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Abstract: Accurate classification of images is essential for the analysis of 
mammograms in computer aided diagnosis of breast cancer. We propose a new 
approach to classify mammogram images based on fractal features. Given a 
mammogram image, we first eliminate all the artifacts and extract the salient 
features such as Fractal Dimension (FD) and Fractal Signature (FS). These 
features provide good descriptive values of the region. Second, a trainable 
multilayer feed forward neural network has been designed for the classification 
purposes and we compared the classification test results with K-Means. The result 
reveals that the proposed approach can classify with a good performance rate of 
98%. 

Keywords:  Fractal Dimension, Fractal Signature, mammograms, self-similarity, 
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1. Introduction 
Mammography associated with clinical breast examination and breast self 
examination are the only viable and efficient methods at present for mass screening 
to detect breast cancer. Breast cancer is the second most deadly form of cancer in 
women. It appears in women in the form of tumors [1]. The diagnosis of breast 
cancer in its early stage of development has become important in the prevention of 
breast cancer. To avoid a surgical procedure such as a biopsy at its initial stage, 
women widely depend on mammography. Mammography is the standard approach 
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for preliminary examination of breast cancer abnormalities [2]. This paper describes 
the application of fractals in breast cancer image classification. The Fractal concept 
developed by Mandelbrot provides an excellent explanation of the ruggedness of 
natural surfaces, and many other natural phenomena. It has been widely applied to 
many areas in science and engineering. L u n d a h i  at al. [3] used the fractal 
concept to analyze X-ray medical images. The use of the fractal dimension to 
distinguish between malignant and benign cells is promising and could develop into 
a useful diagnostic tool in aiding the pathology. The rest of the paper is organized 
as follows. In Section 2 we present the related works. Section 3 briefly describes the 
proposed methodology. Section 4 discusses the classification approach and the 
results of the proposed methodology. Section 5 concludes the paper with future 
works. 

2. Related works 
Several researchers have introduced different approaches for classifying the 
mammogram images. A histogram intersection based image classification was 
proposed in [4]. Initially they used the bag-of-words model for image classification 
for capturing the texture information. A normalized histogram intersection with the 
K-nearest neighborhood classifier was applied. The classification accuracy depends 
on the normalization of the histogram. Reference [5] presents mammogram image 
classification based on rough set theory in conjunction with statistical feature 
extraction techniques. The features were derived from the gray level co-occurrence 
matrix, these features were normalized and the rough set dependency rules are 
generated from the attribute vector. The generated rules were passed to the classifier 
for the classification purpose. Classification of mammograms with benign, 
malignant and normal tissues using independent component was proposed by the 
authors in [6] with a classification accuracy of 97.3%.The face recognition methods 
such as AdaBost and Support vector machines for the analysis of digital 
mammograms was presented in [7]. The AdaBost classifier achieved 76% for all 
lesions and 90% for the masses. A fractal approach was proposed in [8] to model 
the mammographic parenchymal, ductal patterns and enhance the 
microcalcifications. The results proved that fractal modeling is an efficient 
approach for detection and classification of microcalcification in a computer aided 
diagnosis systems. A hybrid system [9] combines extracted features and human 
interpreted features from the mammogram, with the statistical classifier as other 
features in conjunction with GNN and achieved a classification rate of 91.3%. The 
simplest diagnosis of breast is to analyze the X-ray images. With the advancement 
in digital technology the radiologist could classify the tumors more accurately. 
Paper [10] is based on the following procedures. The first patch around tumors are 
manually extracted to segment the abnormal areas and the remaining of the image is 
considered as background. The image is filtered using Gabor wavelets and 
directional features are extracted at different orientation and frequencies. PCA were 
applied to reduce dimensions and finally the images were classified based on 
proximity support vector machines. The texture based classification is an important 
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global method for mammogram image classification. The study shows that rule 
based system has great importance in classification purposes. A rule based system 
for classification was proposed in [11]. In this paper, the texture component is 
extracted from segmented parts and the association rules are derived between 
various texture components from the segments of images and classified them based 
on intra and inter class dependencies. The result shows a classification accuracy of 
89%. In [12] the authors applied different data mining techniques, neural networks 
and association rule mining for the classification purposes. The results show that the 
two methods perform classification accuracy above 70%. Reference [13] presents a 
new approach for the parenchymal pattern classification in which texture models 
are used to capture the mammography appearance within the area of the breast. 
Parenchymal density patterns are modeled as the statistical distribution of clustered, 
invariant filter responses in low dimensional space. Fractal can be used to classify 
and distinguish various types of cells. Shapes of fractal objects keep invariant under 
successive magnifying or shrinking the objects. Hence, fractal geometry can be 
applied to overcome the scale problem of texture. Fractal dimension can be defined 
in connection with real world data and can be measured. The curve, surface and 
volumes are complex objects for which ordinary measurements become limited 
because of their physical properties. Different techniques have been proposed to 
measure the degree of complexity by evaluating how fast the length, surface or 
volume increases with respect to smaller and smaller scales. 

