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Abstract:  In this paper we propose an approach to obtain first order perturbation 
bounds for the discrete-time Linear Matrix Inequalities (LMI) based H∞ quadratic 
stability problem for descriptor systems. Applying the considered approach we are 
able to compute tight first order perturbation bounds for the LMIs’ solutions to the 
H∞ quadratic stability problem for discrete-time descriptor systems. In the paper we 
present an approach to compute the estimates of the individual condition numbers 
of the considered LMIs. To illustrate the performance and applicability of the 
results obtained we present a numerical example.  
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1. Introduction 

Linear Matrix Inequalities (LMIs) are often used to find solutions in an efficient 
way to many modern and classical problems in control theory: H∞ design, linear 
quadratic regulator problem, bounded energy problem, quadratic stability problem, 
model predictive control, etc. [1, 2, 6, 7, 12]. 

LMI design is of high performance and useful thanks to the existence of 
efficient convex optimization algorithms [3] and software [4] in addition to the 
MATLAB package Yalmip and SeDuMi solver [5]. 

Descriptor systems or singular systems present a wide class of systems, which 
are important from a theoretical and practical point of view. A great amount of 
investigations concerning linear descriptor systems has been performed in [10, 13, 
14]. The concepts of controllability, observability, stability, model predictive 
control, linear quadratic optimal regulator, optimal state regulation, state feedback 
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and observer design have already been studied in [10, 15, 16, 17]. Different 
numerical methods for finding the solution of the singular systems are presented in 
[18, 19]. 

In the paper we consider an approach similar to the presented in [20] to 
compute the first order perturbation bounds of the LMI based H∞ quadratic stability 
problem for discrete-time descriptor systems.  

Throughout the paper we use the notations: nmR × – the space of real nm×  
matrices; 1×= nn RR ; nI  – the identity nn×  matrix; ne – the unit 1×n  vector; TM – 
the transpose of M ;  ⊥M – the pseudo inverse of M ; )(|||| max2 MM σ=  – the spectral 
norm of M , where )(max Mσ  is the maximum singular value of M ; nmRM ∈)(vec – the 
column-wise vector representation of nmRM ×∈ ; nmnm

nm R ×∈Π ,
– the vec-permutation 

matrix, such that )(vec)(vec ,
T MM nmΠ= ; PM ⊗ – the Kroneker product of the 

matrices M  and P . The notation “:=” stands for “equal by definition”. 
The remaining part of the paper is as follows. Section 2 considers the problem 

set up and objective. Section 3 studies the performed linear perturbation analysis of 
the LMI-based discrete-time H∞ quadratic stability problem for descriptor systems. 
In Section 4 we present a numerical example. At the end we finish in Section 5 with 
a conclusion. 

2. Problem setup and objective 

Linear discrete-time descriptor systems are described by the set of difference-
algebraic equations given below: 
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,...,,1,0),()(

),()()1(
LkkCxky

kBukAxkEx
==
+=+

 

where nRkx ∈)( , mRku ∈)(  and rRky ∈)(  are the system descriptor state, input 
and output, and CBA ,,  and E  are constant matrices of corresponding size.  

Definition 2.1 (System equivalence) [10]. Two systems ),,,( CBAE  and 
)ˆ,ˆ,ˆ,ˆ( CBAE  are said to be (system) equivalent, denoted by 
),,,( CBAE ≈ )ˆ,ˆ,ˆ,ˆ( CBAE , if there exist nonsingular transformation matrices 
nnRRL ×∈,   such that the equations  

CRCLBBLARALERE ==== ˆ,ˆ,ˆ,ˆ  
hold true. 

Definition 2.2 (Regularity) [10]. The system is termed regular, if the 
polynomial  )det( AsE −  satisfies .0)det( ≠− AsE  

Definition 2.3 (Weierstrass normal form – WNF) [10]. For any regular 
system there exist two non-singular matrices nnRRL ×∈,  such that by  
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the following decomposed representation can be obtained: 
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Definition 2.4 (Index of nilpotence) [10]. The index of nilpotence ν , i.e., 
{ }0|min: == qNqν  is said to be an  index of a linear descriptor system. The 

systems with 2≥ν are called high index singular systems. 
In expression (2), the first equation is a forward recurrent equation whose state 

is determined uniquely by the initial state )0(1x  and ....,,1,0)( Lku =  While the 
second equation is a backward recurrence with a state uniquely determined by the 
terminal state )(2 Lx  and ....,,1,0)( Lku =  

For the system described in Weierstrass normal, the state evolution can be 
described according to [10]: 
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Relation (3b) for the state evolution )(2 kx  suggests that index one descriptor 
systems 1=ν and 0=N will have no infinite poles. In this case the system (1) is 
called causal and index one. 

