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Abstract: The definition of the Parametric of Inclusion Degree (PID) of the 
intuitionistic fuzzy sets on the basis of the weak intuitionistic fuzzy implication is 
presented in the paper. The axioms, which the inclusion measure must fulfill, 
noticed in recent literature, are given. The theorems present which of the axioms 
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the basic axioms, although some in a “soft” way, it can be an alternative to other 
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1. Brief introduction to Intuitionistic Fuzzy Sets (IFS) 

In 1965 L. A. Zadeh defined the fuzzy set as   
Z = {(x, μZ(x)) : x∈U}, 

where μZ(x) is the value of function μZ: U→ [0, 1] on a universe U, called the 
membership function. The family of all fuzzy sets on the universe U we denote as 
FS(U). 

In 1983 K. Atanassov defined some generalization of Zadeh’s fuzzy sets. 
Definition 1. Intuitionistic fuzzy set A on a universe U≠∅ is understood as 

A = { (x, μA(x), νA(x)) : x∈U }, 
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where Aμ  and Aν are functions from U to a closed interval [0, 1], and for every x∈U  
μA(x) + νA(x) ≤ 1 holds. 

The values μA(x) and νA(x) are, respectively, the degree of membership and the 
degree of non-membership of element x to the set A. We would understand A(x) as  
a couple 〈μA(x), νA(x)〉. 

Unlike in classical fuzzy sets, the values of μA(x) and νA(x) are independent on 
each other (omitting μA(x) + νA(x) ≤ 1). The family of all intuitionistic fuzzy sets on 
U we denote as IFS(U). 

As classic fuzzy sets are associated with fuzzy logic, the IFSs are associated 
with the so called Intuitionistic Fuzzy Logic (IFL). In this logic the truth-value of 
the propositional variable p is given by an ordered couple 〈a, b〉, where a, b,  
a+b ∈[0, 1].  

This pair will be called an Intuitionistic Fuzzy Value (IFV), and the set  
{〈a, b〉∈ [0, 1]2: a +b ≤ 1} will be denoted by L. The numbers a and b are 
interpreted as the validity- and non-validity-degree of the variable p. The truth-
value of the variable p we denote by V(p).  

The variable with a truth-value true in classical logic is denoted by 1 and the 
variable false by 0. For this variables holds also V(1) = 〈1, 0〉 and V(0) = 〈0, 1〉.  

Moreover, some kind of “fuzzy” truth-value is distinguished. 
We call the variable x an Intuitionistic Fuzzy Tautology (IFT) when for       

V(x) = 〈a, b〉 holds: a ≥ b and, similarly, an Intuitionistic Fuzzy co-Tautology 
(IFcT), if  a ≤ b holds. The IFT is therefore a variable “at least as true as false” or 
“rather true”. 

For every x we can define the value of negation of x in the typical form V(¬x) 
= 〈b, a〉. 

Consequently, the set Ac = {(x, νA(x), μA(x)) : x∈U} is the standard complement 
of  A. 

In intuitionistic fuzzy propositional calculus, Intuitionistic Fuzzy Implication 
is an important operator. 

Definition 2. The weak intuitionistic fuzzy implication1 is a mapping ⇒ 
fulfilling for any variable p, p1, p2, q, q1, q2 the properties: 
(i1) if V(p1) p  V(p2) then V(p1 ⇒ q) f  V(p2 ⇒ q), 

(i2) if V(q1) p  V(q2) then V(p ⇒ q1) p  V(p ⇒ q2), 

(i3) 0 ⇒ q  is an IFT, 
(i4) p ⇒ 1  is an IFT, 
(i5) 1 ⇒ 0  is an IFcT, 
where p  is a fuzzy ordering relation in the set of an intuitionistic fuzzy variable. 

                                                 
1 Definition 2 is given based on the definition of fuzzy implication (B a c z y ń s k i, J a y a r a m  

[3, p. 2]). 