Based on the self-similarity of the geometric forms, one can find the power 
law describing the number of pieces “a” versus 1/s, where “s” is the scale factor 
which characterizes the part “s” as copies of the whole, the exponent of this law is 
the Fractal Dimension (FD). The galaxies were classified using fractal dimension 
and Fractal Signature (FS) which gave a classification rate up to 95% [14]. The K-
Means and Fuzzy C-Means algorithms are used for classification of remotely 
sensed images. In both methods it has been found that 98% classification rate could 
be achieved [15]. Different algorithms like Principal Component Analysis and 
Supervised Neural Network techniques exist for classification of images. Almost all 
of these procedures require apriori knowledge about how the input feature set is 
related to the images. The most commonly used algorithms for classification 
purpose are based on neural networks, like genetic algorithm, rule based classifier 
and fuzzy theory. In this work we have used the neural network approach for the 
classification of the digital mammogram images. The images considered in the 
present work are listed in the Digital Database for Screening Mammography [16] 
and MIAS [17]. Recently BIRADS (Breast Imaging Reporting and Data System) 
[18] is becoming the most common acceptable standard for mammography images. 
Based on the tissue density, they are classified into four categories. Fig. 1 shows a 
typical example of mammogram images with different BIRADS standards. Fig. 2 
shows the different phases involved in the proposed method. 

BIRADS I: the breast is almost entirely fatty. 
BIRADS II: there is some fibroglandular tissue. 
BIRADS III: the breast is heterogeneously dense. 
BIRADS IV: the breast is extremely dense. 
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Fig. 1. Mammogram images of different BI-RADS I(a) to  BI-RADS IV(d) 

 

 

Fig. 2. Proposed system work flow 

The medical images are always noisy and contain artifacts which are not 
relevant to the classification purpose. Pre-processing will enlarge the quality of the 
image. During this stage we applied a method based on the connected component 
labeling for removing many of the artifacts which are not relevant to the 
classification purpose. In this step the image is converted to binary format. The 
connected component labeling algorithm will select the largest region for 
segmentation and a map to the original image for reconstructing the image without 
an artifact. The ROI is selected for feature extraction from the enhanced image. The 
extracted features are then stored in a file and given as input for the training and 
classification phase. 
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3. Methodology 

Fractals, introduced by M a n d e l b r o t [19] have drawn great attention in the field 
of science and engineering. There are many definitions, according to Mandelbrot A 
fractal is by definition a set for which the Hausdorff Besicovitch dimension strictly 
exceeds the Topological Dimension (DT). By definition [20] a space X is said to be 
finite-dimensional if there is some integer n such that for every open covering R of 
X, there is an open covering ζ of X that refines R and has an order at most n + 1. The 
topological dimension of X is defined to be the smallest value of m for which this 
statement holds.   
Definition. A set F is called a Fractal set if the following conditions are satisfied.  

a) The global character of the set F is self-similar to the local characteristics of 
each sub-set, namely ζ (F) ~ ζ (fi), fi⊃ F, where ζ (.) stands for the characteristics 
of (.).  

b) The set F is infinitely separable, i.e., 
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A theoretical fractal object is self-similarity under all magnifications and the 
changes in properties with respect to changes in scale are limited. In the Euclidean 
space RE, a real ratio r > 0 determines a transformation called similarity, which 
transforms the point x = (X1 ….Xδ ….XE) into the point 

