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Abstract: The problem of constructing a data table which satisfies available 
knowledge, is one of the most important problems in the field of knowledge 
discovery and data mining. Based on some results in relational database theory, in 
this paper we introduce an algorithm to construct a decision table which satisfies a 
given relation scheme. In the worst case, the time complexity of the proposed 
algorithm is exponential in the number of attributes. 
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1. Introduction 

In the consistent decision table { }( ), , ,DS U C d V f= ∪ , an attribute set B is 

called a reduct of C if B is a minimal set which satisfies the functional 
dependency { }B d→ . In relational databases, if r is a relation over an attribute set 
R then an attribute set B is called a minimal set of an attribute a R∈  if B is a 
minimal attribute set which satisfies the functional dependency { }B a→ . 

Therefore, when the decision table { }( ), , ,DS U C d V f= ∪  can be considered as 

the relation r over the set of attributes { }R C d= ∪ , the concept of reduct in DS is 

equivalent to the concept of minimal sets of the attribute { }d  over r. Given a 

relation scheme ,s R F=< >  over an attribute set { }R C d= ∪ , we have to 
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construct the decision table { }( ), , ,DS U C d V f= ∪  such that the set of all its 

reductions is equivalent to the family of all minimal sets of the attribute d over s. 
This problem can be considered as the problem for constructing a data table which 
satisfies available functional dependencies. This is one of the most important 
problems in the field of knowledge discovery and data mining. 

In this paper, we introduce an algorithm to construct a decision table from a 
given relation scheme. The algorithm is constructed based on some results 
concerning keys, antikeys and minimal sets of an attribute in [1, 2, 9]. In the worst 
case, it shows that the time complexity of the algorithm is exponential in the 
number of attributes. The paper is structured as follows. Section 2 presents some 
basic concepts in relational database and rough set theory. Section 3 proposes some 
basic algorithms in relational databases. Section 4 comes up with an algorithm to 
construct a decision table from a given relation scheme.  

2. Basic concepts 

2.1. Basic concepts of a relational database 

In this section we briefly present the main concepts of the theory of relation 
database which will be needed in sequel. The concepts and facts given in this 
section can be found in [1-4, 8, 9]. 

Let  { }1,..., nR a a=  be a finite set of attributes. For each attribute ai there is a 

nonempty set ( )iD a  of possible values of this attribute. An arbitrary finite subset 

of the Cartesian product ( ) ( )1 ...× × nD a D a  is called a relation over R. Clearly, a 

relation over R is a set of mappings ( ):
∈

→ U
a R

h R D a , where ( ) ( )∈h a D a  for all 

∈a R . 
Let { }1,..., mr h h= be a relation over { }1,..., nR a a= . A functional 

dependency (FD for short) over R is a statement of the form A B→ , where 
,A B R⊆ . FD A B→  holds in a relation r over R if 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( ),i j i j i jh h r a A h a h a b B h b h b∀ ∈ ∀ ∈ = ⇒ ∀ ∈ = . Let 

( ){ }, : , ,rF A B A B R A B= ⊆ → , rF  is called a full family of functional 

dependencies in r. Let R be a finite set and denote by P(R) its power set, we say that 
F is an f-family over R iif for all , , ,A B C D R⊆ : 
(1)   (A, A) ∈ F, 
(2)   (A, B) ∈ F, (B, C) ∈ F ⇒ (A, C) ∈ F, 
(3)   (A, B) ∈ F, A⊆C, D⊆B ⇒ (C, D) ∈ F, 
(4)   (A, B) ∈ F, (C, D) ∈ F ⇒ (A∪C, B∪D) ∈ F. 
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Clearly, rF  is an f-family over R.  It is known that if F is an arbitrary f-family 

over R, then there is a relation r such that rF F= . F + is the set of all FDs which 
can be derived from F by rules (1)-(4).  