Let us investigate the linear discrete-time descriptor system (1), where there is 
no direct relation between the input and the output signal. For the rest of the paper 
we suppose the descriptor system (1) is an index one system. 

The equivalent system 
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is given in Weierstrass canonical form where rr
r RA ×∈  is a stable matrix. The 

transformed system is represented as follows: 
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The system (4) in WNF is obtained using the relation (3b) for state evolution 
)(2 kx .  
An LMI approach is used to solve the H∞  quadratic stability problem for 

descriptor systems as presented in [11]. For index one discrete-time descriptor 
systems we study the solution of the following system of inequalities   
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Actually this is an Eigenvalue Problem (EVP) with respect to the variables 1P  
and γ . We suppose that the optimal closed-loop performance γopt of the system (4) 
is already computed. 

To obtain quadratic H∞ stability and to ensure closed-loop performance γ it is 
necessary to design a state-feedback control u=K1x1.  Then it is necessary to apply 
Schur complement argument [8]: 
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Relation (6) is an inequality with respect to the variables K1, P1 and γ. We pre-
and post-multiply inequality (6) by },,,{ 1

1 IIPIdiag −  and also change the variables  
0, 1

1
11 >= − QPQ and 1

111
−= PKY  to obtain the following system of LMIs: 
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The aim of the paper is to compute first order perturbation bounds for the LMI 
system (7), which is necessary for the solution of the LMI based H∞ quadratic 
stability problem for index one descriptor systems, near the optimal value of γ. We 
should have in mind that in this case we have to find out if the considered problem 
is really feasible in order that the applied LMIs have solutions. We should remind 
that the feasibility of an LMI depends strongly on the sensitivity of the interior 
point method, used to solve the considered LMI, rounding errors and the size of the 
investigated LMI system. The size of the LMI system in the LMI based H∞ 
quadratic stability problem for discrete-time descriptor systems is bigger compared 
to the corresponding continuous-time case. Due to this fact the applied interior point 
method may not always lead to feasible solutions in the discrete-time case. 

Let the system matrices ,ˆ,ˆ,ˆ
11 CBAr  are subject to perturbations 

,ˆ,ˆ,ˆ
11 CBAr ΔΔΔ  and suppose that they do not change the sign of the LMI system (7).  

3. First order perturbation bounds computation 

We conduct perturbation analysis of the LMI (7) for the index one discrete-time 
descriptor system (1), given in Weierstrass normal form: 
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where ,)ˆˆ()()ˆˆ)((ˆˆ T
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T
11

T
11

T
111 BBYYAAQQYQBA rrr Δ+Δ++Δ+Δ+=   

T
1111

T
11 )ˆˆ)((ˆ CCQQCQ Δ+Δ+= , ))(ˆˆ(ˆ

111111 QQCCQC Δ+Δ+= . 

It is necessary to analyze the impact of the perturbations 11
ˆ,ˆ,ˆ CBAr ΔΔΔ and 

γΔ  on the perturbed LMI solutions 11 * QQ Δ+  and 11 * YY Δ+ . With **, 11 YQ  
and 11 , YQ ΔΔ  we denote the nominal solutions of the LMIs (8) and the 
perturbations, respectively. The essence of our approach is connected with 
introducing a slightly perturbed suitable right hand part, in order to ensure 
feasibilty, then we can obtain 
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calculated using the nominal LMI: 
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We use the matrix 1NΔ  to take into account information with respect to 
perturbations introduced to data and closed-loop performance, the existence of 
rounding errors and sensitivity of the interior point method that is used to solve the 
investigated LMIs. Due to the high sensitivity of the applied solution method to the 
size of the used LMI system for discrete-time descriptor systems this is not as 
straightforward as in the continuous-time case [20]. 

