
 65

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 11, No 2

Sofia • 2011

An Approach for Automatic Transmission of Authenticated
Data over Computer Networks

Nikolay Dokev, Ivan Blagoev
New Bulgarian University, 1618 Sofia
E-mails: n.dokev@nbu.bg blagoev.i@gmail.com

Abstract: This article presents an approach for automated transmission of
authenticated data over computer networks. We discuss some of the more popular
approaches widely used to authenticate web site users and their shortcomings.
Some web spoofing attacks are also considered that may be used for temporary
diversion of information and possibly changing or replacing its contents without the
knowledge of the sender. We propose as a solution to this problem the developed
specialized system “Signer and sender through HTTP” and describe the
technologies used and the various modules and steps comprising the system. Some
experimental resuts are shown.

Keywords: Network communications, security, digital signatures.

1. Introduction

There are more and more cases in which it is essential that the data being sent or
received is authenticated (unaltered). Although there is a number of widely
available tools for information authenticity, they require the involvement and
assistance of an operator [3]. The purpose of this article is to present an approach
for automated transmission of authenticated data over computer networks. This will
increase the reliability of the communication and will reduce the need for an
intervention by a person (an operator) which is otherwise a part of the process.

The analysis of existing similar software systems shows that there are few
publications about such systems and most of them are dedicated to the particular
problem being solved. In three similar publications [1-3] there is discussion of the

 66

problems being analyzed which makes it evident that these systems were built for
authenticated transmission of specific types of data.

The first article describes a software system designed for transmission of
binary data over computer networks which are to be authenticated by digital signing
[1]. Since the binary data in question is in a ready for execution stream, the risks
that the data can be compromised and become a security threat are completely real.
For example, such data are sent between computers when watching online video,
listening to music or receiving images. The author has brought up the security
issues related to sending binary data and has suggested approaches for solving this
problem. A significant obstacle in this task is the fact that the data arrive
sequentially in a stream and can be of a large quantity. This leads to difficulties in
their authentication before they are transferred completely, because the hash
confirming their state should be generated at the last stage before the final validity
check of the digital signature.

The second article offers a solution for transferring data to a web service [2].
The data are digitally signed using a XML signature format and are packaged as a
SOAP object which is then sent over any communication protocol. After receiving,
the data are validated and accepted if they pass the digital signature check. The
author’s chosen area of investigation is again concerning the problems in
exchanging data between applications that communicate over computer networks.
A solution is offered to prevent such problems, which relies on XML format for a
digitally signed object that can be validated by a given web service.

The third article also deals with the validation of data passing through
firewalls [3]. In this case transmission of authenticated data over computer
networks is being used. The main issue with this system is that the data is not
authenticated while passing through the firewall and cannot be verified, particularly
if encryption has been applied in addition to the digital signature. This is because
the data are first signed and then encrypted. For this reason the authors have
proposed an approach which allows the signing of encrypted data but in a way that
makes it possible to verify the digital signature. Thus, after having put the firewall
in operation, they are able to solve the problem and allow the encrypted data to
reach the user, but only after verification.

The software system proposed in the present paper aims to avoid these and
other shortcomings by using a combination of different technologies.

The main difference between the software system proposed and the ones above
mentioned is in the purpose set and in the implementation approach. For example,
the proposed system relies on a specially designed web service which automatically
receives the whole content and performs authentication of the data and their sender.
If the data are unaltered, they are passed to the corresponding application and
rejected otherwise. In both cases the user is notified. The system developed may be
used for transmitting various authenticated information from many clients to one or
between two users. On the other hand, it can make use of both licensed digital
certificates and unlicensed ones that have been generated by the users themselves.

One of the goals of the present paper is to demonstrate how such a product can
be developed, what modules comprise it and what technologies can be used.

 67

To confirm the necessity of such a system, this article analyzes some of the
most popular methods for authenticating a sender and the information being sent, as
well as their shortcomings.

Some of the more widely used approaches for web site user authentication are
given below [3].

