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Abstract: In this paper we present an approach to obtain linear perturbation
bounds for the continuous-time linear matrix inequalities (LMI) based H,, quadratic
stability problem for descriptor systems. Using the approach proposed we are able
to obtain tight linear perturbation bounds for the LMIs’ solutions to the
H.,, quadratic stability problem for descriptor systems. It is also shown how the
estimates of the individual condition numbers of the considered LMIs can be
calculated. A numerical example is presented as well.
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1. Introduction

Linear Matrix Inequalities (LMIs) are widely used to solve efficiently many
fundamental problems in control theory: H,, synthesis, the linear quadratic regulator
problem, quadratic stability problem, bounded energy problem, etc. [1, 2, 6, 7] and
the literature therein.

LMI design is valuable, practical, applicable and useful thanks to the existence
of efficient convex optimization algorithms [3] and software [4] plus the MATLAB
package Yalmip and SeDuMi solver [5].

Descriptor systems (sometimes also referred to as Differential-Algebraic
(DAE) or singular systems), describe a broad class of systems, which are not only
of theoretical interest, but also have great practical significance. A considerable
amount of studies, concerning linear descriptor systems has been carried out in [10].
The issues of controllability, observability, stability, synthesis of a state feedback
have already been considered in [10].
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In this paper we propose an approach to obtain linear perturbation bounds of
the LMI based H,, quadratic stability problem via introducing a suitable right hand
part in the considered matrix inequalities. After the considered problem is solved,
the results obtained can be applied in the following ways. First, it is possible to
estimate the errors in the calculated solution of the H,, quadratic stability problem,
which are due to rounding errors and parametric disturbances in the considered
data. Second, it is possible to study the robust stability and robust performance of
the closed loop system with uncertainties in the plant and in the controller. The
uncertainties in the controller appear because of the sensitivity of the H,, quadratic
stability problem.

Further the following notation is used: R™"is the space of real m xn matrices;

R" =R™; I, — the identity nxn matrix; e,— the unit nx1 vector; M T— the
(M) — the spectral

norm of M , where & (M) is the maximum singular value of M ; vec(M)e R""—

transpose of M ; M ™ — the pseudo inverse of M ;| M |,= o

max

the column-wise vector representation of M € R™"; 11 e R"™""— the vec-

m,n

ermutation matrix, such that vec(MT)=11_ vec(M); M ® P — the Kroneker
p (M) (M)

13 L3

product of the matrices M and P. The notation “:=” stands for “equal by
definition”.

The rest of the paper is structured as follows. Section 2 presents the problem
set up and objective. Section 3 reveals the performed linear perturbation analysis of
the LMI-based continuous H,, quadratic stability problem for descriptor systems. In
Section 4 a numerical example is given. And finally in Section 5 we conclude with
some final remarks.

m,n

2. Problem setup and objective

Linear continuous-time descriptor systems are generally described by the following
set of differential-algebraic equations

Ex(t) = Ax(t)+ Bu(t), x(t,)=x,,

. ¥(0) = Cx(0),
where x(z) € R", u(t) € R” and x(¢,) € R" are the system descriptor state, input
and initial conditions, and A4, B,C and E are constant matrices of compatible size.

Definition 2.1 (System -equivalence). Two systems (£, 4,B,C) and
(E, 4, B, C) are saild to be (system) equivalent, denoted by
(E, 4, B,C) ~ (E, A, B, é), if there exist nonsingular transformation
matrices L, R € R"™" such that the equations

E=LER, A=LAR,B=1B,C =CR

hold true.

Definition 2.2 (Regularity). The system is regular, if the polynomial
det(sE — A) satisfies det(sE — A4) # 0.
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Definition 2.3 (Weierstrass normal form). For any regular system there exist
two non-singular matrices L, R € R™" such that by

x

1 - -

xz{ }zP 'x,x, eR",x,eR"”’

x
2

the following decomposed representation can be obtained
2) ¥,(0) = A, (1) + Bu (1),
Nx, (1) = x,(t) + Bu(?).