A relation schema s is a pair ,R F< > , where R is a set of attributes and F is a 

set of FDs on R. Denote { }{ }+ += ∈ → ∈A a R A a F , A+  is called the closure of 

A on s.  It is clear that A B F +→ ∈ iif B A+⊆ .  Let r be a relation, ,s R F= < >  
be a relation scheme and A R⊆ . Then A is a key of r (a key of s) if 

( )+→ → ∈A R A R F . A is a minimal key of r (s), if A is a key of r (s) and any 

proper subset of A is not a key of r(s). Denote by ( )r sK K  the set of all minimal 

keys of  r(s). ( )P R⊆K  is a Sperner-system if for any 1 2,K K ∈K  implies 

1 2⊄K K . Clearly, ( )r sK K  are Sperner-systems. 
Let K  be a Sperner-system over R as the set of all minimal keys of s . We 

defined the set of antikeys of K, denoted by 1−K , as follows: 
( ) ( ){ }1 :A R B B A− = ⊂ ∈ ⇒ ⊄K K  and if 

( ) ( )( )A C B B C⊂ ⇒ ∃ ∈ ⊆K . 

It is easy to see that 1−K  is the set of subsets of R, which does not contain the 
elements of K  and which is maximal for this property. They are the maximal non-
keys. Clearly, 1−K  is also a Sperner-system. 

Let r be a relation over R. Denote { }ij :1r E i j r= ≤ < ≤E , where 

( ) ( ){ }ij : i jE a R h a h a= ∈ = . Then rE  is called an equality set of r. It is known 

[4] that for ⊆rA R , ij
+ = ∩rA E , if there exists ij ij:rE A E∈ ⊆E , otherwise 

+ =rA R . In the next content we introduce some definitions about the family of all 
minimal sets of  an attribute over a relation and a relation scheme. 

Definition 1 [2]. Let ( ),s R F=  be a relation scheme over R and a R∈ . Set 

{ }: ,s
a A R A a= ⊆ → ∃K { }( )( ){ }:B B a B A→ ⊂ . s

aK  is called a family of 

minimal sets of the attribute a over s. 
Similarly, we define the family of minimal sets of an attribute over a relation. 
Definition 2. Let r be a relation over R and a R∈ . Set 

{ }: ,r
a A R A a= ⊆ → ∃K { }( )( ){ }:B R B a B A⊆ → ⊂ . r

aK  is called a family 

of minimal sets of the attribute a over r. 
It is clear that { } { }, , ,s r s r

a a a aR R a a∉ ∉ ∈ ∈K K K K  and s
aK , r

aK  are 
Sperner systems over R. 
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2.2. Basic concepts of rough set theory 

In this section we introduce some basic concepts in rough set theory [5, 6, 7] 
A decision table is defined as { }( ), , ,DS U C d V f= ∪ , in which 

{ }1 2, ,...,= nU u u u is the finite & non-empty set of objects, { }1 2, ,...,= mC c c c  the 
set of condition attributes, D is the set of decision attributes and C D∩ =∅ , 

∈ ∪

= ∏ a
a C D

V V where Va  is the value range of the attribute a, ( ): × ∪ →f U C D V  is 

an information function, where ,∀ ∈ ∪ ∈a C D u U , ( ), ∈ af u a V  hold. Without 
loss of generality, suppose that D consists of the only one decision attribute d (in case 
D consists of many attributes then we assign an attribute to D by encoding). 
Therefore, from this time we consider the decision table { }( ), , ,DS U C d V f= ∪ , 

where { }∉d C . 
Every attribute subset ⊆ ∪P C D  determines an indiscernibility relation 

( ) ( ) ( ) ( ){ }, , , ,= ∈ × ∀ ∈ =IND P u v U U a P f u a f v a . 

IND(P) determines a partition of U which is denoted by /U P . Any element 

[ ] ( ) ( ){ },
P

u v U u v IND P= ∈ ∈  in /U P  is called an equivalent class. 

