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Abstract: This study proposes an algebraic approach for formal representation of 
Market Basket (MB) model. In a more generalized model by taking into 
consideration the quantity of items in transactions and by using tools of lattice 
theory we reconsider well-known problems and show an explicit representations of 
frequent MBs, basic frequent MBs and association rules. As straightforward 
consequences, the algorithms to find them are presented.  
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1. Introduction 

Great efforts have been made to discover the informations hidden in the customer 
transactions. The study of customer Market Baskets (MB) and mining the 
association rules are important in various applications, for example, in decision 
making and strategy determination of retail economy [1]. In those studies the 
market baskets (transactions) are often considered as sets of items purchased by 
customers. Discovering of  large itemsets and association rules attracts the interest 
of researchers. One can notice that in these studies the researchers are interested in 
the set of items (e.g. bread, milk, ...) purchased by customers in the super market, 
and did not care of the quantity of each item. However, it is interesting also if we 
know not only that 70% of customers buy bread and milk, but we know also 50% of 
customers buy 1 kg bread and 2 l milk, while 1% of customers buy 10 kg bread and 
1 l milk. Similar example can be found for association rules. The meaning of 
quantitative analysis of transactions is evident. 



 25

In this study we introduce a quantitative analysis of transactions and 
association rules of transactions. The quantitative analysis may reveal informations 
hidden in the transactions. We are interested not only in the statement “90% of 
customers who buy bread and milk also purchase butter”, but in the statement “90% 
of customers who buy 1 kg bread and 2 l milk also purchase 0.5 kg butter”. By 
dealing with the quantity of items our setting is somehow different of those in 
previous studies (see [1]). That is why instead of  itemsets (see [1]) we use  market 
baskets or  transactions. The main advantage of this approach is that all transactions 
can be examined as elements of a lattice with natural partial order. So the lattice-
theoretic methods can be applied for transactions examination. 

2. A generalized setting for Market Basket Model 

For a finite set of items },...,,{= 21 npppP  we consider a MB as a tube 

]),[...,[2],[1],(= nαααα  where [ ]iα ∈ℵ  is the quantity of ip  in the basket α . 
The set of all MBs is denoted by Ω . 

For Ω∈βα ,  where ]),[...,[2],[1],(= nαααα  ])[...,[2],[1],(= nββββ  we 
write βα ≤  if for all ni ...,2,1,=  we have ].[][ ii βα ≤  ≤〉Ω〈 ,  is a lattice with 
the natural partial order ≤ . For a set Ω⊆A  we denote  

,}:|{=)( αββα ≤∈∀Ω∈ AAU   
}:|{=)( βαβα ≤∈∀Ω∈ AAL . 

We denote also 
sup(A) = {α∈U(A)|∃/ β∈U(A): β < α}, 
inf(A) = {α∈L(A) |∃/ β∈L(A): α <  β }. 

One should remark that )(sup A  and )(inf A  are single elements of Ω , namely 
Ω∈uA =)(sup , where u[i] = max{α[i]|α∈A} and Ω∈vA =)(inf , where  

v[i] = min{α[i]|α∈A}. 
For a set Ω⊆A  and Ω∈α  we denote by  

||
|}|{|=)(supp

A
A

A
βαβα ≤∈  

the support of α  in A . In word, )(supp αA  denotes the rate of all market baskets 
that exceeds the given threshold α  (in the form of a sample market basket) to the 
whole A . The support of an market basket is a statistical index and naturally, the 
market baskets of more support are of more significance and attract the attention of 
the managers, as well as of the researchers. 

One can notice that an item ip  (discused in other studies, see, for example, 
[1]) in our study should be identified with ,)( iU α  where ]),[...,[2],[1],(= ni αααα  

0=][kα  if ik =/  and 1.=][iα  We should not confuse ip  with .iα  
For Ω∈βα ,  where ])[...,[2],[1],(= nαααα  and ])[...,[2],[1],(= nββββ  

we write βαγ ∪=  if ]}[],[{max=][ iii βαγ  for all ni ...,2,1,= . We call 
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βα →  an  association rule of β  to α . By the confidence of βα →  in a set of 
MBs A  we understand the rate  

)(supp
)(supp=)(conf

α
βαβα

A

A
A

∪
→  

As remarked in [1] the support of MBs is a kind of statistical index, while the 
confidence of association rules is a measure of their “strength”. 