Definition 2.4 (Index of nilpotence). The index of nilpotence v, i.e.,
v :=min {q |NT = 0} is said to be an index of a linear descriptor system. Systems with
v>2are called high index DAE systems.

The descriptor system (1) has a solution for any initial condition and
sufficiently smooth input u. It is possible that the solution might show impulsive
behavior. That is why, consider the system in Weierstrass normal form under
sufficiently smooth input, starting from an initial condition x,. Then the state
evolution can be described according to [10]:

t
x, (t)=e™x,, +J.eA' B u(t)dr,

) 0
v-1 vl
x, ()= _Z SV ON xy, _ZNxxoszu(l)(Z)-
i=1 i=1

The expression (3) for state evolution x,(¢) implies that index one descriptor
systems v =1and N =0 will have no impulsive solutions. In this case the system
(1) is called impulse free and index one.

Consider the linear continuous-time descriptor system (1), where there is no
direct relation between the input and the output signal. Throughout the paper we
assume the descriptor system (1) is an index one system.

There exists an equivalent system

" on A I, 0]]4 3 | [~ A
(EaAaBsC): § s Ar 0 s €1 ’[CI’CZ]y
0 0]jo 1. 1]]|B,

in Weierstrass canonical form where 4 e R™ is a stable matrix. The transformed
system is given as

4)

3 (0) = A,x, (0 + Bu(o),
y ()= é]xl ().
The transformed system (4) is obtained using the expression (3b) for the state
evolution x,(¢) .
We consider an LMI approach to solve the H,, quadratic stability problem for

descriptor systems as stated in [11]. For index one descriptor systems we are

interested in the solution of the following system of LMIs,
e A ama .
(5) Ar F’l+f)1;47+cl Cl PIB;I <0’1)1>0.
B, A v
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This is an Eigenvalue Problem (EVP) with respect to the variables £ and y .
Here we assume that the optimal closed-loop performance y,, of the system (4) is
already obtained.

In order to achieve quadratic H, stability and to ensure closed-loop
performance j, it is necessary to design a state-feedback control #=Kx;. From
Schur complement argument [8] the above inequality is equivalent to:

(4 +BK) R+R(4,+BK) 0 &
(6) 0 A0 |<0,P >0,
él 0 —-A
with respect to the variables K;, P; and y. It is obvious that the inequality (6) is not
an LMI with respect to the decision variables K; and P;. That is why we perform
the substitution @, =P, 0, >0, and ¥, =K, to obtain the following system of
LMIs:
121rQ1 +Q11arT +BY,+Y%,'B" 0 QlélT
(7) 0 -A4 0 |<0,0 >0.
G o 0 -
The paper is aimed at obtaining linear perturbation bounds of the LMI system
(7) near the optimal value of y, needed to solve the H,, quadratic stability problem

for index one descriptor systems.
Suppose that the matrices A, B,C, are subject to perturbations

AA,, AB,, AC,, and assume that they do not change the sign of the LMI system (7).
3. Linear perturbation bounds calculation

We carry out sensitivity analysis of the LMI (7) for the index one descriptor system
(1), given in Weierstrass normal form:

4,80, 0 0"
(8) 0 — (A + M) 0 <0,
G0, 0 — (A +AN)

where
A,B,0,Y, = (4, + A4 )Q, + AQ)) + (Q) + AQ,)(4, + A4,)" +
+ (Y, + AY) (B, + AB)",
0.C" =(0, +A0)(C +AC)", €0, =(C +AC)Q, +AQ)).
The effect of the perturbations A?lw Af?l, Aél and Ay on the perturbed LMI

solutions O, +AQ, and ¥, + AY, has to be studied. Here 0, ,Y,” and AQ,, AY,

are the nominal solution of the inequality (8) and the perturbations, respectively.
After introducing a slightly perturbed suitable right hand part we can obtain:
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4BOY; 0 0'¢
) 0 ~opd +AVopd) 0 =M, +AM, <0,
Cl Ql 0 - (}/optl + A}/optl)

A,B,0Y," = (4, + A0, + A0 + (0, + A0 (4, + A4,)" +
+ (Y, +AY) (B, +AB)",
0'C =0 +A0)(C, +AC)", ¢,0," =(C, +AC)Q," +AQ)),

and M," is calculated using the so called nominal LMI:

"erQl* +é1Yl* +Q1*21VT +Y1*Té1T 0 Ql*élT
(10) 0 crd 0 =M <.
ClQl 0 _7optl

In the matrix AM, information is taken into account with respect to the data

and closed-loop performance perturbations, the rounding errors and the sensitivity
of the interior point method that is used to solve the considered LMlIs.