(4) τ(x) = (τX1,…, τXδ…, τXE),  

and thus transforms a set S into the set τ(S). Many Fractal features can be extracted 
from an image. Fractal Dimension (FD) becomes the primary characteristics. The 
important concept of fractal dimension is a measure of non-linear growth, which 
reflects the degree of irregularities over multiple scales. It is very often non integer 
and is the basic measure of fractals. For D-dimensional objects the number of 
identical parts, N divided by a scale ratio λ can be calculated as N = 1/ λ D. The other 
dimensions apart from fractal dimensions are Topological dimension, Hausdorff 
dimension, Minkowski dimension and Lyapunow dimension. The topological 
dimension of a set P is an integer number which describes the dimension of a set 
required to divide P into more disconnected sets. The Hausdorff dimension is also 
known as Hausdorff-Besiocovitch dimension. This method is useful where 
dimensionality of sets whose topological dimension do not give an accurate 
description of their topology. The alternative Fractal dimension can be calculated 
either in real or transform space. Different methods are used for estimating fractal 
dimension. Box-counting method, Variance method, Power spectrum method, Cube 
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counting method and Prism Counting method. Among them, the box counting 
approach is a simplification of Hausdorff dimension and is used in many image 
processing related areas. 

The variance method is based on the scale dependence of the variance of 
fractional Brownian motion. In the variance method one divides the image surface 
into equal sized squared boxes and the variance is calculated for a particular box 
size. Fractal dimension is evaluated from the slope of the least square regression 
line that fits to the data point in the log-log plot of the variance. In the power 
spectrum method, every line height profiles that form the image are Fourier 
transformed and the power spectrum is evaluated and then all these power spectra 
are averaged. Fractal dimension is evaluated from the slope. Cube counting method 
[21] is derived directly from a definition of the box-counting fractal dimension. The 
algorithm is based on a cubic lattice with constant I  superimposed on the  
z-expanded surface. Initially I is set at x/2, where x is the length of the edge of the 
surface, resulting in a lattice of 2×2×2 cubes. N(I) is the number of all cubes that 
contain at least one pixel of the image. The lattice constant I is then reduced by a 
factor of 2 and the process repeated until I is equal to the distance between two 
adjacent pixels. The slope of a plot log(N(I)) vs log(1/I) is the fractal dimension. 
The prism counting method works as a grid of unit dimension I placed on the 
surface. This defines the location of the vertices of a number of triangles. When  
I = X/4, the surface is covered by 32 triangles of different areas inclined at various 
angles. The areas of all triangles are calculated and summed to obtain an 
approximation of the surface area S(I) to I. The grid size is then decreased by 
successive factors of 2 and the process continues until I corresponds to  the distance 
between two adjacent pixel points. The slope corresponding to log(S(I)) vs log(1/I) 
is the dimension. We applied the box-counting method for calculating the pixel 
wise fractal dimension of the image. The general formula for calculating the fractal 
dimension is given in the equation 

(5) =bD
0

lim
bl −>

−
b

bb

l
lN

log
)(log   

where Nb(lb) is the number of boxes of size lb, needed to completely cover the 
structure, Db corresponds to the slope of the plot logNb(lb) versus loglb. This 
dimension is sometimes called grid dimensioning, because of mathematical 
convenience the boxes are usually a part of a grid. One could define the box 
dimension where boxes are placed at any position and orientation, to minimize the 
number of boxes needed to cover the set. The choice may be made in the range of 
values of lb. The smallest lb value may be taken as ten times the smallest distance 
between points in the set, and the largest lb value may be taken as ten times the 
maximum distance between points in the set divided by 10. One may exceed these 
limits and discard the extreme of the log-log plot where the slope tends to zero. The 
algorithm for calculating pixel wise fractal dimension is given in Algorithm 1. 
 

 



 75

Algorithm 1. Fractal dimension 

 

Fractal Signature. Fractals are used for model hierarchical structures in several 
areas of image processing. The changes in image properties with changes in scale 
have been investigated [22]. One of the important properties of a fractal object is 
the fractal surface area. For an image, the change of gray level surface needs to be 
measured on different scales. The change in a measured area with the changing 
scale is used as the Fractal Signature (FS) and these can be compared for 
classification. For a pure fractal gray level image, the area is computed as 

(6) DFA −= 2)( εε ,  

where ε is the resolution of the gray levels in the image, D is the fractal dimension 
and F is a constant. The surface area of the image is computed by the method 
suggested by Mandelbrot for curve measurement. The idea is to cover the gray level 
surface with a blanket having an upper surface uε and lower surface εl . For ε =0, 
they are initialized to the gray level values of the image.  
(7)  ( , )u g i j lε ε= = ,  

where g (i, j) represents a gray level function. From ε =1 onwards, εu  is computed 
as the maximum of upper surface for 1−εu and εl is computed as the minimum of the 
lower surface for 1−εl .They are given by equations:  