 14

For the variable p and q with V(p) = 〈a, b〉 and V(q) = 〈c, d〉 we denote 
V(p) pV(q) if and only if a ≤ c and b ≥ d. 

We call this implication weak implication because properties (i3), (i4) and (i5) 
are also given in the typical, strong form V(0 ⇒  q) = V(p ⇒  1) = 〈1, 0〉 and  
V(1 ⇒  0) = 〈0, 1〉. 

There are many postulated properties in literature, which the fuzzy implication 
must meet. Significantly fewer properties are given exactly for the intuitionistic 
fuzzy implication. They are usually extensions of the fuzzy implications axioms. 
The main ones are given below. 

2. Strict and graded inclusion in intuitionistic fuzzy environment 

In theory, both classical sets and their generalizations, as well as suggestions to use 
the concept of inclusion, is very important. In the case of vague sets the inclusion is 
not determined unambiguously. It is related to the various definitions of multi-
valued implications, different concepts of cardinalities, or even with an ambiguous 
definition of inclusion. In intuitionistic fuzzy environment the problems are similar.  

In this paper the conditions that the measure of inclusion must fulfill, are 
presented in a brief literature overview. A parametric inclusion degree based on the 
weak intuitionistic fuzzy implication is introduced.  

In the paper Fuzzy Sets, L. A. Zadeh gives a basic definition of the inclusion of 
two fuzzy sets. Denoted by ⊆FS inclusion in Zadeh’s sense, this definition can be 
written as follows. 

Definition 3. Let Y, Z ∈ FS(U). It is Y ⊆FS Z   iff    ∀x∈U:  μY(x) ≤ μZ(x). 
This definition allows the stating of a kind of absolute, strict inclusion. 

Therefore in this case, the varying degrees of inclusion relationships are not 
highlighted. So other, different definitions of the inclusion, with an inclusion degree 
in the interval [0, 1] are considered. Formally, this degree is a value of the mapping 
IFS: FS(U)×FS(U) → [0, 1], and must meet certain conditions. 

An extension of this idea is the definition of the IFSs inclusion. 
Definition 4. Let A, B ∈ IFS(U). It is A ⊆IFS B   iff   ∀x∈U:  μA(x) ≤ μB(x) and 

νA(x) ≥ νB(x). 
It is easy to notice that the inclusion stated in this way, is also “rigid”. It allows 

us to respond negatively to both the inclusion of sets  A={(x, 1, 0): x∈U}  and 
B={(x, 0, 1): x∈U}, and sets with identical membership function and non-
membership function different only at one point  x0∈U, in which νA(x0) < νB(x0). 

Due to the doubts depicted in the example above, different definitions of 
inclusions and inclusions degree are also introduced for IFSs. 

Using the operators □ and ◊ given by Atanassov as  
□A = {(x, μA(x), 1– μA(x)): x∈U}, 

and 
◊A = {(x, 1–νA(x),  νA(x)): x∈U}, 

we can consider also a weaker inclusion in the form 
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A ⊆□ B iff  ∀x∈U:  μA(x) ≤ μB(x), 
or 

A ⊆◊ B iff  ∀x∈U:  νA(x) ≥ νB(x). 
We denote that these two inclusions are really the crisp inclusions of fuzzy 

sets, because □A, ◊A∈FS(U). 
Another generalization is the proposal of the designate of the inclusion degree 

using the mapping IIFS: IFS(U)×IFS(U) → [0, 1], with real values or  IDIFS: 
IFS(U)×IFS(U) → L with intuitionistic fuzzy values. 

While defining the degree of inclusions it is most often considered what set of 
axioms must be adopted for function IIFS  and what − for IDIFS  so that their values 
could be considered as inclusion degrees. The axioms proposed are usually an 
extension of the axioms known for fuzzy sets. In various sources there is no 
compliance, even with respect to their canon. Usually the axioms proposed are a 
consequence of the approach given by S i n h a  and D o u g h e r t y [14], and also, 
independently, by K i t a i n i k [10]. The analysis of the work of Sinha, Dougherty 
and Kitainik is contained in [6]. 