• Transmitting data through the web by user name and password
authentication [10]. This is the most common approach, but in its basic form, also
the most vulnerable. The user enters his user name and password in the specified
form fields, which are then sent as a plain text to the server. Some web sites also
use e-mail-based authentication in order to be more confident about the user’s
identity, but even then we may doubt whether that person’s e-mail is not being read
by someone else. The web authentication user name and password may also be
compromised by interception and eaves dropping on the network traffic. Even if the
traffic between the web site and the user is protected by some kind of encryption,
this approach still poses a lot of vulnerabilities.

• Data encryption using a symmetric key algorithm [1-3]. This type of
data encryption uses the same key for both encrypting and decrypting the
information. Transferring data on the web is actually contrary to this type of
information protection, particularly if we want to be able to identify the source. If
the key is sent over the public web, using HTTP or another protocol, we cannot be
sure how many people besides us and the recipient may possess it. Therefore the
application of this approach requires that we combine it with other types of
encryption, for example, asymmetric key algorithms which allow the transmission
of the symmetric key encoded through asymmetric cryptography. But even in this
case we cannot be certain that we have received an unique key known only to us
and our correspondent. We also do not know whether his computer has not already
become a victim of a hacker who may have stolen that symmetric key.

• Data encryption using an asymmetric key algorithm [4-6, 16]. This
approach to encoding the data is one of the most secure in case we want to keep
them hidden from view. Based on what has been said so far and mentioning the
term “asymmetric”, it should be clear that the technology uses a key pair – a public
and a private key. If we own a key pair, we may provide our public key to someone
who wants to send us confidential information. After the sender encrypts and sends
the message, it is assumed that only we can decrypt and read it again. After the data
has been encrypted, it may not be accessed in this form even by the message author
who sends it to us. The downside, however, is that even if the information is well
secured, there is no guarantee that it has been sent by a specific author. Anyone
could have the public key and use it to encrypt and then send us data. Hence this
technology may not be considered to give a solution to the information
authentication problem.

• Data channel encryption via SSL or HTTPS [13]. Encrypting the
connection when using the web and HTTP is a good solution to enhance security as
a whole,which may be combined with other security methods, such as any of the
aforementioned. But, as in the other examples so far, there is no guarantee that we

 68

have identified the sender of the information, which automatically brings us back to
the fundamental problem.

2. Problem description

Suppose that we have a web-based information system receiving user data and that
authentication of the sender is of great importance to us. To make sure we are
protected against spoofing by forgery of data, we have chosen to combine some of
the most popular methods for HTTP data security, some of which have been listed
above. But there is a well-prepared hacker, who is motivated and interested to
mislead our information system, so he plans one of the most dangerous web
spoofing attacks – the man-in-the-middle attack. With this attack, a convincing but
false copy of the entire web site is created. The fake web site looks like the real one,
i.e., it contains all pages and links as in the original. The hacker has full control
over it, so that all network traffic between the client and the web pages passes
through the hacker (Fig. 1).

Fig. 1. All network traffic between the client and the web pages passes through the hacker

During a man-in-the-middle attack, the hacker can monitor or modify any data
being passed from the client to the server. He can also control the entire traffic in
the reverse direction. That means that there is an ample opportunity to modify the
data as they are passing through from the client to the server or vice versa. It should
be noted that the two most commonly used methods for network intrusion are
spying and spoofing. Spying is an observation activity, where the network traffic is
monitored passively, while spoofing is an active intervention, because the hacker
impersonates a trusted host in order to obtain the necessary information.

In web spoofing, the full content of the pages visited by the client may be
recorded. After a form in the HTML page is completed, the browser submits it via
HTTP to the server, but as the attacker is situated between them, he may record all
the sent data. In addition, he may also record the content of the responses sent from
the server to the client. Acting as an intermediary between the client and the server,
the hacker could change the content of the message being sent by one party and
cause the other party to act against its will. Imagine what might happen with such
an attack if, for example, you need to transmit important financial data to a
government institution or if you use online banking to submit a payment order!
When considering this type of attack, we must keep in mind the fact that the hacker
may conduct surveillance even if a relatively secure connection is used by the
client. Whether the connection uses SSL or S-HTTP, the hacker may still exploit it,

 69

i.e., despite the fact that the client’s browser may display the icon for secure
connection between the client and the server, at that moment the client actually
transmits data over an insecure connection (Fig. 2).