(8)  1 |( , ) ( , ) 1| 1( , ) max([ ( , ) 1], max [ ( , )]),m n i ju i j u i j u m nε ε ε− − ≤ −= +   
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(9) 1 |( , ) ( , ) 1| 1( , ) min([ ( , ) 1], min [ ( , )]).m n i jl i j l i j l m nε ε ε− − ≤ −= +   

The image points (m, n) with distance less than one from (i, j) were taken to be 
four immediate neighbors of (i, j). In computing εu and εl at different points, the 
four immediate neighbors are considered. The difference between the upper and 
lower surface for a scale gives the volume of the blanket for that scale. The volume 
is given by    

(10)  ∑ −=
ji

jiljiuV
,

)),(),(( εε
.  

The surface area from which one can determine whether the surface is a fractal or 
not is computed as  

(11) εεε ε 2/][)( )1( −−= VVA .  

The surface area gives a measure of the oscillations of the underlying surface for 
each scale [23]. If the image is a fractal, the plot of A(ε) versus ε on a log-log scale 
is almost a straight line. Variation of A(ε ) withε  takes place based on the 
characteristics of an image. The slope S(ε) of A(ε) is defined as the fractal signature. 
Here the fractal signature is computed using features derived for 45 scales. The 
fractal signature for ε =2, 3,…, 45 was computed for different classes of images. 
The fractal signatures and their variation with area A(ε) are depicted in Figs 3 and 4. 
We can notice that fractal signatures vary in a similar manner for a particular type 
of images. 
 

 
Fig. 3. Variation of fractal signature S(ε )with the area 

A(ε ) for cancer images 
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Fig. 4. Variation of fractal signature S(ε ) with the area 
A(ε ) for non cancer images 

4. Classification methods 

Classification is the process of taking decisions that best matches the membership 
of the object. The task is a complex process that is influenced by many factors. The 
goal is to associate the appropriate class labels with the test image. These include 
statistical and structural methods. Non-parametric classifier, such as neural 
networks have become of great importance for image classification. These systems 
require a sufficient number of samples as pre-requisites for accurate classification. 
In our method these samples are taken from publicly available databases. Selecting 
suitable feature values of these samples is a critical step for successful image 
classification. Many potential feature values can be considered for the 
classification, which include texture, intensity gradients, signature information and 
contextual information. It is important to select only feature values which are most 
useful for the mammogram classification. Many approaches, such as fractal 
features, principle component analysis, wavelet transform can be used for extracting 
the features.  The proposed method has been tested with a neural network classifier.  

4.1. Neural network methods 

Any classification method [24] uses a set of features or parameters to characterize 
each object, here these features should be relevant to the task at hand. There are two 
phases of constructing a classifier [25]. First is the training phase, in which a 
training set is used to determine how the features are to be weighted and combined 
in order to classify the objects. Secondly, in the application phase, the weights 
obtained from the training set are applied to a set of new objects for classification. 
To obtain a better classification rating, a classifier based on neural networks was 
designed. The architecture of the network (Fig. 5) is a multi-layered one where the 
nodes in a layer are fully connected to the nodes in the next layer. The input layer 
contains the fractal feature values, such as fractal dimension and fractal signature. 
The hidden layer contains five nodes and the output layer has an output node. This 
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neural network is trained using the back propagation algorithm. The back 
propagation algorithm consists of two steps: 

(i) A feed forward step in which the output of the nodes comparing the hidden 
layers and the output layer are computed. The output values are calculated as a 
linear combination of weight and node values of the previous layer [4]. This result 
is then operated on by the sigmoid function given by  

(12) ⎟
⎠
⎞

⎜
⎝
⎛
+

= −se
sR

1
1)( ;  

(13) ( )∑ +=+
)()1(

1
k

j
k

ijj
xWRx k .  

Here xj 
(k) is the value of the j-th node in the k-th layer and Wij 

(k+1) is the weight of 
the link connecting i-th node in k-th layer to j-th node in (k+1)-st layer. 

(ii) A back-propagation step where the weights are updated backwards from 
the output layer to one or more hidden layers. The back-propagation step uses the 
steepest descent method to update the weights so that the error function 

( )( )1
2

k
j jx d−∑  is minimized where dj  is the desired output class. 

