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Abstract:  In this paper we present an approach to obtain linear perturbation 
bounds for the continuous-time linear matrix inequalities (LMI) based H∞ quadratic 
stability problem for descriptor systems. Using the approach proposed we are able 
to obtain tight linear perturbation bounds for the LMIs’ solutions to the  
H∞ quadratic stability problem for descriptor systems. It is also shown how the 
estimates of the individual condition numbers of the considered LMIs can be 
calculated. A numerical example is presented as well.  
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1. Introduction 

Linear Matrix Inequalities (LMIs) are widely used to solve efficiently many 
fundamental problems in control theory: H∞ synthesis, the linear quadratic regulator 
problem, quadratic stability problem, bounded energy problem, etc. [1, 2, 6, 7] and 
the literature therein. 

LMI design is valuable, practical, applicable and useful thanks to the existence 
of efficient convex optimization algorithms [3] and software [4] plus the MATLAB 
package Yalmip and SeDuMi solver [5]. 

Descriptor systems (sometimes also referred to as Differential-Algebraic 
(DAE) or singular systems), describe a broad class of systems, which are not only 
of theoretical interest, but also have great practical significance. A considerable 
amount of studies, concerning linear descriptor systems has been carried out in [10]. 
The issues of controllability, observability, stability, synthesis of a state feedback 
have already been considered in [10]. 
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In this paper we propose an approach to obtain linear perturbation bounds of 
the LMI based H∞ quadratic stability problem via introducing a suitable right hand 
part in the considered matrix inequalities. After the considered problem is solved, 
the results obtained can be applied in the following ways. First, it is possible to 
estimate the errors in the calculated solution of the H∞ quadratic stability problem, 
which are due to rounding errors and parametric disturbances in the considered 
data. Second, it is possible to study the robust stability and robust performance of 
the closed loop system with uncertainties in the plant and in the controller. The 
uncertainties in the controller appear because of the sensitivity of the H∞ quadratic 
stability problem.  

Further the following notation is used: nmR × is the space of real nm×  matrices; 
1×= nn RR ; nI  − the identity nn×  matrix; ne − the unit 1×n  vector; TM − the 

transpose of M ;  ⊥M − the pseudo inverse of M ; )(|||| max2 MM σ=  − the spectral 
norm of M , where )(max Mσ  is the maximum singular value of M ; nmRM ∈)(vec − 

the column-wise vector representation of nmRM ×∈ ; nmnm
nm R ×∈Π , − the vec-

permutation matrix, such that )(vec)(vec ,
T MM nmΠ= ; PM ⊗  − the Kroneker 

product of the matrices M  and P . The notation “:=” stands for “equal by 
definition”. 

The rest of the paper is structured as follows. Section 2 presents the problem 
set up and objective. Section 3 reveals the performed linear perturbation analysis of 
the LMI-based continuous H∞ quadratic stability problem for descriptor systems. In 
Section 4 a numerical example is given. And finally in Section 5 we conclude with 
some final remarks. 

2. Problem setup and objective 
Linear continuous-time descriptor systems are generally described by the following 
set of differential-algebraic equations 
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where nRtx ∈)( , mRtu ∈)(  and nRtx ∈)( 0  are the system descriptor state, input 
and initial conditions, and CBA ,,  and E  are constant matrices of compatible size.  

Definition 2.1 (System equivalence). Two systems ),,,( CBAE  and 
)ˆ,ˆ,ˆ,ˆ( CBAE  are said to be (system) equivalent, denoted by 
),,,( CBAE ≈ )ˆ,ˆ,ˆ,ˆ( CBAE , if there exist nonsingular transformation 

matrices nnRRL ×∈,   such that the equations  
CRCLBBLARALERE ==== ˆ,ˆ,ˆ,ˆ  

hold true. 
Definition 2.2 (Regularity). The system is regular, if the polynomial  

)det( AsE −  satisfies .0)det( ≠− AsE  
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Definition 2.3 (Weierstrass normal form). For any regular system there exist 
two non-singular matrices nnRRL ×∈,  such that by  
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the following decomposed representation can be obtained 
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Definition 2.4 (Index of nilpotence). The index of nilpotence ν , i.e., 
{ }0|min: == qNqν  is said to be an index of a linear descriptor system. Systems with 

2≥ν are called high index DAE  systems. 
The descriptor system (1) has a solution for any initial condition and 

sufficiently smooth input u. It is possible that the solution might show impulsive 
behavior. That is why, consider the system in Weierstrass normal form under 
sufficiently smooth input, starting from an initial condition 0x . Then the state 
evolution can be described according to [10]: 
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The expression (3) for state evolution )(2 tx  implies that index one descriptor 
systems 1=ν and 0=N  will have no impulsive solutions. In this case the system 
(1) is called impulse free and index one. 

Consider the linear continuous-time descriptor system (1), where there is no 
direct relation between the input and the output signal. Throughout the paper we 
assume the descriptor system (1) is an index one system. 

There exists an equivalent system 
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in Weierstrass canonical form where rr
r RA ×∈  is a stable matrix. The transformed 

system is given as  
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The transformed system (4) is obtained using the expression (3b) for the state 
evolution 2 ( )x t .  

We consider an LMI approach to solve the H∞  quadratic stability problem for 
descriptor systems as stated in [11]. For index one descriptor systems we are 
interested in the solution of the following system of LMIs,   
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This is an Eigenvalue Problem (EVP) with respect to the variables 1P  and γ . 
Here we assume that the optimal closed-loop performance γopt of the system (4) is 
already obtained. 