Fig. 2. The hacker may exploit the connection uses SSL or S-HTTP

In this case the client requests the page while a secure connection is available.
When attempting to secure the connection (via SSL or S-HTTP), the browser will
behave in a completely standard way and the security indicator icon will be turned
on. At this point the browser’s behavior is actually misleading because while we
have a secure connection to the server, in reality we are connected to a fake web
server. To enhance the user’s protection, modern web browsers have built-in
functionality to validate automatically the SSL certificate which should be used to
encrypt the traffic. However, this is not a very efficient protection, being one-sided,
because perhaps a large fraction of the web servers on the Internet do not use
certificates correctly issued and signed by an authorized digital certificate provider.
To be able to access such a web site, one must force the browser to accept the
certificate by adding an exception.

After such an attack has begun, it is very difficult to be stopped. But its launch
does require some participation by the client. For this purpose, he must somehow be
deceived and redirected to the hacker server. Here are some possible ways of
client’s deception for a particular web site:

• Inclusion of a link to a fake web site inside a popular web site.
• When using a mail client with HTML support, an attacker may send a

message with a link to his server. Alternatively, the fake web site content may be
sent.

• A hacker may spoof a search engine so that it sends users to a portion of the
fake web site.

• A hacker may create a control for a browser already adopted by the client
which will be able to replace a correct URL with a hacked one.

• If the client is infected with a trojan or a similar virus which can modify the
hosts file of the operating system being used. This would ensure the redirection of a
correct URL to the hacker machine.

 70

• A hacker may gain access to any of the routing machines serving the client.
This may be a router, or a proxy server, which could redirect the client to the hacker
machine when he tries to access the correct web address.

3. An approach for automatic transmission of authenticated data
over computer networks [7-9, 14-15]

We have developed and proposed a specialized functional system “Signer and
sender through HTTP” as a solution to this problem. The implementation uses
Microsoft .NET Framework technology and C# programming language. This client-
server type of the system implements the necessary functionality to identify the
sender of a message received through web and HTTP in a fully automatic way, as
well as to verify the authenticity of the received data. It also has the capability to
accept and process simultaneously and automatically information received from
multiple locations, which is the main advantage of this solution. Analyzing the
system, it can be logically divided into two main software modules – client and
server. The server module is implemented as web service which plays a key role in
the software solution. It accepts the SOAP encapsulated data sent over HTTP. The
sender is identified by the certificate present in the digital signature, which is also
used to authenticate the message. The process is fully automated and works without
the need for an IT operator, which allows the solution to be also used in other
systems where the problem of identifying and authenticating the received data is of
great importance. The client part of the system is a Windows GUI desktop
application intended for the user who is actually in the role of a client in this
information system. The user actions have been simplified to a great extent so that
the software is more efficient and easy to use. Only the data file that needs to be
sent and a certificate to digitally sign it must be selected. Then the client application
establishes a connection to the web service so that these two modules can
completely perform independent and automatic transmission, verification and
storage of the authenticated information, as well as notification of the user about the
outcome from the operation.

To implement this, it is necessary to combine various technologies which
separately used cannot help us with the task at hand. But combining them together
in a certain way to form a software system will lead us to the desired solution.

• Web via HTTP [10]. This is one of the most common Internet protocols
used to exchange data between two computers. Nearly all web services work over
this higher level protocol, i.e., HTTP does not function by itself but depends on
lower level protocols such as TCP and IP. Because most Internet users mainly use
the global network for different web services working over HTTP, which enables
them to seek information, share data, view multimedia and communicate with other
users, HTTP has become a fundamental protocol for communication in the global
information network.

• Web service [2, 9]. A web-based service which allows using web servers
and client-server technology, as a finished product providing the communication
between separate software applications. It helps the applications to communicate

 71

over computer networks and combines them in a functioning system. The web
service allows sending and receiving serialized objects and different types of data.
The main advantages obtained by this approach are that we may leave the
communication tasks to proven and powerful software, like the web server thus
avoiding the need to build, maintain and develop a specialized interface for this
purpose. Another important fact is that it allows interconnection and
communication between software applications built upon either similar or
completely different platforms or technologies.