 
Fig. 5. Neural network architecture 

4.2. Unsupervised classification 

Images were classified as cancerous or non cancerous by best fit into a cluster and 
are assigned to that cluster. The K-Means algorithms were used for the purpose. 
The algorithm uses random seeds, i.e., points with random mean values to form 
lines to separate the classes. Next, the points within the delineated areas are 
analyzed, and their mean values are calculated. The means form the new seeds from 
which a new series of lines can be formed to separate the classes. This process is 
done repeatedly. The advantage of this method is that it has the potential to model 
complex target functions with a small set of features. The clustering works based on 
the following equations:  
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(14) D (i, k) =||(xk − vi) ||2   for i ≤ c, k ≤ N, 

(15) 
i
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(16)  0||max )1()(
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≠−∏ −

=

ll
n

k
vv , 

D(i,k) calculates the distances between each class, c is the number of clusters, N is 
the number of objects  in the cluster and v determines the cluster center. The higher 
value of k results in smooth grouping. In our proposed system we choose the value 
of k as 3.The pseudo code for standard K-Means algorithm is given in Algorithm 2. 

Algorithm 2. K-Means 

 

5. Experiments and results 

In this work about 316 mammogram images from MIAS and DDSM databases have 
been used for training and testing, out of which 40% of the data are used for the 
training part and 60% considered for the classification. Two different classifiers are 
used for the experiments: Neural Network and K-Means algorithm. Fig. 5 shows the 
neural network architecture for classification. In medical imaging, texture feature 
analysis has been widely used for classification purposes [26]. It is this important 
characteristic of an image which gives the radiologist a better understanding of the 
image. The texture shows its unique characteristics by its pixel values. There are 
many different approaches available for texture based classification. The proposed 
system calculates the fractal dimension and fractal signature values for the 
individual image. The extracted features are then input to the neural network for 
training and classification purposes. The region of interest was located manually 
from the given image. Table 1 shows the final procedure for calculating the 
signature value. 
 

1. Input  Data set X 
2. Output  Partition Matrix 

(a) For each iteration: compute 
the distances by (14) 

(b) Select the points for a cluster 
with the minimal  
Distance (D) belong to that 
cluster 

(c) Calculate the cluster center 
by (15) 

(d) Repeat  above steps until by 
(16) is satisfied 



 80

Table 1. Fractal signature extraction 

Feature Equation Description 

Fractal 
Signature 

εεε ε 2/][)( )1( −−= VVA
 

Fractal signature estimates the fractal dimension at 
resolution ε  by examining )(εA varies with 

changing ε  
 

Figs 3 and 4 show how the surface area varies with respect to the size of the 
structuring element. The tested images were categorized into two groups: cancer 
and non-cancer images. In the region of interest, the obtained results vary in shape 
according to the image surface. The average values of the varying scale were 
considered as an individual signature value, which is given to the classification 
algorithm as an input. The fractal dimension could be obtained from the slope of 
fractional Brownian motion estimated by the least square linear regression. Fig. 6 
gives the cluster maps of fractal dimension for the classification which show a set 
of sample images and their equivalent calculated FD. One can easily identify that 
the variation of image properties can influence the evaluation of dimension. Figs 7 
and 8 give the FD and FS for cancer and non-cancer images respectively. In the 
classification phase an image of the extracted Fractal features are input to the neural 
network for training and labeling. Fig. 9 shows a set of random images from the 
collected images considered for classification. A comparative study of different 
classifying algorithms is the best to evaluate the accuracy of the proposed method. 
In this work we compared it with K-Means algorithm. Table 2 shows the 
comparison results of neural network with K-Means algorithm. The neural network 
approach has comparatively better classification accuracy compared to the 
unsupervised classifier.  

Table 2. Comparison results 
Algorithm Classification Accuracy 
K-Means 96% 

Neural Networks 98% 
 

 
Fig. 7. FD and FS for cancer images 
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Fig. 8. FD and FS for non-cancer images 

 

 
 

 
Fig. 9. Sample images for feature extractions 
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6. Conclusion 

In this paper, we addressed the problem of classification using local Fractal 
features. The classification of breast cancer images is based on multi-layered back 
propagation algorithm. Fractal feature values such as Fractal Dimension and Fractal 
Signature are extracted for the classification purpose. The proposed methods of 
evaluating features are based upon pixel wise box counting and texture comparison. 
It is observed that using our proposed method has been observed to be far more 
perceptive than the traditional unsupervised learning algorithm. Using NN the 
classification rate was found to be 98%. The success of any image classification 
depends on many factors. The availability of good quality images, types of features 
extracted and more important − an experienced radiologist. In future we will 
consider other statistical models for feature extraction in order to improve the 
classification rate. 
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