In order to achieve quadratic H∞ stability and to ensure closed-loop 
performance γ, it is necessary to design a state-feedback control u=K1x1.  From 
Schur complement argument [8] the above inequality is equivalent to: 
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with respect to the variables K1, P1 and γ. It is obvious that the inequality (6) is not 
an LMI with respect to the decision variables K1 and P1. That is why we perform 
the substitution  ,0, 1

1
11 >= − QPQ  and 1

111
−= PKY  to obtain the following system of 

LMIs: 

(7)  .0,0
0ˆ

00

ˆ0ˆˆˆˆ

1

11

T
11

T
1

T
111

T
11

><
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+++
Q

IQC
I

CQBYYBAQQA rr

γ
γ  

The paper is aimed at obtaining linear perturbation bounds of the LMI system  
(7) near the optimal value of γ, needed to solve the H∞ quadratic stability problem 
for index one descriptor systems. 

Suppose that the matrices 11
ˆ,ˆ,ˆ CBAr  are subject to perturbations 

,ˆ,ˆ,ˆ
11 CBAr ΔΔΔ  and assume that they do not change the sign of the LMI system (7).  

3. Linear perturbation bounds calculation 

We carry out sensitivity analysis of the LMI (7) for the index one descriptor system 
(1), given in Weierstrass normal form: 
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The effect of the perturbations 11
ˆ,ˆ,ˆ CBAr ΔΔΔ and γΔ  on the perturbed LMI 

solutions 1
*

1 QQ Δ+  and 1
*

1 YY Δ+  has to be studied. Here *
1

*
1 , YQ  and 11 , YQ ΔΔ  

are the nominal solution of the inequality (8) and the perturbations, respectively. 
After introducing a slightly perturbed suitable right hand part we can obtain: 
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and *
1M  is calculated using the so called nominal LMI: 
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In the matrix 1MΔ  information is taken into account with respect to the data 
and closed-loop performance perturbations, the rounding errors and the sensitivity 
of the interior point method that is used to solve the considered LMIs. 

Applying expression (10), the perturbed equation (9) can be written in the 
following way 
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Due to the fact that we have to calculate linear perturbation bounds, here the 
terms of second and higher order are neglected. Thus we represent the expression 
(11) in a vectorized form  
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After performing the mathematical  transformations we obtain 
(13) ).(vec)ˆ(vec)ˆ(vec)(vec)ˆ(vec 1opt5141312111 MSCSBSYSASqS ttttrt Δ=Δ+Δ+Δ+Δ+Δ+Δ γ  

Finally the relative perturbation bound for the solution *
1Q  of the LMI (7) is 

obtained 
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are the estimates of the individual relative condition numbers of LMI (7) with 
respect to the perturbations γΔΔΔΔ ,ˆ,ˆ,ˆ

11 CBAr  and 1YΔ . 
We apply a procedure like presented in order to compute the relative 

perturbation bounds for the solution *
1Y  of the LMI (7), i.e., 
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Due to the fact that we have to calculate linear perturbation bounds, here the 
terms of second and higher order are neglected. Then relation (15) in a vectorized 
form will look in the following way:  
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Thus to calculate the linear perturbation bounds, the following relation is used 
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Below the relative perturbation bound for the solution *1Y  of the LMI (7) is 
shown 
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are the the estimates of the individual relative condition numbers of LMI (7) with 
respect to the perturbations 111 ,ˆ,ˆ,ˆ QCBAr ΔΔΔΔ  and γΔ . 

4. Numerical example [10] 

Consider the continuous-time index one descriptor system (1) given in Weierstrass 
normal form, i.e., 
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Since we would like to calculate the linear bounds, the perturbations in the 
system matrices are chosen in such a way as to eliminate the second and higher 
order terms in the derivation procedure, i.e.: 
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The perturbed solutions 1
*

1 QQ Δ+  and 1
*

1 YY Δ+  are calculated applying the 
method presented in [9] and using the software [4]. Carrying out the proposed 
approach the linear relative perturbation bounds for the solutions *

1Q and *
1Y  of the 

LMI system (7) are calculated using expressions (14) and (18), respectively.  
We have considered different size of perturbations, calculated the linear 

perturbation bounds and the obtained results are shown in the following table 
Table 1 

I 
2

*
1

21

||)(vec||
||||

Q
qΔ  Bound (14) 

2
*

1

21

||)(vec||
||||

Y
yΔ  Bound (18) 

8 6.1354×10-8 1.2384×10-7 4.9164×10-8 0. 7562×10-7 

7 6.1354×10-7 1.2384×10-6 4.9164×10-7 0. 7562×10-6 

6 6.1354×10-6 1.2384×10-5 4.9164×10-6 0. 7562×10-5 

5 6.1354×10-5 1.2384×10-4 4.9164×10-5 0. 7562×10-4 

4 6.1354×10-4 1.2384×10-3 4.9164×10-4 0.7562×10-3 

Based on the proposed solution approach to perform sensitivity analysis of the 
continuous-time LMI based H∞ quadratic stability problem for descriptor systems, 
we obtain the perturbation bounds (14) and (18). These bounds are close to the real 

relative perturbation bounds
2

*
1

21

||)(vec||
||||

Q
qΔ   and 

2
*

1

21

||)(vec||
||||

Y
yΔ , this means that they 

are good in sense that they are tight. 
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5. Conclusion 

In this paper we propose an approach to compute the linear perturbation bounds of 
the continuous-time LMI based H∞ quadratic stability problem for descriptor 
systems. We also show how the estimates of the individual condition numbers of 
the LMIs considered can be calculated. Tight linear perturbation bounds are 
obtained for the matrix inequalities, determining the problem solution. Based on 
mathematical derivations  we have obtained theoretical results, that applied on a 
numerical example show the importance of the proposed solution approach to 
analyze the sensitivity of the LMI based H∞ quadratic stability problem for 
descriptor systems. 
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