• Transmission of objects through SOAP (Simple Objects Access
Protocol) [2, 7-9]. This technology defines a mechanism for exchanging messages
in a decentralized distributed environment. Different types of data may be carried
through this mechanism, such as binary data or XML wrapped encoded content.
There are other types of technology for transmitting such data, for example:
IIOP/CORBA, ORPC/DCOM, as well as Java Remote Method Protocol. The big
advantage of SOAP is that the protocol is based on a textual instead of a binary
representation (using XML) which is not associated with any particular
manufacturer and does not lead to a commitment to a particular software or
hardware platform. Most modern software technologies for application and
software system development contain also built-in methods for processing SOAP
objects. However, since this approach only gives us a way to represent data, but not
to transmit it, most often the SOAP packaged objects are transmitted to remote
computer systems over HTTP protocol.

• Digitally signing data according to CMS/PKCS7 standard [1, 3-6]. Data
encryption according to CMS/PKCS7 allows data to be saved in a format that is
almost impossible to be tampered with, unknown to us. However, the means for
falsifying information transmitted in such a way are too complicated, so that we
may consider this method to be sufficiently reliable. The asymmetric algorithm
digital signature technology uses a private and a public key and requires that a hash
of the data to be signed must be extracted first, using a reliable hashing algorithm,
such as SHA1. Then the hash in question is digitally signed by applying the
asymmetric algorithm in combination with the private key of the sample data
sender. The result is a digital signature and is saved in a format described by
CMS/PKCS7 standard. There are two different ways for this: the digital signature
may be saved separately or may be joined to the signed content in an appropriate
manner as described by the standard.

• Digital verification of CMS/PKCS7 encoded data [1, 3-6]. The digital
verification of PKCS7 signed data is a process that aims to demonstrate whether the
data to which the digital signature belongs, are unchanged. The process is the
reverse of the digital signing and CMS/PKCS7 encoding. It begins by reading the
format and checking whether all the expected content is present. The correctness of
the signed hash is verified using the public key and the asymmetric algorithm. Then
the hash for the signed content is generated again and a check is made whether it
matches the hash from the verification. Additional checks may be added to this type
of verification, for example, checking the digital certificate used for signing. But
they are not mandatory and the process can function without them.

 72

Examining the last two technologies for digital signing may lead to a
conclusion that they are sufficient for creating the solution being sought. This may
be true in some cases, but not for the problem specifically considered by us.

Suppose that we have purchased a digital certificate from an authorized
provider of certification services, which offers also hardware means of protecting
the private key. In addition, we were provided with a high quality and well working
software application for digital signing. At a first glance, it may seem we have
everything required to digitally signed data, but actually that is not sufficient to
accomplish the set goal. The reason is that the widely available and accessible
commercial and non-commercial software products for digital signing do not
usually offer an implementation of the function to digitally sign data and
automatically send that data to a remote computer by communicating with a service
supported by it. Thus we will have to seek another software solution to assist us
with sending and receiving the digitally signed data. Let us then imagine that we
achieve this through the easiest option, by e-mail. This means that we will need to
have a mail server available to relay the e-mail messages. In the absence of such a
server, we will need to use alternative techniques, such as a direct connection to the
recipient’s mail server, in order to send the message as desired. But it is not likely
that the provided cryptographic software will have an implementation of this or a
similar functionality. Another option is to create a solution that does this, but using
shell scripts, which is entirely possible. We can use console commands to take the
digitally signed content and send it as an attached file, just like it happens with a
mail client. But it is not certain that all networks and all firewalls will allow this
type of direct connection, which would terminate the process immediately. After all
keep in mind that the system must accept data from all kinds of computer systems,
from different computer networks, and from as many users as possible. As a third
case, assume that, although unlikely, SMTP servers are available everywhere and
rely on an e-mail client that has a built-in function to send digitally signed e-mail
messages. But in this situation another problem arises which would be an obstacle
to the process. For example, consider working with larger files because e-mail
services support attaching files, but with very limited sizes. Finally, we must take
into account the fact that the e-mail account, to which we send digitally signed
content will need to be checked by an operator. He would need to store and verify
the digital signatures and to return a response to the corresponding client again via
e-mail, which is quite labor intensive for larger volumes. And that diverts us from
our goal because this and other similar solutions that may be devised would require
large resources for their continuous operation. They would also require the users
that send digitally signed information to be computer experts in order to be able to
cope with the techniques used, deal with any problems that may arise and also have
technology knowledge. This will lead to restricting the system availability to a
specific range of users, who are specialists in this field. However, our goal is to
create a solution that can be used by people who are not IT specialists and is not
exposed to the risk of tampering with the information that should be received from
them. The cost of operating such a system is also an important issue because
engaging an individual as an operator who receives and verifies the digitally signed

 73

messages would lead to higher operating cost and delays in processing the received
and verified data.

