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Abstract: The paper proposes a hybrid heuristic algorithm, which uses procedures 
for search of feasible integer directions with one or two nonzero components and 
linear optimization. This algorithm is iterative and it combines constructive and 
locally improving strategies for finding a new current solution. A subsequence of 
sub-problems is solved, aimed at seeking a feasible solution of the general Mixed 
Integer Problem (MIP), after which the feasible solution found is improved with 
respect to the problem objective function. The algorithm is characterized by 
polynomial-time computing complexity. 

Keywords: Mixed integer programming, heuristic algorithm, polynomial-time 
complexity. 

1. Introduction 

Many real life optimization problems (transport problems, problems of scheduling 
and distribution, resources planning, etc.) are presented by linear mixed integer 
models. The integer variables refer to particular items, which are indivisible 
(number of machines, vehicles and others), and the continuous variables reflect 
mainly the estimates of price, time and other divisible objects. Nowadays Mixed 
Integer Problems (MIP) are used in applications oriented towards decision making 
in many industrial and business activities. This is due not only to the increased 
computing power of modern computers, but also to improved MIP solvers, which 
enable easier formulation and solution of these models [1]. 

The computing complexity of the integer problems, which have not continuous 
variables, comes from their combinatorial nature. In mixed integer problems the 
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computing complexity is increased, since it is necessary to find both the optimal 
combination of the integer variables and the optimal value of the continuous 
variables. Problems of this type belong to the Non-deterministic Polynomial-time 
(NP) class. The well known methods for optimal solution finding (such as branch-
and-bound or cutting planes) have exponential computing complexity and may 
require considerable computing time even for not large problems [7, 13]. These 
computing problems have lead to the development of a large number of heuristic 
algorithms. Heuristics are a very important tool in applied optimization [3, 15]. 
Very often they are only applicable in solving large and complex problems, met in 
practice. Their main purpose is to ensure reasonable solution time of the 
optimization problem, close to the optimal feasible solution. Moreover, they can be 
very useful in complex exact methods for finding feasible initial solutions and also 
for speeding up the search process at given steps of these methods (such as in a 
node of the branch and bound tree) [2, 5, 6]. The heuristic algorithms may be 
divided in two groups: oriented towards problems with a specific structure [8, 17] 
and general purpose methods [9-12, 14, 16]. In order to find application in 
commercial software products, the heuristic algorithms are evaluated in relation to 
their efficiency, as well as to techniques universality, i.e., their applicability and 
success for different types of problems [3]. 

In this paper a heuristic algorithm is proposed, designed to solve linear mixed 
integer problems in a general form, the main idea of which is to combine the 
concept of the component algorithms of feasible directions [16] and linear 
optimization. The search for an approximate solution of MIP problems is executed 
in three successive phases. The purpose of the first phase is to choose an 
appropriate initial solution, closest to the feasible region and suitable for reaching a 
good solution with relation to the optimal solution. During the execution of the 
second phase a feasible solution of MIP problem (in case it exists) is sought, and 
the purpose of the third phase is to improve the solution found with respect to the 
objective function. The algorithm is iterative and at each following iteration new 
current solutions are found, that decrease the total infeasibility or improve the 
objective function of MIP problem. 

2. Basic idea of the algorithm  

This algorithm is intended to solve a linear mixed integer problem in a general 
form:  
(1) max∑∑
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(5) jx  –  integer for ,Jj ∈  
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where I = {1, 2, …, m}, J = {1, 2, …, n}, L = {1, 2, …, k}, aij are elements of 
matrix A of dimension m×n, and gil are elements of matrix G of dimension m×k. 
The coefficients of the objective function are determined by the n-dimensional 
vector c and k-dimensional vector h. The feasible region of the problem is formed 
by constraints (2)-(5), where b is an m-dimensional vector of the constraints right 
hand sides, and the vectors d and u − being respectively n-dimensional and              
k-dimensional, set the upper bounds of the integer and continuous variables. This 
problem belongs to the class of NP-hard problems, because there does not exist an 
exact algorithm, that finds an optimal or even only feasible solution for a time 
duration that is in polynomial dependence on the problem parameters. 

