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1. Introduction 

Arbitrary precision computations are not а self-purpose. They are related to 
receiving precise values when solving mathematical models in different areas, 
including, for instance, non-linear dynamic systems. But due to their essence, 
similar calculations are not intended for direct real time control of quickly running 
technological processes, i. e., widely spread industrial production processes. The 
present paper describes the first stage of the realization of a system for arbitrary 
precision computing in the environment of .NET Framework, concerning special 
functions calculations. The used methods and algorithms for their realization are 
described  

The library MPIR [19] is used as a tool. It is a detached version of the arbitrary 
precision mathematical calculations library, based on GMP (GNU MP – library for 
arbitrary precision mathematics of GNU). X-MPIR ensures interface in .NET 
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Framework C# to a library of previously compiled functions of MPIR, realized in 
C. To our knowledge the latest overview of the special functions calculation is 
given in Chapter 4 of [1]. In monograph [2] there is a detailed list of sources, which 
may be used for contingent check up. It is to be noted that intentionally preference 
is given to the methods, using quickly convergent series in the present realization of 
the special function library, wherever this is possible and/or practical. In most cases 
alterative methods exist such as continued fractions, integral presentation, using of 
iterative relations, and so on. But for computing with arbitrary precision the 
possibility for simple error evaluation is crucial. The approach adopted is not free of 
its specific requirements, for instance ensuring consistency of the main series and 
asymptotic presentation. About the specificity of the asymptotic presentation with 
divergent series see also [3]. Nonetheless this approach seems to be simpler in the 
arbitrary precision context, which is anyway apriori specified and should be easily 
calculated. 

2. Realization and methods used  

The realization of the functions, at present, is for a real argument. A basic version 
of a program-calculator is created implementing immediate usage of the library for 
the purpose of testing the functions. It is described in details in section 3 “Testing 
calculator”. The generally accessible sources used for the methods realized are  
[1- 6]. Reference [4] is most intensively used although even there the references 
“Methods of computation”  are not always sufficient, but this does not belittle the 
exclusive value of the writing for any calculator. Sites [20-22] provide good initial 
references. Possible sources about specific special functions and constants, as well 
as respective computational methods when they are non-standard, e.g. power series 
and asymptotic presentations, are given in place in this section. Many of the 
functions in the library are internally used to express other functions, e.g. in a 
respective range or an index type, and some of them, as well as calculating the 
numerator and denominator in the Bernoulli numbers, are not still represented in the 
calculator. The special cases of the hyper geometric function are a typical example: 
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Only the special cases are used in the representations below, where p = 0,         
q = 1, and p = 1, q = 1, at which (p < q + 1) series is everywhere convergent, if    
b = b1 is not a negative integer. However at great argument values other 
presentations are used. 

2.1. Constants 

Two variants of using the constants are applicable from a program point of view: 
- storing in static fields which are initialized at first usage of the class and then 

they are immediately used when needed; 
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- calling functions which return the result required with the current precision 
for the calculations. 

The first one is faster under the condition that the specified precision is not 
changed in the frame of the given calculation or the constants are computed with 
sufficiently high precision, which would not be overridden at computation. The 
second method is used for the moment  

After accurate realization of elementary functions constantsπ , e , ln2, ln10, 
log2, log e, roots and powers of integers and their various combinations including 
arithmetic operations are available. The constant with the current precision of 
computing is returned at calling the respective functions. The algorithm proposed 
by B r e n t  and  M c M i l l a n in [7] is used for Euler’s constant γ . 

Brent and McMillan algorithm: 
Suppose we want to compute Euler’s constant γ  with precision up to d 

decimal digits. If we choose n to be the greatest integer which is less than  
c + (1/4) ln10d with an appropriate constant c, then 
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where U(n) and V(n) are computed as follows: 
Define 
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where Hk  is the k-th harmonic number (1 + 1/2 + … + 1/k). Then A0 = – ln n,    
B0 = 1, U0 = A0, V0 = 1 and for k = 1, 2, …, we receive 
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2.2. Elementary functions 

Numerous sources exist for computing elementary functions. The paper of  
B r e n t [8] should be especially noted. The realization of the elementary 
transcendental functions will not be considered in details. It should be just noted 
that for calculating logarithm with base 2, an algorithm is used, giving sequentially 
the digits, in an iterative and not recursive variant, which is appropriate for arbitrary 
precision calculations. 
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2.3. Gamma function [13] 

An approximation method described on [9] is used, after respective scaling of the 
argument. 