C o r n e l i s  and K e r r e [7] extend the approach given also in [6]. 
According to them an intuitionistic fuzzy inclusion measure Inc is an  
IFS(U) × IFS(U) → L mapping fulfilling: 
(CK 1) Inc(A, B) = Inc(Bc, Ac); 
(CK 2) Inc(A, B∩C) = INF(Inc(A, B), Inc(A, C)),  
where B∩C denotes the classical intersection with (B∩C)(x) = INF(B(x), C(x)) = 

= INF(〈μB(x), νB(x)〉, 〈μC(x), νC(x)〉) 
def
= 〈min(μB(x), μC(x)), max(νB(x), νC(x))〉; 

(CK 3)  Inc(A, B) = Inc(P(A), P(B)),  
where P is a IFS(U) → IFS(U) mapping defined for x∈U as P(A)(x) = A(p(x)), and 
p is a permutation of U; 
(CK 4a) Inc(A, B) = 〈1, 0〉  iff A ⊆IFS B ; 
(CK 4b) Inc(A, B) = 〈0, 1〉 iff (∃x∈U: (A(x) = 〈1, 0〉 and B(x) = 〈0, 1〉); 
(CK 4c) if A, B∈ FS(U) then Inc(A, B)∈ D,  
where  D ={〈a, b〉∈L: a+b=1}. 

The properties (CK 1-CK 4) are called contrapositivity, distributivity, 
symmetry and faithfulness, respectively. The property (CK 4c) is called a heritage 
condition. 

V l a c h o s  and S e r g i a d i s [15] and later X i e, H a n  and M i [16] state 
that the subsethood measure or the inclusion measure Inc: IFS(U)×IFS(U) →  
[0, 1]  must fulfill the following properties: 
(VS 1) Inc(A, B) = 1   iff  A ⊆IFS B; 

(VS 2) if   Ac ⊆IFS A   then   Inc(A, Ac) = 0 iff A = UIFS,  
where  UIFS ={(x, 1, 0): x∈U}; 
(VS 3a) if  A ⊆IFS B ⊆IFS C  then  Inc(C, A) ≤ Inc(B, A); 
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(VS 3b) if  A ⊆IFS B  then  Inc(C, A) ≤ Inc(C, B). 
L u o  and Y u [12] proposed the inclusion degree function in the form  

Inc: IFS(U)×IFS(U) → [0, 1]  satisfying: 
(LY 1) if   A ⊆IFS B   then   Inc(A, B)=1; 
(LY 2) Inc(UIFS , ∅IFS) = 0, 
where  ∅IFS = {(x, 0, 1): x∈U}; 
(LY 3) if   A ⊆IFS B ⊆IFS C   then   Inc(C, A) ≤ min(Inc(B, A), Inc(C, B)). 

Q u i a n,  L i a n g  and  D a n g  [13], considering the inclusion (not directly 
IFSs ) have established, that the degree for the set A included in set B must be a 
number from the closed interval [0, 1] fulfilling properties (LY 1) and (VS 3b) only. 

In a recent publication G r z e g o r z e w s k i [9] gives a new approach to the 
inclusion degree defining the possible and necessary inclusion degree of IFSs,  but 
he  gives the axioms only for FS, called mapping Inc: FS(U)×FS(U) → [0, 1]  an 
inclusion indicator (or subsethood measure). The indicator must fulfill the axioms 
equivalent to (CK 4a), (CK 4b), (CK 1) and (CK 2), and the fifth axiom: Inc(A, B) = 
Inc(Φ(A), Φ(B)), where Φ: FS(U) → FS(U) is a mapping defined by μΦ(A)(x) = 
μA(φ(x)) with φ denoting a function φ: U→U. 