The algorithm proposed is hybrid. It uses procedures for search of internal 
feasible integer directions with one or two non-zero components [16] in order to 
improve the integer part of the current solution and an Linear Problem (LP) solver 
for the continuous part, respectively. This algorithm is iterative and it combines 
constructive and locally improving strategies for finding a new current solution. 
Sub-problems are constructed consecutively, their feasible region being defined by 
all problem constraints (1)-(5), satisfied at the current iteration, and the objective 
function is one of the remaining unmet constraints. If a feasible solution is already 
found, the objective function (1) is included and every current solution found leads 
to its gradual improvement. The algorithm operation may be regarded as a sequence 
of three phases.   

 
Phase 1. Selection of an initial solution 
The algorithm can start its work from an arbitrary initial solution, but the 

appropriate choice can considerably decrease the computing time and improve the 
possibilities for finding a feasible, as well as a better approximate solution. Two 
types of initial solutions are suggested, for which it is expected that the largest 
number of problem constrains (1)-(5) are satisfied.  

The first type of an initial solution is connected with the optimal solution of 
the relaxed continuous problem (1)-(4). The following way is proposed to 
determine the components of this initial solution (x0, y0): 
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)ˆ,ˆ( yx  are the components of the optimal solution of the continuous problem (1)-(4) 
and ]ˆ[ jx  is the integer part of jx̂ . The choice of this initial point is based on the 
idea to start the search in a neighbourhood, close to the optimal solution, but for a 
more specific structure of the feasible region, finding feasible solutions may be 
hampered. 

For the other type of initial solutions (x0, y0), starting with a smaller general 
infeasibility of MIP problem is intended. It is suggested that these are solutions, 
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close to the line, connecting the optimal solution of the continuous problem (1)-(4) 
and Chebyshev’s centre of the feasible region of the problem. Chebyshev’s centre is 
defined, solving the following continuous problem. 
(6) max,→q  
under the constraints: 
(7) ,, Iibqygxa i
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Let )ˆ,ˆ( yx  and )~,~( yx  denote the components of the optimal solution of the 
continuous problem (1)-(4) and of Chebyshev’s centre respectively (the optimal 
solution of the problem (6)-(12)). The following scheme is proposed for the 
components of this initial solution (x0, y0): 
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Phase 2. Search for a feasible solution  
At every iteration k  of this phase the so called infeasibility measure k

ib  is 
determined for each of the constraints (2) of the initial MIP problem: 
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Depending on the sign of k
ib , two sets are formed: kF1  − a set of the indices of 

the unfulfilled constraints (2) and kF2  −  a set of the indices of the satisfied 
constraints  (2): 

}0,{1 <∈= k
i

k bIiF , 

}0,{2 ≥∈= k
i

k bIiF . 
The indices of the constraints in the set kF1  are ordered according to the 

absolute value of the infeasibility measure of the corresponding constraint, the 
constraint with the largest infeasibility degree being placed first. 

The following problem is formulated and solved for the first unsatisfied 
constraint of the set kF1  at iteration k  (let us denote it by ki ): 
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Each feasible solution of problem (13)-(18) satisfies all constraints with 
indices from the set kF2  and decreases the infeasibility of at least one constraint of 
the set kF1  with an index ki . Problems of the type (13)-(18) are formulated and 
solved until a feasible solution of the initial problem (1)-(5) is found, i.e., until 

≠kF1 ∅. If any of these problems cannot be solved, a new problem is formulated 
for the next unsatisfied constraint of the set kF1 . If for all problems with constraints 
from this set, no feasible solution is found, it is necessary to start Phase 1 for 
selection of another initial solution. The number of restarts in Phase 1 is a parameter 
for operation stopping of the heuristic algorithm herein offered. In this case the 
algorithm has not succeeded to find a feasible solution of problem (1)-(5), but this 
does not mean that MIP problem (1)-(5) has not a feasible solution.  