3. Frequent Market Baskets 

For a set Ω⊆A , Ω∈α  and 10 ≤≤ ε  we say that α  is ε-frequent MB, if 
εα ≥)(suppA . The set of all ε-frequent MBs is denoted by ε

AΦ . We have the 
following 

Apriori Principle. For a set Ω⊆A , Ω∈βα ,  and 10 ≤≤ ε , if βα ≤  and 
β  is ε-frequent then α  is ε-frequent.  

Example 1. Consider a set of items },,{= cbaP  and a set of transactions 
},,,{= δγβαA , where 0)1,(2,=α , 1)1,(1,=β , 1)0,(1,=γ , 0)2,(2,=δ . One 

can see that for 0)1,(1,=σ , 0)2,(1,=η  we have 
4
3=)(supp σA  and 

4
1=)(supp ηA . For the threshold 

2
1=ε  the ε-frequent MBs of A  are:  

0)}.0,(0,0),0,(1,0),1,(0,1),0,(0,0),0,(2,0),1,(1,1),0,(1,0),1,{(2,=2
1

AΦ  
Let us denote  

.}}...,,,{:...,,,|{= 2121, kkkA A αααααααα ≤∈∃Ω∈Φ  
One can remark that if lk ≤  then lAkA ,, Φ⊇Φ  and ,= ,kAA ΦΦε  where 

⎤⎡ ||= Ak ε  denotes the smallest integer that is greater or equal to .|| Aε  
We have the following 
Theorem 1. For a set of items },...,,{= 21 npppP , a set of MBs Ω⊆A  and 

a threshold 10 ≤≤ ε  an MB Ω∈α  is ε -frequent iff there exist Ak ∈ααα ...,,, 21  
such that ,})...,,,({ 21 kL αααα ∈  where ⎤⎡ ||= Ak ε .  

P r o o f: If there exist Ak ∈ααα ...,,, 21 , ⎤⎡ ||= Ak ε , such that 
})...,,,({ 21 kL αααα ∈  then iαα ≤  for all ki ...,2,1,= , i.e., 

εβαβα ≥≥
≤∈

||||
|}|{|=)(supp

A
k

A
A

A . 

Vice versa, if ε≥Asupp  then ||.|}|{| AA εβαβ ≥≤∈ , i.e. there exist 

Ak ∈ααα ...,,, 21 , ⎤⎡ ||= Ak ε , such that })...,,,({ 21 kL αααα ∈ . The proof is 
completed.  
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By the Theorem 1 we have the following  
Algorithm 1 (Creating all ε-frequent MBs of a given set of transactions A).  

Input. Set of items P, set of MBs Ω⊆A  and a threshold 10 ≤≤ ε .  
Output. ε

AΦ .  
  Step 1. ∅Φ :=ε

A .  
  Step 2. .||= ⎤⎡ Ak ε   
       For all AB ⊆ , kB |=|   
      )(:= BLAA ∪ΦΦ εε   
      EndFor;  
  End  

Let nP |=| , ⎤⎡ ||= Ak ε , }1,2,...,=,|][{= niAimaxm ∈αα . The 

algorithm requires ( )( )( )nA
k mO 1.|| +  running time. 

As a consequence of the previous theorem we have the following 
Theorem 2 (Explicit representation of large MBs). For a set of items 

}...,,,{= 21 npppP  a set of MBs Ω⊆A  and a threshold 10 ≤≤ ε  there exist 

,...,,, 21 Ω∈sααα  where ( )||
||= A

As ⎤⎡ε  such that  

).(=
1=

i

s

i
A L αε UΦ  

P r o o f: Let sααα ...,,, 21  be the set of all }...,,,{inf 21 kβββ  where 

⎤⎡ ||= Ak ε  and Ai ∈β . By Theorem 1 we have  
})...,,,({inf 21 kA βββαα ε ≤⇔Φ∈  

for some Ak ⊆}...,,,{ 21 βββ , where .||= ⎤⎡ Ak ε  This implies that 

)(=
1= i

s

iA L αε UΦ . The proof is completed.  

