
 71

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 11, No 4

Sofia • 2011

SAT – A Split-Up Cache Model to Boost the Performance
of Web Cache Replacement Policies

Geetha Krishnan1, Ammasai Gounden2, Nanjappa Gounder2
1 Department of Computer Science and Engineering, National Institute of Technology,
Tiruchirappalli-15, Tamilnadu, India 620015
2 Department of Electrical and Electronics Engineering, National Institute of Technology,
Tiruchirappalli-15, Tamilnadu, India 620015
Emails: geethavalavan@yahoo.com ammas@nitt.edu

Abstract: This work intends to design a new model for web cache by fragmenting
the cache into three slices namely Sleep Slice (SS), Active Slice (AS) and Trash
Slice (TS) and hence the name SAT for this cache model. This model is explored
only for client cache. Slicing is done to group cached pages based on the hit count
so that latency of retrieving them can be reduced. By discriminating one time hit
pages from the remaining pages, hot pages are usually made available. Simulations
have been carried out to investigate the desirable percentage of each slice with
respect to the total cache capacity for different cache replacement policies. The
outcome of the proposed SAT model ranked by the performance metrics such as
File Hit Ratio, Speedup, Delay Saving Ratio and Number of Evictions reports
thriving progress to the basic cache model. Three types of replacement policies
based on the key parameters recency, frequency, size and semantic relation are
considered for the model proposed. These replacement policies are implemented
only in AS. SS replacement is done with respect to frequency of cached pages
whereas TS replacement is done only on demand. The proposed SAT model has
exhibited about 15-20% improvement on an average for the above mentioned
replacement policies and performance metrics.

Keywords: Web caching, replacement policy, victim cache, sliced cache.

 72

1. Introduction

A major concern for Internet surfers is to avail an effective retrieval of stored
information from the web servers. As there is a drastic increase in Internet usage,
popular web sites are overloaded and simultaneous access to these web sites cannot
deliver the requested information with minimum latency. Web caching and
replication are the two important approaches for enhancing the efficient delivery of
web contents, thereby reducing latencies experienced by users. Improving the
response time and access latency for clients has become quite an important and
challenging issue. Reference [1] reports a large number of one time hit pages in the
web request streams. SLRU [2] deals explicitly with this factor and proposes the
use of a small auxiliary cache to maintain metadata of evicted objects. Of course,
this method has to decide the size of the auxiliary cache. The advantages of
modeling the client side cache are presented in [3]. Further the impact of cache
pollution is highlighted in [4]. Cache partitioning has been adopted by some
algorithms, but not for the purpose of the isolation of one-time hit pages [5]. As
mentioned in [6], inactive pages must be identified and marked for eviction from
cache to prevent performance degradation due to pollution. The literature has
analyzed numerous web cache replacement policies [7-10]. Most of these
replacement policies consider a single parameter for replacement which is not
appropriate for a wide range of applications, since each policy tries to optimize only
a few of the performance metrics. Recently Kin has made the following
recommendations regarding the performance metrics and the corresponding
replacement policy [10]: i) To achieve higher hit rate with small cache, recency
based policies; ii) For commercial based proxy to achieve higher BHR with a
limited bandwidth and complex traffic characteristics, GD-size based policy. For
systems in which the popularity distribution of objects is highly skewed, frequency
based policies can be adopted [11-12]. In addition to frequency, recency and size
based policies, semantic relatios among cached pages are also considered for
replacement as discussed in [13-15]. To attain the combined effect of the above
merits, many hybrid policies can be adopted, but at the cost of more complexity.
Instead of having a separate auxiliary cache, an attempt has been made to slice the
cache itself so that each slice can make out its own explicit purpose and can be
customized to improve the overall performance. Each slice capacity can also be
allowed to grow or shrink depending on the characteristics of the request streams.

2. Motivation

Ample research has been ongoing in the area of web caching but the state of art
dictates not to devise new replacement policies, rather to provide incremental
improvements in the existing policies focusing on the target environments. In this
context, instead of introducing changes to the existing policies, the primary
structure of the cache can be remodeled so that it can reveal the essential factors
exhibited by the policies as such in cache itself [16]. The following factors
motivated to design and propose a new cache model for client side cache:

 73

i) protection of the cache from one-time hit pages, but without preventing the cache
from adapting to a changing access pattern; ii) customizing the cache model as per
the client access pattern that reflects qualitative characteristics of the request
streams; iii) slicing the cache based on the vital parameters that decide the
replacement policies such as recency, frequency and size allows the proposed cache
structure to inherit the characteristics of various replacement policies. The main
objective is to achieve upgraded values for the performance metrics and at the same
time stay away from cache pollution. Both the objectives can be attained by
selecting a proper blend of replacement policies and designing the cache with
flexible slicing options. The advantages of memory fragmentation have been
discussed in [17]. All the benefits that are attained by fragmenting the memory into
segments can also be achieved with respect to cache memory slicing notion. By
fragmenting the cache into slices, pages of a specific feature can be assigned in the
respective slice, so that the search time can be minimized. The cache capacity at
client side needs not be considered as a limiting factor, because the hard disk space
can be augmented for extension of the cache on demand for TS.