Applying expression (10), the perturbed equation (9) can be written in the
following way

(11) Ao +Qp =AM,
where
4,00, +A0, 4,7 0 AQC

= 0 0o o0 |
C,AQ, 0 0

~ * A ~ x % A ~ *T fa * A
MO +BAY+MABY, +O M +AY' BT +Y, ABT 0 0,AG]
Qp, = 0 ~NMed 0

ol *

NGO, 0 —Aﬂhptl

Due to the fact that we have to calculate linear perturbation bounds, here the
terms of second and higher order are neglected. Thus we represent the expression
(11) in a vectorized form

(12) vec(Ay ) + vee(Q2, ) = vec(AM,),
where
vec(Ay ) = [1 ®A4 +4,®1,0,C,®1,0,0,0,]C,",0, o]r vec(AQ) = S,Aq,,
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vedQ), )=

Q@)L (GRHBEIIL, ({&D+IGY )T, 0 0
0 0 0 0 0
0 0 0 IO 0
0 0 0 0 0
= 0 0 0 0 e, X
0 0 0 0 0
0 0 0 O®) 0
0 0 0 0 0
I 0 0 0 0 |
veo(Ad,)
ved(AY))
X VeO(AéJ =Sy So S5 Su st]AAYB@ =S84 4yp6-
ved(AC))
i AY gt

After performing the mathematical transformations we obtain
(13) §,Aq, +85,ved A, ) +5,,vedAY) +8,3ved(AB, ) +S,,ved AC, ) +5;5A7 = Ved(AM,).

Finally the relative perturbation bound for the solution Q]* of the LMI (7) is
obtained

12l
[vee(@)l,
1 [[veodd)|, [ved(AY), [vea(AB)],
D = e (S Ivelh " el ||veo(&)||2J
I Iveddlh o el Ilvecanp
“vec@)l, {S oGl ] ||veo(M‘)|J
where
Sim IS LISalbllveed)lh  Suvp IS LS Il veeE) [
Ivecd( @), Ived @)l Ilved @), Ived @),
S IS bl SalbllveeB)l, My (18" [l veeM) |,
Ived @)1, Iveo@)l, lve @)l Ilveco@)l]
Sume NS LIS bl ved @l Says IS 1Bl bl Zop|
Ived @), Ivee@)l,  lved @)l lIve@) I,
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are the estimates of the individual relative condition numbers of LMI (7) with
respect to the perturbations M,,, Aél, Aél, Ay and AY,.

We apply a procedure like presented in order to compute the relative
perturbation bounds for the solution Y1* of the LMI (7), i.e.,

(15) Ay +Qy =AM,,
where
BAY, +AY,"B" 0 0
Ay = 0 0 0},
0 0 0

~ N AR T A AT AT AT | A AT
ANY+MQ +MBY QA+ M+ A3 0 MG +G AG
Q= 0 A 0
GAQ +AGO 0 Nyl
Due to the fact that we have to calculate linear perturbation bounds, here the

terms of second and higher order are neglected. Then relation (15) in a vectorized
form will look in the following way:

(16) vec(Ay )+ vec(€dy ) = vec(AM,),

where

vec(Ay )= [(1 ®B)+(B,®NII,,,,0,0,0,0,0,0,0, o]T vec(AY,) = ZAy,,

rxm?

ved())=
M * ~ A % «T 7
@ ®)+I®OT, (®N)HAR) (F &)+ISY )T, 0 0
0 0 0 0 0
0 G 0 1470 § Y
0 0 0 0 0
= 0 0 0 0 -
0 0 0 0 0
0 (I®G) 0 ©@en o
0 0 0 0 0
I 0 0 0 0 e
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veo M)
ved(AQ)
VeO(A%) :[Ztl Z, Zy Z, ZtS]AAQBCy =ZA 08¢y
vedAG))
| Yot |

X

Thus to calculate the linear perturbation bounds, the following relation is used
(17) 289, +Z;vee(M) + Zyvee(AQ) + Zvee(AB ) + Z,vee(AC 1)+ Z,sAYyy =vec(AM,).