With B C⊆  and X U⊆ , B-upper approximation of  X is the set 

[ ]{ }= ∈ ∩ ≠∅
B

BX u U u X , and B-lower approximation of X is the set 

[ ]{ }= ∈ ⊆
B

BX u U u X , and B-boundary of X  is the set ( ) \=BBN X BX BX  

and  B-positive region of D is the set ( ) ( )
/

B
X U D

POS D BX
∈

= U . A decision table DS 

is consistent iif ( )CPOS D U= , in other words the functional dependency 

{ }C d→ is true. Conversely, DS is an inconsistent decision table and 

then { }( )CPOS d  is the maximum subset of U that the functional dependency 

{ }C d→  is true. 
In rough set theory, P a w l a k [5] proposes the definition of a reduct, called  

the reduct based on a positive region. 
Definition 3. Let { }( ), , ,DS U C d V f= ∪ be a decision table. If B C⊆  

satisfies 
1) ( ) ( )B CPOS D POS D= , 
2) { }, ( ) ( )CB bb B POS D POS D−∀ ∈ ≠  then B is called a reduct of C.  

If DS is a consistent decision table, B is an attribute reduction of C if B 
satisfies { }B d→  and ' ,B B∀ ⊂ ' →B { }d . Let ( )RED C  be the set of all 
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reducts of C. From Definition 2 and 3 we have ( ) { }r
dRED C d= −K  where r

dK  is 

the family of all minimal sets of the attribute { }d over { },r U C d=< ∪ > . 

3. Basic algorithms in relational database 

Let us give some basic algorithms in relational database that are used in the next 
section. 

3.1. Algorithm for finding the set of antikeys 

Algorithm 1 [1, 9]. Finding the set of antikeys 1−K from a given Sperner-
system. 

Input: Let { }1,..., mB B=K be a Sperner-system over R. 

Output: 1−K . 

Step 1. We set { }{ }1 1:R a a B= − ∈K . It is obvious that { } 1
1 1B −=K . 

Step q+1. (q<m). Assume that { }1,...,q q tqF X X= ∪K , where 1,..., tqX X  are 

elements of K containing 1qB +  and 1:q q qF A K B += ∈ ⊆{ }A . For all 

( )1,..., qi i t=  we construct the antikeys of { }1qB + on iX  in an analogous way 

as 1K , which are the maximal subsets of iX  not containing 1qB +  . We denote them 

by 1 ,...,i i
riA A . Let 

{ }1 : ,1 ,1i i
q q p q p q iF A A F A A i t p r+ = ∪ ∈ ⇒ ⊄ ≤ ≤ ≤ ≤K . 

Finally, let 1
m

− =K K . 

Clearly, because K and 1−K  are uniquely determined by one other, the 
determination of 1−K ,  based on our algorithm does not depend on the order of 

1,..., mB B . 

Computational complexity analysis of Algorithm 1 

Denote by qI  the number of elements of qK . According to [1, 9], the time 

complexity of the algorithm in the worst case is 
1

2

1

−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
m

q q
q

O R t u  where = −q q qu I t  if 

>q qI t  and  uq = 1 if =q qI t . 
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R e m a r k s 

Remark 1. In each step of the algorithm, qK  is obviously a Sperner-system. It 
is known [1, 9] that the size of an arbitrary Sperner-system over R can not be 
greater than [ ] ( )/2 1/2 1/22 / .+≈ ∏n n

nC n  where =n R . Consequently, the worst-case 

time of the algorithm can not be more than exponential in the number of attributes. 
Remark 2. In cases for which ( ):1 1q mI I q q m≤ ∀ ≤ ≤ − , the time 

complexity of the algorithm is not greater than ( )22 1O R −K K . Thus, in these 

cases the algorithm finds 1−K  in polynomial time in ,R K  and 
1−K .  

Especially, when 
1, −K K  is small,  this algorithm is effective.  

3.2. Algorithm for finding the family of all minimal sets of an attribute over a 
relation scheme. 

Algorithm 2 [2]. Finding a minimal set of the attribute a. 
Input: Let { }( )1,..., ,ns R a a F= = be a relational scheme, a = {a1}. 