 
Phase 3. Improvement of the feasible solution found  
In order to improve the feasible solution found, a new problem of the 

following type is formulated: 
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(24) jx  −  integers for  j ∈ J,  

where kz  is the value of the objective function for the feasible solution, found at 
the previous iteration, and ε  is a relatively small positive number.  

In case a solution of problem (19)-(24) is found, this means that a new better 
solution of the initial MIP problem (1)-(5) is discovered. After that a new problem 
of the type (19)-(24) is formulated and solved. If any of these problems cannot be 
solved, the algorithm operation is terminated. The last feasible mixed integer 
solution found is the best feasible solution, found by the suggested heuristic 
algorithm. 
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As it can be seen, solving of the initial problem (1)-(5) is reduced to solving a 
series of problems of the type (13)-(18) and (19)-(24). In order to solve these sub-
problems, feasible values of the integer part of the solution are sought consequently 
according to the following scheme: 
(25) ,1 kkkk phxx += −  
where kp  is an integer vector, setting a feasible integer direction from point 1−kx . It 
is selected from the set of n-dimensional vectors with one or two nonzero 
components. The step length is kh . After that in order to find feasible values of the 
continuous part of solution ky , problem (13)-(18) or (19)-(24) is solved as a 
standard linear optimization problem with fixed values kx  for the integer variables. 

The feasible integer direction kp from the point 1−kx  for problems of the type 
(13)-(18) is defined as a vector, for which the following conditions are fulfilled 
at 1≥kh : 
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The conditions of feasibility of the integer direction kp  from point 1−kx  for 
problems of the type (19)-(24), at 1≥kh  are set as follows: 
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Condition (26) indicates that when choosing a feasible integer direction, the 
infeasibility of the constraint with an index ki  decreases. Condition (28) guarantees 
that in this case the objective function of the initial problem is improved. In the 
paper [16] a heuristic algorithm of the internal feasible integer directions is 
described, designed to solve linear, entirely integer problems. At each iteration of 
this algorithm, some procedures are used to find feasible integer directions with one 
or two nonzero variables. These procedures may be applied to find the integer 
variables kx  that satisfy the conditions (26) or (28) in conformance with scheme 
(25).  

When solving problem (13)-(18) after a feasible solution ( )1, −kk yx  is found, 
the solution passes to optimizing the values of the continuous variables, which 
satisfy the feasibility conditions of the problem. The optimization problem, solved 
by an LP solver, is: 
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where 1−k
ik

b  is the value of non-fulfillment of constraint ki  at the previous iteration. 

The obtained value of the continuous variables ky  forms the solution of 
problem (13)-(18), which fulfills, or at least decreases the infeasibility of the 
constraint ki  and does not break the satisfied constraints from the set kF2 . 

In an analogous way, in order to find an optimal solution of problem (19)-(24), 
after finding feasible values for the integer variables kx , the following linear 
optimization problem is solved: 
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where 1−kz  is the value of the objective function at the previous iteration. 
A solution of the initial MIP problem (1)-(5) (xk, yk) is found with the obtained 

value of the continuous variable yk, which is better with respect to the objective 
function in comparison to the one, found at the previous iteration. 

3. Algorithm main features 

The heuristic algorithm proposed is denoted to find an approximate feasible 
solution of mixed linear integer problems in a general form. For this purpose it 
includes integrated heuristic procedures for finding feasible integer directions and 
linear optimization. Since the problems, for which it is intended, are NP-problems, 
this means that there is no guarantee that it can be used to find a solution to every 
problem. That is why it is of interest to evaluate the main features of the algorithm, 
such as computing complexity, conditions for finding a feasible solution, 
possibilities for entering a cycle, etc.  