Below the relative perturbation bound for the solution Y, * of the LMI (7) is
shown

Il 1 (Z Ivecd)lh , , [IvecAQlb , , |vec<Ag%)|2]
1gy Vel veeDl iveed)l, " lvee @l [lveeB)l

1 (Z IveetaBl IA%ptI+M||vec<sz12>||z]

v LU veo )l Tl IveeM)],
here

Zion  _IZ° I Zublived )b Zuow 112" 11 Zs [Lll ved @)
[ved X)), Ived(;) |l Ived(¥;) |l [[ved¥;)l,
Zagm — 1z loll Z5 [l ved(B) [l M, — 1z [l VeC(M*) Il
[ved¥;) Ived¥;) IvedX)l, [lved¥) ],
Zigps N Z* 1) Zs lLllved Ol Zagss 1271l Zs [l 2o
[ved X)), [vee(®) |, Ived¥)] fved)],

are the the estimates of the individual relative condition numbers of LMI (7) with
respect to the perturbations A4, AB,, AC,,A Q, and Ay .
4. Numerical example [10]

Consider the continuous-time index one descriptor system (1) given in Weierstrass
normal form, i.e.,

0 : 0 0 -1 0 : 0 0

01 © 0 0 0 -1 * 0 0

P ] A= ,
0 0 0 0 0 0 0 0

0 0 0 0] 0 0 0 0]
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>
Il

1
0

Since we would like to calculate the linear bounds, the perturbations in the
system matrices are chosen in such a way as to eliminate the second and higher
order terms in the derivation procedure, i.e.:

Ad, =A x107" AB, =B, x107,
Aél = é'l x107, Ay opt =V opt X 107,
AM, =M, x107, AM, =M, x107,
AQ, =0, x107, AY, =Y, x107 fori=8,7..4.
The perturbed solutions Ql* + AQ, and Yl* + AY, are calculated applying the
method presented in [9] and using the software [4]. Carrying out the proposed

approach the linear relative perturbation bounds for the solutions Ql* and Yl* of the

LMI system (7) are calculated using expressions (14) and (18), respectively.
We have considered different size of perturbations, calculated the linear
perturbation bounds and the obtained results are shown in the following table

Table 1
| Aq, || | Ay, ||
1| ——*— | Bound(14) | ———=>— | Bound (18)
| vee(Q ) I, | vee(Y; )l
8 | 6.1354x10° | 1.2384x107 | 4.9164x10° | 0.7562x107
7| 6.1354x107 | 1.2384x10° | 4.9164x107 | 0.7562x10°
6 | 6.1354x10° | 1.2384x10° | 4.9164x10° | 0.7562x107
5| 6.1354x10° | 1.2384x10* | 4.9164x10° | 0.7562x10*
4| 6.1354x10* | 1.2384x107 | 4.9164x10* | 0.7562x107

Based on the proposed solution approach to perform sensitivity analysis of the
continuous-time LMI based H,, quadratic stability problem for descriptor systems,
we obtain the perturbation bounds (14) and (18). These bounds are close to the real

| Ag, I, | Ay, I,

Ivee(Q) I, Ivee(r,) I,
are good in sense that they are tight.

relative perturbation bounds , this means that they
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5. Conclusion

In this paper we propose an approach to compute the linear perturbation bounds of
the continuous-time LMI based H, quadratic stability problem for descriptor
systems. We also show how the estimates of the individual condition numbers of
the LMIs considered can be calculated. Tight linear perturbation bounds are
obtained for the matrix inequalities, determining the problem solution. Based on
mathematical derivations we have obtained theoretical results, that applied on a
numerical example show the importance of the proposed solution approach to
analyze the sensitivity of the LMI based H, quadratic stability problem for
descriptor systems.
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