Output: A ∈ s
aK . 

 
Step 1. We set (0)L R= . 
Step i+1. ( ) 1( 1) iL i L i a ++ = −  if ( ) { }1iL i a a+− → , 

( )( 1)L i L i+ =  otherwise. 

Then ( )A L n= . 

According to [2], the computational complexity of Algorithm 2 is ( )2O R F . 

Algorithm 3 [2]. Finding a family of all minimal sets of the attribute a. 
Input: Let ( ),s R F=  be a relational scheme and a ∈ R. 

Output: s
aK . 

 
Step 1. Set { }1(1)L E a= = . 

Step i+1. If there are C and A B→  such that 
( ) ( ), ,C L i A B F E L i E∈ → ∈ ∀ ∈ ⇒ ⊆ ( )A C B∪ − , then by Algorithm 2 construct 

an 1iE+ , where ( )1 1, s
i i aE A C B E K+ +⊆ ∪ − ∈ . We set ( ) 1( 1) iL i L i E ++ = ∪ . In 

the converse case we set ( )s
a L i=K . 
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It is known [2] that the worst-case time complexity of this algorithm is 

( )( )s s
a aO R F R +K K . Thus, the time complexity of this algorithm is 

polynomial in ,R F  and s
aK . According to Algorithm 3.1, the worst-case time 

of the algorithm cannot be more than exponential in the number of attributes. 
Clearly, if the number of elements of s

aK  for a relational scheme ( ),s R F=  is 

polynomial in the size of s, then this algorithm is effective. Especially when s
aK  is 

small. 

4. Algorithm for constructing a decision table from a relation scheme 

Problem. Given a relational scheme ,s R F=< >  where { }R C d= ∪  and F is the 
set of functional dependencies over R. We have to construct the decision table 

{ }( ), , ,DS U C d V f= ∪  such that ( ) { }s
dRED C d= −K  where s

dK  is the 

family of all minimal sets of the attribute d over s and ( )RED C  is the set of all 
reducts of C in DS. 

Algorithm 4. Constructing a decision table from a relation scheme. 
Input: Let ,s R F=< >  be a relation scheme, where { }R C d= ∪  and F is 

the set of functional dependencies over R. 
Output: The decision table { }( ), , ,DS U C d V f= ∪ such that 

( ) { }s
dRED C d= −K .  

Step 1. From ,s R F=< > , using Algorithm 3 we calculate s
dK .  

Step 2. From s
dK , using Algorithm 1 we calculate ( ) 1s

d d

−
=M K . We assume 

that { }1 2, ,...,d tA A A=M . 

Step 3. We construct the decision { }( ), , ,DS U C d V f= ∪  where 

{ }0 1, ,..., tU u u u= , as follows:  

• For all c C∈ , we set ( )0 0u c = .  Set ( )0 0u d = .  

• For all ( )1,...,i i t= , we set ( ) 0iu c =  if ic A∈ ;  ( )iu c i=  otherwise. Set 

( )iu d i=  for all ( )1,...,i i t= . 

In the next content, we prove ( ) { }s
dRED C d= −K . 

P r o o f: According to the method to construct the relation r we have 
1 1−=i iE A  where 2 1≤ ≤ +i t  and 1 1= ∩ij i jE A A  where 2 1≤ < ≤ +i j t , so 
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1 1ij i jE E E= ∩  or 1 1,⊂ ⊂ij i ij jE E E E  where 2 1≤ < ≤ +i j t . Therefore, the set 

{ }1 :1 1iE i t= ≤ ≤ +M  has the property A∀ ∈ ⇒ ∃M{ }:B A B∈ ⊂M . 

According to the definition of a maximal equality system rM  over r, we have 

{ }1 : 2 1r iE i t= ≤ ≤ +M .  Hence 

(5)  ( ) { }
1

1 2, ,...,s
r d d tA A A

−
= = =M M K .  