Let us note that this axiom is “strange” if φ can be any function. Considering, 
for example, U = {t, s} and A = {0/s, 1/t} and B = {0/s , 0/t} if (CK 4a) must be 
satisfied, then  Inc(A, B) ≠ 1 is obtained. However, taking for example a fixed 
function φ(x) = s, we obtain Φ(A) = {0/t, 0/s} = Φ(B) and further Inc(Φ(A), Φ(B))=  
=1≠ Inc(A, B). Maybe some additional conditions must be imposed on function φ, 
probably as in (CK 3). Later in this paper this axiom will not be considered. 

The inclusion degree must be the measure of informing about to what extent, 
how much, the set A is contained in B. Otherwise, this degree can be understood as 
a measure related to the classical definition of the inclusion of A in B, which is as 
follows: 

A ⊆ B   iff   ∀x∈U: (x∈A ⇒class x∈B), 
where ⇒class denoted the classical implication. 

The quantifier “for all” means that the implication must be true for all 
elements of U. If the values of the implications are the IF values , then all of them 
would have the value  〈1, 0〉. This is a very sharp assumption. That is why in the 
fuzzy environment we usually define the inclusion of sets not in the form yes/no, 
but yes, to some degree. 

If we expand the classical definition recognizing the quantifier “for all” as the 
conjunction of all implications for x∈U, we will get the basic method for 
calculating the inclusion degree in the form (based on idea of B a n d l e r and  
K o h o u t [4]): 

Inc(A, B) = 
Ux∈

INF  V(A(x) ⇒ B(x)), 

where  
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Ux∈
INF  (〈a(x), b(x)〉) 

def
= 〈

Ux∈
inf a(x), 

Ux∈
sup b(x)〉. 

We note that an inclusion degree of the IFSs could be defined also in other 
forms, based on the cardinality of the appropriate sets or on the basis of their 
distance. 

3. The parametric inclusion degree 

Lemma 1. The parametric intuitionistic logical connective →γ with a truth-value: 

V(x→γ y) = 
12 +

++
γ

γcb , ,
12

1
+

−++
γ

γda  

where V(x) = 〈a, b〉, V(y) = 〈c, d〉, and γ ∈ ℜ , γ ≥ 1, is a Weak Intuitionistic Fuzzy 
Implication, fulfilling Definition 2 (see: [8]). 

Definition 5.  Let A, B ∈ IFS(U). We call the value 
PID(A, B) = 

Ux∈
INF  V(A(x) →γ B(x)) ∈ L 

a Parametric Inclusion Degree (PID) of  A into B. 

R e m a r k s 

Remark 1. If A = ∅IFS  and  B = UIFS, then PID(A, B)= 
12
2

+
+

γ
γ , 

12
1

+
−

γ
γ  ∈D 

is an IFT and PID(B, A)= 
12 +γ

γ , 
12

1
+

+
γ

γ  ∈D is an IFcT. 

Remark 2. PID(A, B)= 〈1, 0〉  iff γ =1 and A = ∅IFS  and  B = UIFS. 
Remark 3. PID(A, A) is an IFT, but PID(A, A) ≠ 〈1, 0〉. 
Remark 4. There does not exist any x∈U for which PID(A, B) = 〈0, 1〉. 
The following theorems provide fulfillment of the axioms given in the 

references by PID. We note that the axioms (VS) and (LY) relate to the measures of 
the inclusion with values from the interval [0, 1]. In the next theorems we consider 
the adequate (≅) axioms with values in L. 

Theorem 1. The Parametric Inclusion Degree fulfills the axioms: 
a)  (PID 1)≡(CK 1): PID(A, B) = PID(Bc, Ac); 
b)  (PID 2)≡(CK 2): PID(A, B∩C) = INF(PID(A, B), PID(A, C)); 
c)  (PID 3)≡(CK 3): PID(A, B) = PID(P(A), P(B)), 

where P is a IFS(U) → IFS(U) mapping defined for x∈U as P(A)(x) = A(p(x)),  
where p is a permutation of U; 

d)  (PID 4)≡(CK 4c):  
if A, B∈ FS(U), then PID(A, B)∈D ={〈a, b〉∈L: a+b=1}; 

e)  (PID 5)≅(VS 3a): if  A ⊆IFS B ⊆IFS C  then  PID(C, A) p  PID(B, A); 
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f)   (PID 6)≅(VS 3b): if  A ⊆IFS B  then  PID(C, A) p  PID(C, B); 
g)   (PID 7)≅(LY 3):  

if A ⊆IFS B ⊆IFS C, then  PID(C, A) p  INF(PID(B, A), PID(C, B)). 