3. Proposed model

Fig. 1. SAT cache model

In the model proposed the cache is sliced into three fragments, namely SS, AS and
TS, as shown in Fig. 1. SS stores the one time hit pages. The requested page from
the server enters the cache only into the SS. If the same page has a larger number of
hits with recent timestamp, it is then shifted from SS to AS. Appropriate
replacement policy is employed only at AS which tries to retain all sorts of hot
pages. If the pages have reached expiry time, then such pages even if they are hot,
will be removed from AS. Instead, if that page is not requested again (one time hit)
for a specific time span, it gets shifted to TS. If they become cold or outdated, then
meta data of those pages alone are cached into TS and removed from AS to make a
room for further entry. If the pages are highly dynamic, they will be marked for
purging and will be moved into TS. All meta data about the deleted pages from
their headers will be restored in the TS to ease and speed up the future retrieval of
the same pages. The size of each slice in terms of the total cache capacity can be

 74

varied and can be fixed, based on the user’s request pattern and constraints. It can
be made flexible by keeping a track of percentage of one time hit pages. For each
user it can be customized and relevant size is evaluated and the respective
performance measures like File Hit Ratio (FHR), Delay Saving Ratio (DSR),
Speedup (S) and Number of Evictions (NE) are studied. The speedup factor is
evaluated using byte hit ratio.

4. Implementation details

All the requests received from the user are first processed in order to filter out the
meaningless and unavailable requests. The requests will become meaningless if a
typographical error was made in the URL name. A request will be unavailable if the
server is down or not found. Then the requested web site is searched in the Cache
Index Table (CIT). Each entry in the CIT stores Unique ID, Cache_in_time,
Freqeuncy Count (FC), Size, Server location. If the entry exists, it is a hit in the
cache, otherwise it is a miss. In case of a hit, the respective slice is identified based
on the FC from CIT. If FC is one, it is one time hit page and hence it can be fetched
from SS. If FC is more than one, then the page can be fetched from AS. If both
slices do not posses the requested page, then it is a miss. In case of a miss, the page
has to be fetched from the respective server. For cacheable pages, the size of the
fetched page is compared with a threshold (normally it is initialized to the size of
SS). The entire cache operation of the proposed SAT model is portrayed in the flow
diagrams of Figs 2-4.

 Fig. 2. Cache invocation flow diagram Fig. 3. Read from a cache flow diagram

 75

Fig. 4. Write into a cache flow diagram

 76

 Fig. 5. SAT model-1 Fig. 6. SAT model-2 Fig. 7. SAT model-3

Simulation has been carried out for the basic unsliced cache and three different
sliced cache models namely SAT model-1, SAT model-2. and SAT model-3, as
shown in Figs 5-7. These three models are designed by changing the size of each
slice. SS:AS:TS proportion for SAT model-1 is 40%:50%:10%, for SAT model-2
is 30%:60%:10% and for SAT model-3 is 20%:70%:10%. Since AS contains hot
pages, the size of AS is always chosen to be the largest among the three slices in all
the three models. TS is always kept at minimum. Access logs were collected for a
period of 2 months. Each entry in the access log contains information on a single
request that includes an IP address, time of request, requested URL, size of the
response in bytes and time required to complete the response. Due to the
availability of massive information in the access log, it is further processed by
filtering certain information due to time and space constraints. The collected and
useful log information is stored in CIT by assigning an unique integer identifier for
distinct URL. Object modification and user aborted connections are speculated by
monitoring the change in the size of the object. It has been observed that
approximately 92% of the requested objects were cacheable. Among the user
initiated requests it also has been observed that approximately 60% of the requested
objects are one time requests. Table 1 summarizes the access log collected for
observing the performance of the basic cache model in comparison with SAT
model-1, SAT model-2 and SAT model-3 for the three replacement policies,
namely DSLV, SEMALRU and SIZE where DSLV is a combination of three logics
Dynamic, Semantic, and LFU with Victim tracer, SEMALRU considers the
semantic relation of the cached pages and recency and hence the name and SIZE
based replacement policy is considered as such without any variation.