For an argument in the interval [1, 2) the gamma function is calculated in the 
following way [13]: 
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Here a is a positive precision controlling parameter (see below) and the 
coefficients ck are determined as follows: 
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The relative error for x > 0 and  a > 2 is ( ) ⎟
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⎞
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out the first multiplier, that raises the estimation, we get 
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If we want precision of n meaning digits, then n−= 10ε  and hence 
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1
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π
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For negative arguments Г(x) = π /[sin(π *x)* Г(1 – x)] is used. 
For positive arguments: 
If x < 1, then Г(x) = Г(x+1)/x is used. If x ≥  2, then x = y + n, where y ∈[1, 2) 

and Г(x) = (y + n – 1) … ( y + 1)y Г(y). 

2.4. Incomplete gamma functions, probability integrals 

Standard series and asymptotic decompositions are used. 
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For small x the presentation ( ) ( )xssFsxxs s −+−= ;1;11
1,γ  is used, and for 

big ones − the asymptotic presentation 
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( )x,0γ  is not definite, but for 0→s  ( )xs,Γ  has a limit 
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For the time moment, the asymptotic presentation of the first argument is not 
included. 
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The following presentation is used 
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and for a big argument value 
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2.5. Fresnel’s integrals 

Standard series and asymptotic decompositions are used. 
For calculating Fresnel’s integrals 
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with not large argument presentations with series are used: 
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For big argument values, asymptotic series are used. 
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where 
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2.6. Bessel functions of first and second kind, modified Bessel functions, Airy 
functions [14] 

Standard series and asymptotic decompositions are used. 
The following presentation is used for not large values of the argument: 
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For big values of the argument asymptotic presentation is used 
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Bessel’s functions of second kind with a non integer index are expressed 
through those of first kind by 
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The presentation for an integer index is 
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where ψ  is the logarithmic derivative of the gamma function. For positive integer 
values 
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Here γ  is Euler’s constant. 
The asymptotic presentation is  
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the denotations being the same as above. 
For modified Bessel’s I functions, for big and small argument respectively: 
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with the previous denotations for the asymptotics. 
For the modified Bessel’s K functions, for a non-integer index 
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and the asymptotic presentation is  
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Asymptotic presentation for big index values is not included for the moment. 
For Airy’s functions we use expressing through Bessel’s functions: 
For x = 0 
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for x < 0 
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2.7. Riemann’s Zeta Function [15-17] 

Algorithm 3 of Borwein’s publication[10]  is used.  
Riemann’s ζ -function is an analytic continuation  
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The algorithm mentioned in [10] may be outlined as follows: 
Let’s define 
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where the empty sum is considered zero. Then 
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The residual member evaluation is easier to use in the case of a real argument. 

2.8. Full elliptic integrals of first and second kind [18] 

Arithmetic and geometric mean 
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The asymptotic behavior near the particular point k = 1 is not yet realized. 

2.9. Bernoulli numbers 

A method proposed by M c  G o w n [11] 
The algorithm described in [1] may be reduced essentially to the following. 
Supposing that 2≥m  is even consecutively compute: 
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The product in Step 2 is for all prime numbers p, for which p – 1 is divisible 
by m. In Step 4, respectively, the product is for the prime numbers less than or equal 
to N. The value of K should be computed precisely enough at the first step so that 
the calculation in Step 5 rendered the result wanted. For a value of N any integer 
greater than or equal to the one defined at Step 3 may be taken. 

Let’s comment in brief why this works. This algorithm uses the following 
results. 
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Secondly, for each integer 1≥m  
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Besides these two results proven by Euler the von Staudt and Clausen theorem 
is known (rediscovered by Ramanujan, see respective topics in [20] and [22], the 
prime source [12] from 1840 is hard to access), which describes the mB  devisor, 
presented as division of mutually simple integers through the devisors of m. This is 
the product at Step 2 of the algorithm. In Step 1 of the algorithm K is defined so that 
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calculation of z remains, which is reduced to: with given 1>s  and 0>ε  find a 
real integer N for which at Step 4 of the algorithm it is guaranteed that 
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( ) εζ <− zs . For our purposes we have s = m  and ( ) 1−= Kdε . It is therefore 
enough to select ( ) )1(1 −> mKdN . 

