for determining the next generation ensures that it 
will not be worse than the current one. The idea is to determine the best solutions 
that will go directly into the new generation. Modification of the worst solution is 
also suggested, which leads to its approach to the ideal point on the Pareto front. 
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Thus it can be seen that the new generation will be better than the current one, or at 
least it will not be any worse. 

Using the program results, one can definitely notice that the solutions obtained 
with the help of the original and the modified algorithms are similar. This means 
that the modified algorithm also maintains a good variety of solutions. 

By introducing clear rules of operation, MOGMA can be easily implemented 
in a decision support system, solving multiobjective optimization problems. 
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