We should remark that ji αα ≤  iff .)()( ji LL αα ⊆  For a set of MBs A  and a 
given threshold ε  the set of MBs sααα ...,,, 21  for which 

(i) ,)(=
1= i

s

iA L αε UΦ   

(ii) sjiji ≤≤∀ ,0:,  we have i jα α≤/  and j iα α≤/   
is called by basic ε-frequent set of MBs of A . It is easy to verify that for a given 
A , ε the basic ε-frequent set of MBs of A  is unique, which we denote by ε

AS . 
Since the determination of ε

AΦ  (the set of all ε-frequent set of MBs in A) is 
important, it is interesting to determine its basic ε-frequent set of MBs .ε

AS  We 
have the following  
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Theorem 3. For a set of items P, a threshold 10 ≤≤ ε  every set of MBs 
Ω⊆A  has an unique basic ε-frequent set of MBs ε

AS .  
The simple proof is omitted. The following algorithm creates the unique basic 

ε-frequent set of MBs for a given set of MBs Ω⊆A  and a given threshold ε :  
Algorithm 2 (Creating the basic ε-frequent set of MBs ε

AS ). 

Input. Set of items P, Set of MBs Ω⊆A  and a thershold 10 ≤≤ ε .  
Output. ε

AS .  
Step 1. ∅:=ε

AS .  
Step 2. .||= ⎤⎡ Ak ε   
    For AB ⊆ , kB |=|   
        For εα AS∈   
           If )(inf B≤α  or α≤)(inf B  then  
           ))}(inf,(max{))}(inf,(min{\:= BBSS AA ααεε ∪ .  
           else  
           ))}(inf{:= BSS AA ∪εε .  
           EndIf  
        EndFor  
    EndFor  
End  

For nP |=| , ⎤⎡ ||= Ak ε , };...,2,1,=|][{max= Aniim ∈αα  one can see 
that ( ).|| ||A

kAS ≤ε  Therefore the algorithm requires ( )( )mnO A
k

||  running time. One can 
remark also than in the case of large amount of transactions A  the basic ε-frequent 
set of MBs ε

AS  can be generated much more quickly than the set of all ε-frequent 
set of MBs ε

AΦ .  

Example 2. We continue the Example 1. For the set of transactions A  

Algorithm 2 generates the basic 
2
1 -frequent set of MBs { },,=2

1

θρAS  where 

0)1,(2,=ρ , 1).0,(1,=θ  It means that the family of 
2
1

-frequent set of MBs of A  

is )()(=2
1

θρ LLA ∪Φ .  

4. Association and confidence 

In our generalized model of market baskets we can find all associations with given 
confidence. For a set of items P, a set of MBs Ω⊆A  and a threshold 10 ≤≤ ε  an 
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association βα →  is ε-confident if εβα ≥→ )(confA . The set of all ε -confident 
associations of A  is denoted by .ε

AC  We have the following  
Theorem 4. For a set of products P a set of MBs Ω⊆A  and 10 ≤≤ ε  an 

association βα →  is ε-confident iff .
|)(|

|)(| ε
α

βα
≥

∩
∩∪
AU

AU    

P r o o f: Remark that 
||

|)(|=)(supp
A

AU
A

∩∪
∪

βαβα  and 

||
|)(|=)(supp

A
AU

A
∩αα . With these remarks the proof of the theorem is 

straightforward.  
A natural question for cross marketing, store layout, ...(see, for example [1]) is 

to find all association rules with a given confidence. In our generalized model the 
following theorem shows in a sense an explicit representation of all association 
rules. More exactly, we show for a given MB α  which set of MBs β  may be 
associated to α  with a given threshold of confidence.  