Therefore the conclusion can be made that the options offered by generally
available technologies and software solutions are quite insufficient. Their inherent
disadvantages confirm the need for finding a different solution for automated
transmission and authentication of data over computer networks.

The solution proposed is a software system that combines in an original way
the different advantages of each of the mentioned technologies in order to find the
best possible alternative to meet our needs. It also offers functionality that cannot be
found in existing popular software systems that can be used for the given task.
Schematic of the functionality of the software system is given on Fig. 3.

Fig. 3. Schematic of the functionality of the software system

The process under consideration is comprised of the following seven basic
steps.

1. The client uses the software, which is a part of the developed system, to
pick the desired data file to be sent. Afterwards, using the same program, he selects
a digital certificate to be used by the proposed software solution to sign and send
the data in a fully automatic way. When choosing a digital certificate, the program
allows the option to use any digital certificate and not just those issued by an
official PKI provider. Also, it is not a mandatory requirement that the digital
certificates must be protected and stored on an external or internal hardware
cryptographic module. This makes it possible to satisfy a different range of needs,

 74

where resources are extremely limited but it is still necessary for users to exchange
data over computer networks. In this case instead of purchasing hardware and
digital certificates, the users may generate the certificates themselves using the tools
of the operating systems. Afterwards the public parts of the digital certificates are
exchanged so that they can be recognized by the proposed software system. After
all, there are situations which lack such extreme importance which could necessitate
the acquisition of hardware cryptographic devices and digital certificates but
nevertheless most software products offered require the maximum available
safeguard methods in question.

2. Starting the process of digital signing and sending, the client program reads
the data file and digitally signs it in a CMS/PKCS7 format with an attached digital
signature. The digitally signed message is packaged in a ready for transmittal SOAP
object. Then a HTTP connection is established to the web service of the other
(server) part of the system, which will accept, store and authenticate the data. Upon
successful connection, the SOAP-packaged digitally signed content is transmitted.

3. The web service which receives the data over HTTP is public and does not
require any additional identification. Accepting the SOAP data sent, it completely
automatically validates the format of the information received. Then it decodes the
SOAP content and retrieves the CMS/PKCS7 digitally signed data together with the
signature.

4. Message validation [5] – in this part of the process the data is verified and
their author is identified. Considering this check, we may divide it into two main
stages: primary and secondary. The primary check is a low level test which means
that it only deals with the format of the received digitally signed data. It certifies
that the received data is complete; its format meets the requirements of
CMS/PKCS7 and has not been damaged. If it succeeds, we proceed to the
secondary check. Its role, through unpacking of the digitally signed data, is to
identify their author and then to verify the authenticity of the signed data. If the
secondary check is successful, the process may proceed to its next stage.

5. The received data are converted into a file which will be stored by the
server in the specified in advance for this purpose location.

6. Whether the validation was successful and the file was accepted or not, the
web service prepares a return response to be sent to the client software. This
response actually is the result of the operation so far. It is encoded as a SOAP object
and is returned over the already established HTTP connection.

7. The client software accepts the response SOAP object over HTTP; decodes
it and displays the result to the user who will know whether the desired information
was sent correctly.

4. Experimental results

The described software system was subject to a series of tests which proved its
correct operation and efficiency. We used a sample scenario recreating sending and
receiving a file over a computer network, which has not been been modified in
transit, as well as a file which was modified before being received:

 75

1. Choose a text document named “MyDocument.docx” and choose our
personal digital certificate for its signing. Then clicking the “Sign and send” button
will perform the actions of digitally signing the content of the file, packaging it in a
SOAP object and sending it to the web server over HTTP (Fig. 4).