In order to find a feasible solution of the initial MIP problem (1)-(5), a number 
of m – 1 problems of the type (13)-(18) must be solved in the worst case. Feasible 
integer directions with one or two nonzero components are sought at each iteration. 
This limiting of the number of nonzero components is connected with the fact that 
the search for feasible integer directions is reduced to solving a system of linear 
inequalities. The problem of solving a system of linear inequalities with one 
variable is easy from a computing viewpoint. But solving a system of linear 
inequalities with two variables is more difficult. Solving a system of linear 
inequalities with three variables is already as difficult as solving the problem in the 
general case. In [16] it is proved that in order to determine an integer point kx  from 
the integer point 1−kx , a number of )( 22nqO  elementary operations of the type  +, –, 
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\, ×, ≥, ≤  are required, where q  is the number of constraints of the current              
n-dimentional problem being solved to find a feasible solution. In order to find the 
continuous part of the current solution ky , a continuous LP problem is solved. 
These problems belong to P-class with respect to their computing complexity. The 
most often used method for their solution is the simplex method, and although from 
a theoretic viewpoint it requires exponential time complexity in the worst case, its 
wide practical application has shown that it has polynomial-time average-case 
complexity. Under the condition that at each iteration k  there exists a feasible 
integer direction with one or two nonzero components, the algorithm finds a 
feasible solution for a finite number of iterations [16]. Hence, finding a feasible 
solution ),( kk yx of problem (1)-(5) can be executed for time that is in polynomial 
dependence on the problem parameters. The improvement of the feasible solution 
obtained ),( kk yx  is done in an analogous way to finding a feasible solution, but 
problem (19)-(24) is used. Thus it might be concluded that the computing 
complexity of the heuristic algorithm considered is polynomial-time.  

From a theoretical viewpoint finding of a feasible solution from an arbitrary 
initial point of MIP problem is a very difficult task. This is true for every 
approximate algorithm of mixed integer programming. If at a given iteration, when 
solving a problem of the type (13)-(18) or (19)-(23), no feasible solution can be 
found, then the algorithm terminates its functioning. However, this does not mean 
that the corresponding problem has not a solution. If the problem of type (13)-(18) 
cannot be solved, the algorithm cannot find a feasible solution of the initial MIP 
problem. When solving a problem of the type (19)-(23), the termination of the 
algorithm operation means that the last feasible solution of the initial problem found 
cannot be improved. In case no feasible integer solution with one or two nonzero 
components can be found for problem (13)-(18) which is currently solved, a new 
problem of the same kind is formulated with another current non-fulfilled constraint 
of the initial point from set kF1 . In the worst case the number of these constraints is 

m – 2. If after that a new current solution ),( kk yx  is not found again, the algorithm 
passes to a procedure of selecting a new initial point. Different strategies may be 
used to alter the initial point. It may be selected along the direction from the last 
solution found towards Chebyshev’s centre, determined by problem (6)-(12) or 
along the direction from the optimal solution of the continuous problem towards 
Chebyshev’s centre. Phase 2 is started from the new initial point with a search 
process for new feasible directions with one or two nonzero components for the 
integer part of the current solution and optimization of the corresponding 
continuous part of the current solution. In order to ensure protection against falling 
into a cycle, a Tabu list is used and a stop parameter, limiting the number of restarts 
with a new initial point. 
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4. Conclusion 

In many practical problems of medium and large dimension, finding a good feasible 
solution is entirely satisfactory, even in case its deviation from the optimal solution 
is unknown, using reasonable computing resources at that. The development of 
heuristic algorithms, as well as hybrid algorithms, that combine the advantages of 
different approaches (exact and heuristic) and have polynomial-time complexity, is 
a problem of the present day for many researchers. 

The heuristic algorithm, proposed to solve MIP problems, will be included in a 
web-based interactive system for optimization and decision making, developed by a 
team at the Institute of Information and Communication Technologies at BAS. Its 
application in this software system will be utilized both for approximate solution or 
speeding the discovery of exact solutions in applied single-criterion MIP problems, 
and also for a solver in the realization of interactive classification-oriented 
algorithms for multiobjective integer optimization.  
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