P r o o f: 

a)   PID(A, B)=
Ux∈

INF V(A(x) →γ B(x)) =
Ux∈

INF
12

)()(
+

++
γ

γμν xx BA ,  

12
1)()(

+
−++

γ
γνμ xx BA  = 

Ux∈
INF  V(Bc(x) →γ Ac(x)) = PID(Bc, Ac). 

b)   PID(A, B∩C) = 
Ux∈

INF V(A(x) →γ (B∩C)(x)) =  

= 
Ux∈

INF V(〈μA(x), νA(x)〉 →γ  INF(〈μB(x), νB(x)〉, 〈μC(x), νC(x)〉) = 

= 
Ux∈

INF
12

))(),(min()(
+

++
γ

γμμν xxx CBA , 
12

1))(),(max()(
+

−++
γ

γννμ xxx CBA  = 

=
Ux∈

INF  ,
12

)()(min⎜⎜
⎝

⎛
+

++
γ

γμν xx BA  ,
12

)()(
⎟⎟
⎠

⎞
+

++
γ

γμν xx CA  

max ,
12

1)()(
⎜⎜
⎝

⎛
+

−++
γ

γνμ xx BA
⎟⎟
⎠

⎞
+

−++
12

1)()(
γ

γνμ xx CA  = 

=
Ux∈

INF INF ⎜⎜
⎝

⎛
+

++
12

)()(
γ

γμν xx BA , 
12

1)()(
+

−++
γ

γνμ xx BA , 

12
)()(

+
++

γ
γμν xx CA , ⎟⎟

⎠

⎞
+

−++
12

1)()(
γ

γνμ xx CA  = 

= INF ,
12

)()(INF⎜⎜
⎝

⎛
+

++
∈ γ

γμν xx BA
Ux

 ,
12

1)()(
+

−++
γ

γνμ xx BA   

Ux∈
INF ,

12
)()(

+
++

γ
γμν xx CA  ⎟⎟

⎠

⎞
+

−++
12

1)()(
γ

γνμ xx CA  = 

= INF(PID(A, B), PID(A, C)). 
c)   PID(A, B) =

Uy∈
INF V(A(y) →γ B(y)) =

Uxp ∈)(
INF V(A(p(x)) →γ B(p(x))) = 

=
Ux∈

INF V(A(p(x)) →γ B(p(x))) = PID(P(A), P(B)). 

d)    If A, B∈ FS(U)  then  A(x) = 〈μA(x), 1– μA(x)〉  
and  B(x) = 〈μB(x), 1– μB(x)〉. 

Therefore  

PID(A, B) =
Ux∈

INF ,
12

)()(1
+

++−
γ

γμμ xx BA  
12

1)(1)(
+

−+−+
γ

γμμ xx BA  = 
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= ,
12

)()(1inf
+

+−+
∈ γ

μμγ xx BA
Ux

 
Ux∈

sup
12

)()(
+
−+

γ
μμγ xx BA

(*)
=  

= ,
12

)()(11sup1
⎩
⎨
⎧

⎭
⎬
⎫

+
+−+

−−
∈ γ

μμγ xx BA

Ux Ux∈
sup

12
)()(

+
−+

γ
μμγ xx BA  = 

= ,
12

)()(sup1
⎭
⎬
⎫

⎩
⎨
⎧

+
−+

−
∈ γ

μμγ xx BA

Ux Ux∈
sup

12
)()(

+
−+

γ
μμγ xx BA  ∈D. 