Fig. 4. Digitally signing the content of the file, packaging it in a SOAP object and sending it to the

web service over HTTP

2. The acceptance and verification of the file is performed by the web service,
which checks the received data for valid format and integrity and if everything is
proper, proceeds to authenticate the data with the digital signature. Once the
verification process is completed successfully, the client receives over HTTP and
decodes the SOAP packaged message “File is received successfully”. Then the file
is saved to the specified for this purpose location on the hard drive.

3. In steps 1 and 2 we saw the ideal case of operation of the process but if we
did not expect cases where problems occur, there would be no point in looking for
such a solution. Hence, we will create a situation in which the data were modified
before their transport to the web service.

Using HxD – Hex editor or another similar program, we may view and modify
the contents of the file being sent.

In this case only one byte of data has been modified, by changing its value
from 00H to 01H at offset 46H (Fig. 5).

 76

Fig. 5. In this case only one byte of data has been modified,

by changing its value from 00H to 01H at offset 46H

Upon validation of this digitally signed message, the result is a failed
verification of the digital signature. Then the web service will again send a SOAP
packaged response to the client over HTTP, but its content this time will be “Invalid
signature” (Fig. 6).

Fig. 6. If the result of validation is a failed verification of the digital signature,

then the web service will send to the client “Invalid signature”

The message shown is displayed by the client program that is designed to
establish communication with the web service and is a part of the system.

The system performs also authentication of the sender who has digitally signed
the message received by us. This occurs after we have registered with the system in
advance the public parts of the digital certificates of the users by whom we expect
to receive data. Using the software code that we wrote for this purpose, the web
service extracts from the received digitally signed data the certificate, which was
used to sign them. Then we find by searching whether it is present in the list of
digital certificates from which we should be receiving data. To increase security, we
can activate the verification of digital signatures through technologies supported by
digital certificate providers, such as CRL and OCSP. But this will limit the system
to accepting only data signed using digital certificates purchased from official
providers. And there may be cases where these safeguards are not necessary
because the information being transmitted through the system is not of such high

 77

importance. Therefore this feature has been left as optional. This is yet another
advantage of this software solution according to the needs we may have.

5. Discussion and conclusion

The advantages of the solution presented in this article allows an easy way of
sending authenticated information from many authors at the same time. The process
of sending the data may not be consecutive and the authors may send their data
simultaneously from different Internet locations. The information will be received
by the proposed system simultaneously and will be validated and stored in fully
automatic way. At the same time, a real-time response is sent to each of the data
senders about the outcome of the operation. Thus the sender will know immediately
whether the data have been accepted and validated successfully or an exception has
occurred which has resulted in rejection.

The system allows also some other applications. For example, it may facilitate
secure communication between two people. They will be able to send authenticated
messages to each other without the need of other utility programs. Another
possibility is the system to be easily expanded and upgraded to a different type of
system that is designed to meet the specific requirements of a particular
organization. The technologies that have been selected and used for this purpose are
sufficiently flexible and popular so that the solution given may inter-operate with
other types of systems.

R e f e r e n c e s

1. G e n n a r o, R., P. R o h a t g i. How to Sign Digital Streams. – Lecture Notes in Computer
Science, Advances in Cryptology – CRYPTO’97, Vol. 1294, 1997, 180-197.
http://www.springerlink.com/content/855385q3103t7403/

2. H o n d o, M., N. N a g a r a t n a m, A. N a d a l i n. Securing Web Services (IBM Software Group,
One Charles Park, Cambridge, Massachusetts 02142, USA, Issue Date: 2002) – IBM
Systems Journal, Vol. 41, 2002, 06 April 2010, No 2, 228-241.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5386919

3. G a m a g e, C., J. L e i w o, Y. Z h e n g. Encrypted Message Authentication by Firewalls.
− Lecture Notes in Computer Science, Peninsula Scool of Computing and Information
Technology, Monash University, Australia, Vol. 1560, 1999, No 634, DOI: 10.1007/3-540-
49162-7_6), H. Imai, Y. Zheng (Eds.) PKC’99, LNCS 1560, Berlin, Heidelberg, Springer-
Verlag,1999, 69-81.
http://www.springerlink.com/content/updpmmnukbytvhvh/

4. Microsoft – Designing and Managing a Windows Public Key Infrastructure, 2003.
5. H o u s l e y, R., T. P o l k. Planning for PKI: Best Practices Guide for Deploying Public Key

Infrastructure, 2001.
6. X e n i t e l l i s, S. The Open-Source PKI Book. 2000, Last Update 2009-07-17.

http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm
7. Microsoft – Designing and Developing Windows Applications by Using the Microsoft .NET

Framework, 2005.
8. Microsoft – Designing and Developing Enterprise Applications by Using the Microsoft .NET

Framework, 2005.
9. Microsoft – Designing and Developing Web-Based Applications, 2005.