In the next content, we prove ( ) 1r
r d

−
=M K where r

dK  is the family of all 

minimal sets of the attribute d over r. 
1) For rA∈M  we have + =A A , and A does not contain d  so A+  does not 

contain d, hence { }A d F +→ ∉ . Moreover, if there is a B such that A B⊂ , 
according to the method to calculate the closure of an attribute set over a relation 
we have B R+ =  and B+ contains d, or { }B d F +→ ∈ . According to the results in 
[2],  

( ) ( )1
MAX ,r

d rF d
− +=K  

where  

( ) { } { }{ }MAX , : ,rF d A R A d F A B B d F+ + += ⊆ → ∉ ⊂ ⇒ → ∈ , 

so we conclude ( ) 1r
dA

−
∈ K . 

2) Conversely, if ( ) 1r
dA

−
∈ K  then obviously A R≠ . If there is a B such that 

A B⊂  and A B→ , then by the definition of antikeys we have { }B d→ and 

{ }A d→ . This is a contradiction. So there does not exist a B such that A B⊂ and 

A B→ , that is, A A+ =  holds. Moreover, according to the definition of antikeys 
too, if there exists 'B R≠  such that 'A B⊂ , then { }'B d→  or { } 'd B +⊂ . 

Therefore, A is the maximal set which satisfies A A+=  and A does not contain d  
(i). On the other hand, over the relation r constructed for any rB∈M  we have 

B≠R, B B+= and B does not contain d. If there is a D such that B⊂D then D+ = R 
or {d}⊂ D+. Therefore,  rM  is the set of all maximal sets B which satisfies 

B B+=   and B does not contain d  (ii). From 1) and 2) we can conclude rA∈M . 
From 1) and 2) we obtain  

(6)  ( ) 1r
r d

−
=M K .  
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From (5) and (6) we have ( ) ( )1 1r s
d d d

− −
= =K M K , or r s

d d=K K  . From the 

results of Definition 3 we have ( ) { }s
dRED C d= −K . 

Computational complexity analysis of Algorithm 4: 

It is easy to see that the time complexity of Step 1 computing s
dK  is  the time 

complexity of Algorithm 3. The time complexity of Step 2 

computing ( ) 1s
d dM

−
= K  is the time complexity of Algorithm 1. Consequently, the 

worst-case time of the algorithm cannot be more than exponential in the number of 
attributes.  

Example 1. Let ,s R F=< >  be a relational scheme, where 

{ } { }, , , , , ,R a b c d C a b c= =  and the set of functional dependencies 

{ } { } { } { } { }{ }, , , , , , , ,F a c R a a b d b c b c d= → → → .  

Using Algorithm 3, we compute { } { } { }{ }, , ,s
d a d b c=K . 

Using Algorithm 1, we compute ( ) { } { }{ }1
,s

d dM b c
−

= =K . 

As a result, the consistent decision table DS is constructed in Table 1. 
Table 1 

U A b c d 
u0 0 0 0 0 
u1 1 0 1 1 
u2 2 2 0 2 

5. Conclusion 

Based on some results concerning keys, antikeys and minimal sets of an attribute of 
J. Demetrovics  and Vu Duc Thi in [1, 2, 9], we propose an algorithm to construct a  
decision table { }( ), , ,DS U C d V f= ∪ from a given relation scheme ,s R F=< >  

where { }R C d= ∪ . We prove that the set of all reducts in the obtained decision 

table is equivalent to the family of all minimal sets of the attribute { }d . In other 

words, the functional dependencies { }iB d→  must be satisfied over s where iB  is 
an attribute reduct of C. In the worst case the time complexity of the algorithm is 
exponential in the number of conditional attributes. The problem of constructing a  
decision table from a given relation scheme can be considered as a problem of 
constructing a data table which satisfies available  knowledge. This is one of the 
important problems in the field of knowledge discovery and data mining. 
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