For MBs ρ, σ  where ρ ≤ σ, let us denote  
.}|{=),( σηρησρ ≤∪Ω∈M  

It should be remarked that ),( σρM  can be represented explicitly. If  
ρ = (ρ1, ρ2, …, ρs),  σ = (σ1, σ2, …, σs) then η = (η1, η2, …, ηs) ∈ M(ρ, σ) iff 
max(ρi, ηi) for all si ...,2,1,= , i.e., ii ση =  in the case i iρ σ≤/  and ii ση ≤  in the 
case .= ii σρ   

Theorem 5 (Explicit representation of association rules). For a set of items 
}...,,,{= 21 npppP , a set of MBs Ω⊆A , an MB Ω∈α  and a threshold 

10 ≤≤ ε  there exist Ω∈kααα ...,,, 21  such that :Ω∈∀β βα →  is ε-confident 

association rule iff ).,(
1= i

k

i
M ααβ U∈    

P r o o f: Put ⎤∩⎡ |)(|= AUs αε  by Theorem 4 we have that βα →  is         
ε-confident association rule iff sAU ≥∩∪ |)(| βα . Let iα  denotes )(inf B , where 

AB ⊆ , sB ≥|| . One can verify that sAU ≥∩∪ |)(| βα  iff ).,( iM ααβ ∈  The 
proof is completed.  

Theorem 5 in a sense gives an explicit presentation for association rules. As a 
straightforward consequence, we have an algorithm to find all ε-confident 
association rules for given left side.  

Algorithm 3 (Creating all ε-confident association rules βα →  for  
given α).  

Input. A set of items P, a set of MBs ,Ω⊆A  a thershold 10 ≤≤ ε  and  
an MB α  

Output. ),(
1= i

k

i
M ααU . 

Step 1. }.|{=)(:= γαγα ≤∈∩ AAUB   
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Step 2. ⎤⎡ ||:= Bs ε .  
   |}|||{:=| sCBCk ≥⊆   
   For BC ⊆ , sC ≥|| , calculate )(inf= Ciα , ki ...,2,1,= .  
   EndFor  
Step 3.  
   For ki ...,2,1,=  calculate ),( iM αα   
   EndFor  
Step 4.  
   Output ),(

1= i
k

i
M ααU .  

 End  
Example 3. We continue the Example 1. For the set of MBs A  (see    

Example 1), the MB 0)1,(1,=σ  and threshold 
2
1=ε  we should find all MB η  

such that ησ →  is ε-confident association rule. We can see 

0)}2,(2,1),1,(1,0),1,{(2,=)( AU ∩σ  and 2=|)(|:= ⎤∩⎡ AUs αε . By Step 2 
in Algorithm 3 we have 4=k  and 0)1,(1,=1α , 0)1,(2,=2α . The set of all MBs 

η  such that ησ →  is 
2
1

- confident association rule is  

.0)}0,(2,0),1,(2,0),0,(0,0),1,(0,0),0,(1,0),1,{(1,=),(),( 21 ασασ MM ∪  
As a result we see that besides the trivial association rules of the form 
σσ ′→ , where σσ ≤′  we got non-trivial association rules 0)1,(2,→σ  and 

0)0,(2,→σ . In words, among those customers A  the ratio of customers who buy 
a  and b  also buy two a  and one b  items, as well the ratio of those who buy a  
and b  also buy two a  items, are more than 50%.  

5. Conclusion 

In this study we have proposed an algebraic approach to consider the MB model. 
The well-known problems are analysed in new, more generalized setting. An 
explicit representation of frequent set of MBs, as well of association rules are 
presented. We define the set of basic frequent MBs which determines the set of 
frequent MBs and can be created in shorter time. We described algorithms that 
produces the set of frequent MBs and the set of basic frequent MBs. We described 
also an algorithm that produces the set of association rules for a given left side. The 
algebraic approach we propose here brings about a clearer representation of well-
known results and appears to be a good tool for future study in market basket 
model.  
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