 78

10. F i e l d i n g et al. Internet RFC 2616, The Internet Society – RFC 2616 Hypertext Transfer
Protocol HTTP/1.1, 2004.
http://www.w3.org/Protocols/rfc2616/rfc2616.html

11. The Internet Society Nystrom & Kaliski – RFC 2986 Certification Request Syntax Specification,
2000.
http://tools.ietf.org/html/rfc2986

12. The Internet Society – RFC 2798 The LDAP inetOrgPerson Object Class, 2000.
http://www.ietf.org/rfc/rfc2798.txt

13. Netscape Communications – Signing Text from JavaScript, 1997.
http://docs.sun.com/source/816-6152-10/

14. Microsoft. Developing Custom Windows Forms Controls with the .NET Framework, 2010.
http://msdn.microsoft.com/en-us/library/6hws6h2t.aspx

15. Microsoft MSDN. System. Security. Cryptography Namespace, 2010.
http://msdn.microsoft.com/en-us/library/system.security.cryptography.aspx

16. The Internet Society – RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1, 2003.
http://tools.ietf.org/html/rfc3447

Application

The appendix presents the more essential parts of the system source code. They are
fundamental to solving the problem described and could be used for the
implementation of other similar systems.

1. The following source code is a part of the client application and is
responsible for reading the transmitted data and their digital signing:
byte[] dataForSign = null;

 if (!FileHelper.FileRead(FilePath + FileName, ref dataForSign,
SAHS_Common.Messages.CaptionMsg))
 {
 dataForSign = null;
 FilePath = null;
 FileName = null;
 return;
 }

 X509Certificate2 signerCert = new X509Certificate2();
 if
(!CertUtils.CertStoreHelper.GetCertificateFromStore((int)cmboCertSelect.SelectedValue,
ref signerCert, SAHS_Common.Messages.CaptionMsg))
 {
 signerCert = null;
 return;
 }
 if (!CertUtils.SignatureUtils.Sign(signerCert, ref dataForSign,
SAHS_Common.Messages.CaptionMsg)) return;
 if (signerCert == null) return;

 dataForSign = SAHS_Common.Vars.SendMessage_Wrapper(dataForSign,
FileName);

 79

2. The client application establishes a connection via HTTP to the receiving
server. Packs the signed content in an XML object and transmits the data, then
monitors for a server response confirming the result of the operation:
HttpWebRequest httpReq =
(HttpWebRequest)WebRequest.Create(SAHS_Common.Vars.Url_ToSend);
 httpReq.Method = "POST";
 httpReq.ContentType = SAHS_Common.Vars.SendMessage_ContentType;
 httpReq.ContentLength = dataForSign.Length;

 Stream reqStream = null;
 Stream respStream = null;
 HttpWebResponse httpResp = null;
 string result = "";

 try
 {
 // Write the request content
 reqStream = httpReq.GetRequestStream();
 reqStream.Write(dataForSign, 0, dataForSign.Length);

 // Read the response
 httpResp = (HttpWebResponse)httpReq.GetResponse();
 StreamReader reader = new StreamReader(httpResp.GetResponseStream());
 result = reader.ReadToEnd();
 }
 catch (Exception ex)
 {
 MessageBox.Show("File transfer error: " + ex.Message,
SAHS_Common.Messages.CaptionMsg, MessageBoxButtons.OK,
MessageBoxIcon.Warning);
 return;
 }
 finally
 {
 if (reqStream != null) reqStream.Close(); reqStream = null;
 if (respStream != null) respStream.Close(); respStream = null;
 if (httpResp != null) httpResp.Close(); httpResp = null;
 dataForSign = null;
 httpReq = null;
 }

 if (result.IndexOf("<UploadFileResult>Ok</UploadFileResult>") > 0)
 {
 MessageBox.Show("File is received successfully.",
SAHS_Common.Messages.CaptionMsg, MessageBoxButtons.OK,
MessageBoxIcon.Information);
 txtFileUpload.Text = "";
 }
 else if (result.IndexOf("<UploadFileResult>Invalid signature.</UploadFileResult>")
> 0)
 {