Expression (10) allows us to rewrite the perturbed equation (9) in the 
following way 
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Further we perform similar mathematical transformations as in [20]. Since we 
have to compute first order perturbation bounds, the terms of second and higher 
order are annihilated. In this way the expression (11) in a vectorized form looks as 
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The difference in size of the obtained matrices in a vectorized form for the 
discrete-time descriptor systems and the case considered in [20] is visible. The 
bigger size of the LMI system may lead to unfeasibility in the discrete-time case 
due to the inability of the interior point method to find feasible solutions. This 
inability has nothing to do with the presented method for computing the first order 
perturbation bounds of the LMI based H∞ quadratic stability problem for discrete-
time descriptor systems. We carry out some mathematical  transformations to obtain 
(13) ).(vec)ˆ(vec)ˆ(vec)(vec)ˆ(vec 1opt5141312111 NLCLBLYLALqL ttttrt Δ=Δ+Δ+Δ+Δ+Δ+Δ γ   

At the end the relative perturbation bound for the solution *1Q  of the LMI (7) 
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are considered as estimates of the individual relative condition numbers of the LMI 
(7) with respect to the perturbations γΔΔΔΔ ,ˆ,ˆ,ˆ

11 CBAr  and 1YΔ . 

We apply a similar procedure as the already presented to obtain the relative 
perturbation bound for the solution *1Y  of the LMI (7)  
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are considered as estimates of the individual relative condition numbers of the LMI 
(7) with respect to the perturbations 111 ,ˆ,ˆ,ˆ QCBAr ΔΔΔΔ  and γΔ .  

In this case the size of the obtained matrices in a vectorized form for the 
discrete-time descriptor systems is again bigger compared to the case considered in 
[20]. This may lead to unfeasibility in the discrete-time case due to the inability of 
the interior point method to find feasible solutions. This inability has nothing to do 
with the presented method for computing the first order perturbation bounds of the 
LMI based H∞ quadratic stability problem for discrete-time descriptor systems. 

4. A numerical example [10] 

Consider the discrete-time index one descriptor system (1) given in Weierstrass 
normal form, i.e., 
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In this paper we would like to compute the first order bounds, that is why the 
perturbations in the system matrices are chosen in such a way as to annihilate the 
second and higher order terms in the mathematical transformations, shown above, 
i.e., 
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The solutions of the perturbed LMI (8) 11 * QQ Δ+ and 11 * YY Δ+  are 
computed following the method presented in [9] and with the help of the software 
[4]. After the application of the presented approach the first order relative 
perturbation bounds for the solutions *1Q and *1Y  of the LMI system (7) are 
obtained using expressions (14) and (15), respectively.  

For various size of perturbations we compute the first order perturbation 
bounds and illustrate the corresponding results in the table below 

Table 1 
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Y
yΔ  Bound (15) 

8 7.2245×10-8 1.1328×10-7 5.8113×10-8 0.9134×10-7 

7 7.2245×10-7 1.1328×10-6 5.8113×10-7 0.9134×10-6 

6 7.2245×10-6 1.1328×10-5 5.8113×10-6 0.9134×10-5 

5 7.2245×10-5 1.1328×10-4 5.8113×10-5 0.9134×10-4 

4 7.2245×10-4 1.1328×10-3 5.8113×10-4 0.9134×10-3 

To perform sensitivity analysis of the discrete-time LMI based H∞ quadratic 
stability problem for descriptor systems we use the presented and investigated 
solution approach, which helps us come up with the perturbation bounds (14) and 
(15). The obtained first order bounds are tight and close to the real relative 

perturbation bounds
21

21

||*)(vec||
||||

Q
qΔ  and 

21

21

||*)(vec||
||||

Y
yΔ . Based on the obtained 

experimental results we can conclude that the investigated method is suitable for 
computing the first order perturbation bounds of the discrete-time LMI based H∞ 
quadratic stability problem for descriptor systems even if the sensitivity of the 
interior point method is higher compared to the continuous-time case. Let us remind 
that this high sensitivity may lead to unfeasibility when considering discrete-time 
descriptor systems. 

5. Conclusion 

In this paper we present and study an approach to compute the first order 
perturbation bounds of the discrete-time LMI based H∞ quadratic stability problem 
for descriptor systems. We also demonstrate how the estimates of the individual 
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condition numbers of the considered LMIs can be computed. We obtain tight first 
order perturbation bounds for the matrix inequalities depicting the problem solution. 
Based on the presented mathematical transformations we have derived some 
theoretical results. Then a numerical example was considered in order to illustrate 
the applicability of the obtained results. 
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