2.10. Integral sine and cosine 

Standard series and asymptotic decompositions are used. 
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The asymptotic presentation for big values of x is 
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( ) ( ) ( ) ( ) ( ) ( ) xxgxxfxCxxgxxfxS ii cossin,sincos
2
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where 
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3. Testing and calculator 

The testing process, as it is well known, is the most time and labor-consuming 
operation for a computer program. This of course is valid to even greater degree 
when calculating special functions. It includes several stages and is not still 
completed. The main checks are for previously known values of a given function 
with exactly defined argument/s. An even better test is the possibility of comparing 
a given result when it could be expressed by different functions, thus using different 
methods. For checking with big arguments values where asymptotic presentations 
are used, this is crucial. Adding more functions assists this type of tests. There are 
in the net a lot of on line calculators for different types of special functions which 
are convenient for initial adjustment. But most of them are of limited precision. A 
natural opportunity is the parallel using of another program, using e.g. mpmath in 
Python. It is anyway convenient to have an interactive program for testing. For this 
purpose a prototype of a calculator is realized. It allows dynamic change of the 
precision used. The display field adds automatically a vertical slider for scrolling, if 
needed, when required by the current computing precision. The format of the 
numbers displayed is automatically changed depending whether the result needs 
exponential format. Appropriate rounding is carried out. Indication is available for a 
pending argument for functions with more than one argument. Digits, decimal point 
and arithmetic operations may be also entered from the keyboard. There is not yet 
overflow check. The problem is specific for the MPIR library also where the 
floating point numbers exponent is fixed. For 32-bit systems from 68 719 476 768 
to 68 719 476 736, depending on the machine word but not equal to it. For a 64-bit 
system, for which the present special functions library is being developed this range 
is larger and this brought to underestimation of the problem initially. This overflow 
check will be probably executed at the level of functions. Some change will be 
probably necessary at that level of the special functions reaction with regard to non 
valid argument. In this realization when the argument is non valid they issue a 
message and return the input and do not cause an exception just for convenience at 
testing in interactive environment. The adequate approach for the function behavior 
in an independent environment is to be considered. There the responsibility of 
entering an admissible argument does not lie on the calling program. The alteration 
of the current model will require additional efforts for the program-user and namely 
processing of specific exceptions. The calculator for the moment is in a form that 
allows easy adding of new functions. The project presumes the 'calculator' to be 
transformed in a source of references for the used special functions and graphical 
representations. 

An example follows with a calculator with 200 digits precision: 
2

4
1

4
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛Γ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
π

K . 
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Consecutive entering: 4, 1/x, ( )xΓ , 2x , MS, π , , 1/x,  /, 4, =,  *, MR, =, 
yields the right hand side of the equation (Fig. 1). 

 
Fig. 1 

It may be stored by MS and after entering 2, , 1/x, K(x), the left one is 
received. No illustration is given since the result is the same. 

Additional facilities are added for easy testing when the equivalent expression 
is more complicated: storing in a second register (M2S) and D↔M , and 

D↔2M , which changes the places of the last received and last stored in the 
respective auxiliary register results. 

The project ambitions as a source of references are shown in Fig. 2. 

 
Fig. 2 
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After choosing the reference the results shown in Fig. 3 are obtained. 

 
Fig. 3 

4. Conclusion 

The main problem in the realization of a similar project is in its range – a highly 
labor-consuming job. As mentioned in the introduction the purposes are in essence 
carried out to a great degree in other specialized products or packages in other 
programming languages environment. Leaving away the issue that the greater part 
of them are paid commercial products, and those which are not require more 
programming by the user, e.g. for the graphical interface, we reckon that the 
possibility of arbitrary precision computations combined with the other exclusively 
rich features of .NET Framework is worth the efforts. The completed environment 
for arbitrary precision computations, including also methods of the numerical 
calculus, provides the base for an easy graphical interface which is the next logical 
step of the project. Probably new types will appear in the future in .NET 
Framework as continuation of BigInteger but this does not seem happen soon. A 
calculator of arbitrary precision can by found in web with a limited set of functions, 
which is based on BigInteger only. This approach is not a good perspective for the 
present project. The type BigInteger is not designed for this purpose and real 
numbers calculations based on it is not efficient enough. A more straightforward 
approach is writing an own class representing floating point numbers with arbitrary 
precision. But this moves the aims a step aback without mentioning the technical 
difficulties - writing in C style with mandatory modifiers ‘unsafe’ that returns to the 
beginning. So the main problem remains - time and labor consumption. So for the 
full realization of the project besides adherence to the theme and some financial 
support confidence in its utility and value is necessary. 
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