 80

 MessageBox.Show("Incorrect digital signature. File is rejected.",
SAHS_Common.Messages.CaptionMsg, MessageBoxButtons.OK,
MessageBoxIcon.Warning);
 }
 else
 {
 MessageBox.Show("File is rejected. Undefined error.",
SAHS_Common.Messages.CaptionMsg, MessageBoxButtons.OK,
MessageBoxIcon.Warning);
 }

3. For better system consistency, the methods for retrieving the digital
certificates from the certificate store and for retrieving a specific digital certificate
are located in a separate library which is a part of the project and the methods:
private X509Certificate2[] certsInStore = null;

public bool ReadCertStore(string AppCaptionMsg)
 {
 bool retval = true;
 X509Store storeOpen = null;

 storeOpen = new X509Store(StoreName.My, StoreLocation.CurrentUser);
 certsInStore = null;
 certsCount = 0;

 try
 {
 storeOpen.Open(OpenFlags.ReadOnly);

 // No certificates in store
 if (storeOpen.Certificates.Count == 0)
 {
 return retval;
 }

 // Certificate counter
 int iCount = 0;

 // Get cert number
 certsInStore = new X509Certificate2[storeOpen.Certificates.Count];
 foreach (X509Certificate2 foundcert in storeOpen.Certificates)
 {
 certsInStore[iCount] = foundcert;
 iCount++;
 }
 certsCount = iCount;
 }
 catch (Exception ex)
 {
 certsCount = 0;
 retval = false;
 if (AppCaptionMsg != null) MessageBox.Show("Certificate store reading error:
" + ex.Message, AppCaptionMsg, MessageBoxButtons.OK, MessageBoxIcon.Warning);

 81

 }
 finally
 {
 storeOpen.Close();
 storeOpen = null;
 }

 return retval;
 }

public static bool GetCertificateFromStore(int certPositionInStore,
 ref X509Certificate2 x509CertRawData, string AppCaptionMsg)
 {
 bool retval = true;
 x509CertRawData = null;
 X509Store storeOpen = null;
 int iCount = 0;

 storeOpen = new X509Store(StoreName.My, StoreLocation.CurrentUser);

 try
 {
 storeOpen.Open(OpenFlags.ReadOnly);

 // Read certificates
 foreach (X509Certificate2 foundcert in storeOpen.Certificates)
 {
 if (certPositionInStore == iCount)
 {
 x509CertRawData = foundcert;
 break;
 }
 iCount++;
 }
 }
 catch (Exception ex)
 {
 retval = false;
 if (AppCaptionMsg != null) MessageBox.Show("Certificate store reading error:
" + ex.Message, AppCaptionMsg, MessageBoxButtons.OK, MessageBoxIcon.Warning);
 }
 finally
 {
 storeOpen.Close();
 storeOpen = null;
 }

 return retval;
 }

4. The following web method carries out the receiving, verification checking
and saving of the sent digitally signed data, then returns a response to the client
about the result of the operation:

 82

[WebMethod]
 public string UploadFile(byte[] f, string fileName)
 {
 MemoryStream ms = null;
 FileStream fs = null;
 byte[] retrFileData = null;
 string retval = "Ok";

 try
 {
 ms = new MemoryStream(f);

 retrFileData = ms.ToArray();
 if (CertUtils.SignatureUtils.SignatureVerify(ref retrFileData, null))
 {
 fs = new
FileStream(System.Web.Hosting.HostingEnvironment.MapPath(@"~/TransientStorage/") +
fileName, FileMode.Create);
 ms.WriteTo(fs);
 }
 else
 {
 retval = "Invalid signature.";
 }
 }
 catch (Exception ex)
 {
 retval = ex.Message.ToString();
 }
 finally
 {
 if (ms != null)
 {
 ms.Close();
 ms.Dispose();
 }
 if (fs != null)
 {
 fs.Close();
 fs.Dispose();
 }
 retrFileData = null;
 }

 return retval;
 }