Table 1. Summary of the access log collected for a period of
two months (filtered data set)

Total Requests 144000
Total Contents 1.66 GB
Unique cacheable requests 129600
Total uncacheable requests 6269
Unique cacheable bytes 0.49 GB
Total uncacheable bytes 0.14 GB

The first policy DSLV performs replacement in AS, based on dynamicity,
semantic relation, LFU of the cached pages and also makes use of the victim tracer.
This policy which is a refinement of LFU has conferred a promising result in our
previous work that has made use of DYNASEM [18], which is an augmented policy

 77

with LFU in addition to referring to the trace of victimized pages maintained in the
victim slice. The second policy is based on the semantic relation between the
cached pages and the new incoming page, combined with LRU and hence called as
SEMALRU [19]. The third policy is based on SIZE where the replacement of a
page is done by marking the page with the largest size to get enough room for the
incoming page. If the size of the marked page for purging is not enough to
accommodate the new incoming page, then the same process is repeated until
enough space for the incoming page is acquired in AS. These replacement policies
are implemented only in AS. SS replacement is done with respect to the frequency
of cached pages whereas TS replacement is done only on demand.

5. Performance analysis
For FHR as given in Fig. 8, approximately 23% improvement is attained by DSLV,
18% by SEMALRU and 24% by size based replacement policy. It can also be noted
that SAT model-3 provides a good result for DSLV and SIZE, whereas SEMALRU
performs well in SAT model-1. Since SEMALRU tries to retain semantically
related pages in AS, it demands a smaller size for AS compared to the other two
policies. DSR value as displayed in Fig. 9, is evaluated using BHR and nearly 33%
increase is there for DSLV and 31% increase in SEMALRU in SAT model-1,
whereas 32% hike is achieved in SAT model-3 by SIZE based policy. Fig. 10
illustrates the speed up and for all the three policies SAT model-1 outperforms the
other models, of which DSLV achieves the best improvement compared with the
other two.

The sliced models realize a minimum number of evictions in comparison with
the basic model as shown in Fig. 11 and nearly 24% reduction is obtained by all the
three policies, of which SAT model-1 gives a good result for DSLV and
SEMALRU, whereas SAT model-3 provides a better result for SIZE based policy.
It can be inferred that the size of each slice, especially the ratio between AS and SS
can be presumed based on the user’s interest, and request- set that tries to target a
particular parameter. It can be deduced that in all the above metrics, either SAT
model-1 or SAT model-3 performs well and hence the slice capacity can be
dynamically fixed and customized as per user’s option.

Fig. 8. FHR versus specific replacement

policies for different cache models
Fig. 9. DSR versus specific replacement

policies for different cache models

 78

Fig. 10. Speedup versus specific replacement

policies for different cache models
Fig. 11. Number of evictions versus specific

replacement policies for different cache
models

6. Conclusion

Sliced cache always minimizes the search space and gives appropriate weightage to
user access pattern by identifying one time hit pages with the remaining accessed
pages. It gives a kind of protection to the hot pages that reside in the AS. The entry
and exit of the web pages to cache always materialize through SS. Since the sliced
cache model inherently inherits both the temporal and spatial locality of reference at
the same instance in different slices, the missing parameters of the adopted
replacement policies are incorporated in the proposed cache structure itself. This
factor improves the quality of response for user’s query. TS is efficiently utilized by
making use of the meta data that has been logged before removal of the pages from
either SS or AS. TS size is always freezed to 10% of the total size of the cache and
can be even minimized if the hard disk can be extended to meet this requirement.
TS replacement seldom occurs but needs to be initialized and reset for every login
session. Though the time complexity of a sliced model is relatively more compared
to the basic model, it can be nullified in a multithreaded environment as the read,
write and move operations into each slice can be realized by appropriate threads.
The size of each slice can be dynamically varied and can be customized as per the
users request style to guarantee improved performance. The size of the slices can be
chosen based on the replacement policy implemented and the target parameter to be
tuned. The proposed SAT model has exhibited about 15% to 20% improvement on
average for the above mentioned replacement policies and performance metrics.
The fact that among the user initiated requests about 60% are one-time references,
forms the basis for overall improvement of this proposed SAT model. It can be
ascertained from the result that all the above mentioned replacement policies can
achieve enhanced outcome in terms of most of the crucial parameters used to
evaluate the performance of cache replacement policy when tested with sliced
model. It is evident that the same model will exhibit better performance and will
also substantiate a prudent effect for other web cache replacement policies also.
This sliced model is investigated only with isolated client side cache and a possible
extension to this work could be to experiment the same with co-operative caches

 79

and for caches deployed at intermediate levels and sever side. In such scenario,
speculating the multiple users’ interest and working with multiple co-operative
caches will be a real challenge.
Acknowledgment: The authors would like to thank Mr. N. Ramasubramanian, Associate Professor,
Department of Computer Science and Engineering, National Institute of Technology, Tiruchirappalli
for extending the lab facilities to conduct the simulation work and for his valuable suggestions in
making this work possible.