The equality (*) holds, because for f(x)∈[0, 1] the property 
Ux∈

inf { f(x)} = 1 – 

Ux∈
sup {1– f(x)} is valid.   

e)   A ⊆IFS B ⊆IFS C  means ∀x∈U: μA(x)≤ μB(x)≤ μC(x)  
and ∀x∈U: νA(x)≥ νB(x)≥ νC(x). 

By definition PID(C, A) =
Ux∈

INF ,
12

)()(
+

++
γ

γμν xx AC  
12

1)()(
+

−++
γ

γνμ xx AC  

and  PID(B, A) =
Ux∈

INF ,
12

)()(
+

++
γ

γμν xx AB  
12

1)()(
+

−++
γ

γνμ xx AB . 

Because  ∀x∈U: νB(x)≥ νC(x), then 

Ux∈
inf

12
)()(

+
++

γ
γμν xx AC ≤

Ux∈
inf

12
)()(

+
++

γ
γμν xx AB and because ∀x∈U: μB(x)≤ μC(x), then 

Ux∈
sup

12
1)()(

+
−++

γ
γνμ xx AC ≥

Ux∈
sup

12
1)()(

+
−++

γ
γνμ xx AB  , therefore  

PID(C, A)p PID(B, A). 
f) Analogous to e). 
g) Readily apparent from e) and f) ■ 

Theorem 2. The Parametric Inclusion Degree does not fulfill the axioms: 
a) (CK 4a)≅(VS 1), but holds 

(PID 8a): if  PID(A, B) = 〈1, 0〉,  then  A ⊆IFS B; 
(PID 8b): if A ⊆IFS B, then  PID(A, B) is an IFT; 

b) (CK 4b), but holds 
(PID 9a): if PID(A, B) = 〈0, 1〉, then (∃x∈U: (A(x) = 〈1, 0〉 and B(x) = 〈0, 1〉); 

(PID 9b): if ∃x∈U: (A(x) = 〈1, 0〉 and B(x) = 〈0, 1〉), then PID(A, B) is an IFcT; 
c) (VS 2); 
d) (LY 1); 
e) (LY 2). 

P r o o f: 

a) PID(A, B) = 〈1, 0〉 iff 
Ux∈

INF ,
12

)()(
+

++
γ

γμν xx BA  
12

1)()(
+

−++
γ

γνμ xx BA  = 

=〈1, 0〉   
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iff  ∀x∈U:  
12

)()(
+

++
γ

γμν xx BA  = 1  and  
12

1)()(
+

−++
γ

γνμ xx BA  = 0 

iff  ∀x∈U:  μB(x) + νA(x) = 1 + γ  and  μA(x) + νB(x) = 1 – γ. 
Because γ ≥1, then 1 + γ  ≥ 2 and 1 – γ ≤ 0. If PID(A, B) = 〈1, 0〉, then γ =1 and 

∀x∈U:  μB(x) = νA(x) = 1 and  μA(x) = νB(x) = 0. 
So it is obtained ∀x∈U: (A(x) = 〈0, 1〉 and B(x) = 〈1, 0〉), therefore A ⊆IFS B. 
In the other direction, let A ⊆IFS B,  this means  ∀x∈U:  μA(x) ≤ μB(x) and    

νB(x) ≤ νA(x).  

The inequality 
Ux∈

inf
12

)()(
+

++
γ

γμν xx BA ≥
Ux∈

sup
12

1)()(
+

−++
γ

γνμ xx BA  is equivalent to 

Ux∈
inf (νA(x)+μB(x)) ≥

Ux∈
sup (μA(x)+νB(x)–1), and this holds, because ∀x∈U:νA(x)+μB(x)≥0 

and μA(x) + νB(x) –1 ≤ 0.  
In the second case, if it were otherwise, there would exist x∈U such that 

μA(x)+νB(x)–1>0, i. e., μA(x)+νB(x)>1.  
But, from the assumption νA(x)+μB(x) ≥ μA(x)+νB(x), therefore the sum 