R e f e r e n c e s
1. W i l l i a m s o n, C. On Filter Effects in Web Caching Hierarchies. – ACM Transactions on

Internet Technology, Vol. 2, 2002, No 1, 47-77.
2. A g g r a w a l, C., J. W o l f, P. S. Y u. Caching on the World Wide Web. – IEEE Transactions on

Knowledge and Data Engineering, Vol. 11, 1999, No 1, 94-107.
3. T e n g, W. G., C. Y. C h a n g, M. S. C h e n. Integrating Web Caching and Web Prefetching in

Client-Side Proxies. – IEEE Transactions on Parallel and Distributed Systems, Vol. 16, 2005,
No 5, 444-455.

4. R i z z o, L., L. V i c i s a n o. Replacement Policies for a Proxy Cache. – IEEE/ACM Transaction
Networking, Vol. 8, April 2000, No 2, 158-170.

5. A r l i t t, M., R. F r i e d r i c h, T. J i n. Performance Evaluation of Web Proxy Cache Replacement
Policies. – Elsevier Performance Evaluation, Vol. 39, February 2000, No 1&4, 149-164.

6. W a n f, J. A Survey of Web Caching Schemes for the Internet. – ACM SIGCOMM Computer
Communication review, Vol. 29, 2006, No 5, 36-46.

7. B a l a m a s h, A., M. K r u n z. An Overview of Web Caching Replacement Algorithms. – IEEE
Communications Surveys, Vol. 6, Second Quarter 2004, No 2, 44-56.

8. P o d l i p n i g, S., L. B o s z o r m e n y i. Web Cache Replacement Strategies. – ACM Computing
Surveys, Vol. 35, 2003, No 4, 374-398.

9. D a v i s o n, B. A Web Caching Primer. – IEEE Internet Computings, Vol. 5, July/August 2001,
No 4, 38-45.

10. W o n g, K i n-Y e u n g. Web Cache Replacement Policies: A Pragmatic Approach. – IEEE
Network, Vol. 20, January/February 2006, No 3, 342-351.

11. R o b i n s o n, T., M. V. D e v a r a k o n d a. Data Cache Management Using Frequency-Based
Replacement. – In: Proceedings of the ACM SIGMETRICS, 1990, 134-142.

12. P r i s c h e p a, V. V. An Efficient Web Caching Algorithm Based on LFU-k Replacement Policy.
– In: Proceedings of the Spring Young Researchers, Colloquium on Database and
Information Systems, 2004.

13. C a l s a v a r a, A., R. G. dos S a n t o s, E. J a m h o u r. The Least Semantically Related Cache
Replacement Algorithm. – In: ACM Latin America Conference on Towards a Latin
American Agenda for Network Research Proceedings of the 2003 IFIP, October 2003, 21-34.

14. R e n, Q., M. D u n h a m, H. K u m a r. Semantic Caching and Query Processing. – IEEE
Transactions on Knowledge and Data Engineering, Vol. 15, 2003, 192-210.

15. S t o l l b e r g, M., M. H e p p, J. H o f f m a n n. A Caching Mechanism for Semantic Web Service
Discovery. – In: LNCS 4825. Vol. 15. Berlin, Springer-Verlag, 2007, 480-493.

16. A r l i t t, F., C. W z p n s o n. Internet Web Servers Workload Characterization and Performance
Implications. – IEEE/ACM Transaction on Networks, Vol. 5, 1997, No 5, 631-645.

17. D e n n i n g, P. J. Virtual memory. – ACM Computing Surveys, Vol. 28, 1996, No 1, 153-189.
18. G e e t h a, K., N. A. G o u n d e n. Dynasem an Improvised Dynamic and Semantic Based Web

Cache Replacement Policy. – International Journal of Advanced Research in Computer
Science, Vol. 2, September-October 2011, No 5, 637-644.

19. G e e t h a, K., N. A. G o u n d e n, S. M o n i k a n d a n. SEMALRU: An Implementation of
Modified Web Cache Replacement Algorithm. – INC-09 International Symposium on
Innovations in Natural Computing IEEE Computer Society, December 2009, 1406-1410.