νA(x)+μB(x)+μA(x)+νB(x)>2, which is impossible. As a result PID(A, B) is an IFT. 
b) Based on Remark 4, property (PID 9a) is (formally) fulfilled.   
The property (PID 9b) is fulfilled because if ∃x∈U:A(x)=〈1, 0〉 and B(x)=〈0, 1〉, 

then  

Ux∈
inf

12
)()(

+
++

γ
γμν xx BA = 

12 +γ
γ   and  

Ux∈
sup

12
1)()(

+
−++

γ
γνμ xx BA =

12
1

+
+

γ
γ , 

and because 
12 +γ

γ ≤
12

1
+

+
γ

γ , so PID(A, B) = 
12 +γ

γ , 
12

1
+

+
γ

γ  ∈ D is an IFcT. 

c) Readily apparent from Definition 5 and Remark 4. 
d) Readily apparent from Theorem 2 a)  and (PID 8b). 
e) Readily apparent from Definition 5 and Remark 4 ■ 
R e m a r k s 
Remark 5. If A ⊆IFS B, then  PID(A, B) f  PID(B, A). 
P r o o f: Let A ⊆IFS B.  By definition  

PID(A, B) = 
12

)()(inf
+

++
∈ γ

γμν xx BA
Ux

, 
Ux∈

sup
12

1)()(
+

−++
γ

γνμ xx BA , 

PID(B, A) = 
12

)()(inf
+

++
∈ γ

γνμ xx BA
Ux

, 
12

1)()(sup
+

−++
∈ γ

γμν xx BA

Ux
. 

Since ∀x∈U: μA(x) ≤ μB(x) and νB(x) ≤ νA(x), and therefore 

Ux∈
inf

12
)()(

+
++

γ
γμν xx BA =

12
)()( 00

+
++

γ
γμν xx BA ≥ 

12
)()( 00

+
++

γ
γνμ xx BA ≥ 

Ux∈
inf

12
)()(

+
++

γ
γνμ xx BA  

and similarly,  

Ux∈
sup

12
1)()(

+
−++

γ
γνμ xx BA  ≤ 

Ux∈
sup

12
1)()(

+
−++

γ
γμν xx BA . 
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Finally, PID(A, B) f  PID(B, A) ■ 
Remark 6. The property (PID 5) can be extended to:  

(PID 5a): if  A ⊆IFS B, then  PID(B, C) p  PID(A, C). 
Remark 7. The property (PID 9b) can be extended to the form  

(PID 9c): if ∃x0∈U: scoreA(x0) – scoreB(x0) ≥1, then PID(A,B) is an IFcT, where 
scoreA(x):= μA(x) – νA(x). 

Namely it is  

Ux∈
inf

12
)()(

+
++

γ
γμν xx BA ≤

12
)()( 00

+
++

γ
γμν xx BA

(*)
≤

12
1)()( 00

+
−++

γ
γνμ xx BA ≤ 

≤
Ux∈

sup
12

1)()(
+

−++
γ

γνμ xx BA ,  

and inequality (*) holds therefore from the assumption, ∃x0∈U: μA(x0) – νA(x0) –       
– μB(x0) + νB(x0)≥1, which is equivalent to νA(x0) + μB(x0) ≤ μA(x0)+ νB(x0)–1. 

4. Conclusion 

The definition of the parametric degree of inclusion of intuitionistic fuzzy sets on 
the basis of weak intuitionistic implication is presented in the paper. The axioms, 
which must fulfill the inclusion measure, noticed in recent literature, are given. The 
theorems indicate which of the axioms are met and which are not met, by the newly 
introduced inclusion degree PID. Since PID fulfills the basic axioms, although some 
of them in a “soft” way, it can be an alternative to other, more “hard” measures of 
inclusion. Some properties may be difficult to accept − for example, the contained 
in Remark 3, property PID(A, A) ≠ 〈1, 0〉. We note, however, that the properties of 
PID allow its use in some applications, for example, to determine the optimal 
solution based on the level of inclusion of the IFS describing, the solution and IFSs 
describing, the best or worst solution. 
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