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Abstract: Beside random errors, burst error studies have attracted quite some 
attention. Most communications now being open to atmospheric and other 
disturbing effects, the error patterns are mostly in the form of bursts.  In fact 
usually the messages are long and the strings of bursts may be short repeating in a 
vector itself. The idea of repeated bursts, introduced by Berardi, Dass and Verma 
has opened this area of study.  

In this paper we obtain results on weights of all vectors having 2-repeated 
bursts of the same size. Another section is devoted to the study of vectors having 2 
repeated bursts with weight constraints. The study can help developing more 
efficient codes with these vectors as error patterns. 
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1. Introduction 

In many instances of communication, as is common knowledge, errors do not occur 
independently but are in many a ways clustered.  This led to the study of burst-
error-correcting codes, introduced by F i r e [4] and R e g i e r [7], and later nicely 
treated by P e t e r s o n & W e l d o n [6].  Easy implementation and efficient 
functioning are added advantages with burst-correcting codes. S t o n e [9], and 
B i r d w e l l  and  W o l f [1] considered multiple bursts. C h i e n  and  T a n g [2] 
also considered a different type of burst known as “CT burst”. 

Yet another kind of error pattern called “2-repeated bursts” has been 
introduced by D a s s, V e r m a  and  B e r a r d i [3]. This is an extension of the idea 
of open- loop burst given by Fire. They obtained results regarding the number of 
parity-check digits required for codes correcting such errors. While some results 
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have been obtained on bounds for 2-repeated burst error correcting codes with 
specified distance and parity-check digits but the important area of the weight of   
2-repeated burst error correcting codes is still untouched. 

The study of bursts in terms of weights was initiated by S h a r m a and D a s s 
[9]. Extending their work K r i s h n a m u r t h y [5] gave some combinatorial results 
regarding the weight of burst error correcting codes. 

In this paper, we obtain results regarding the weight of all vectors having       
2-repeated bursts of length b each. The paper has been organized as follows: In 
section 2 basic definitions, related to our study are stated with some examples. 
Some results on weights of 2-repeated bursts are derived in Section 3. In section 4, 
combinatorial results on weights of 2-repeated bursts are obtained. 

In the following, we shall consider the space of n-tuples whose nonzero 
components are taken from the field of q code characters with elements  
0, 1, 2, …, q – 1.The weight of a vector is considered in Hamming sense as the 
number of non-zero entries. 

2. Preliminaries 
We give two definition of a burst, defined by Fire, as taken in [7]. 

Definition 2.1. A burst of length b is a vector all of whose nonzero 
components are confined to some b consecutive components, the first and the last of 
which is nonzero.  

A vector may have not just one cluster of errors, but more than one. Lumping 
them into one burst, amounts to neglecting the nature of communication and 
unnecessarily considering longer burst which may have a part, which is not of 
cluster in-between. For example in a very busy communication channel, sometimes, 
bursts repeat themselves. D a s s, V e r m a  and  B e r a r d i [3] introduced the idea of 
repeated bursts.  In particular they defined “2-repeated burst”.  

A 2-repeated burst of length b may be defined as follows: 
Definition 2.2. A 2-repeated burst of length b is a vector of length n whose 

only nonzero components are confined to two distinct sets of bconsecutive 
components, the first and the last component of each set being nonzero. 

Example: (0001204100300) is a 2-repeated burst of length 4 over GF(5). 
Weight structure being of quite some interest, in the next section, we present 

some results on weights of 2-repeated bursts. 

3. Results on weights of 2-repeated bursts 

Let bW2 denotes the total weight of all vectors having 2-repeated bursts of length b 
in the space of all n-tuples.  Before obtaining W2b in terms of n and b we derive two 
results in the lemmas below, on counting the 2-repeated bursts.  

Lemma 3.1. The total number of 2-repeated bursts, each of length b>1, in the 
space of all n-tuples over GF(q) is 

(1) 
2

)22)(12(])1([ 22)2( +−+−
−− bnbnqq b . 
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P r o o f: Let us consider a vector of length n having 2-repeated bursts of length 
b each.  Its only nonzero components are confined in two distinct sets of b 
consecutive components, the first and the last components of each set being 
nonzero.  

To make two repeated bursts of length b each, the first burst can start from ith 
position, where i varies from 1 to n – 2b + 1. The second burst can then start from a 
position after the first one ends.  

Let us first consider the vector having 2-repeated bursts, in which the first 
burst starts from the first position, their number is (q – 1)2qb–2, then the second burst 
will have n – 2b + 1 starting positions and their number will also be (q – 1)2qb–2.  
Thus the total number of 2-repeated bursts in which the first burst starts from first 
position, is given by 

)12(])1[( 222 +−− − bnqq b . 
Next considering vector with 2-repeated bursts, in which the first burst starts 

from second position, the starting positions of second having reduced by 1, their 
number shall be 

)2(])1[( 222 bnqq b −− − . 
A little consideration will show that the process of constructing 2-repeated 

bursts will end when the second burst has just one starting position, the number then 
being 1.])1[( 222 −− bqq . 

Summing these all the total number of n-vectors having 2-repeated bursts of 
length b each will be 

2
)22)(12(])1([])1([ 22)2(

12

1

22)2( +−+−
−=− −

+−
− ∑ bnbnqqiqq b

bn
b . 

This proves the result. 
Next we impose weight restriction on 2-repeated bursts and count their 

numbers. The results are given in lemma below. 
Lemma 3.2. The total number of vectors having 2-repeated bursts of length 

b>1  with weight )24( bww ≤≤  in the space of all n-tuples is 

(2) 
2

)22)(12()1(
4
42 +−+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
− bnbnq

w
b w .    

P r o o f: Let us consider a vector having 2-repeated bursts of length b each.  Its 
only nonzero components are confined to two distinct sets of  consecutive 
components, the first and the last component of each set being nonzero,  each of 
these, the first and the last, components may be any of the 1−q  nonzero field 
elements.  As we are considering 2-repeated bursts of length b, in a vector of length 
n, having weight w,this will have non-zero positions as follows: 

i. First and the last position of first burst; 
ii. First and the last position of second burst; 

iii. Some 1w  amongst the 2−b  in-between positions of first burst and then 
w – w1 – 4 in the in-between b – 2 positions of the second burst, where  w1 varies 
from 0 to w – 4; 
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iv. Other positions have the value 0. 
Thus in combinatorial ways, analyzing as before, in the counting factor 

222 ])1[( −− bqq  replacing one factor 2−bq  by 1)1(
2

1

wq
w

b
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
 and the other by 

14

1
)1(

4
2 wwq

ww
b −−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−
 and summing their product for 1w  in limits 

40 1 −≤≤ ww , each 2-repeated burst will give its number by  

(3) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−− ∑

−

=

−

1

4

0 1

422

4
22

)1()1()1(
1

ww
b

w
b

qqq
w

w

w = 

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
− ∑

−

= 1

4

0 1 4
22

)1(
1

ww
b

w
b

q
w

w

w . 

To find a close expression for 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∑
−

= 1

4

0 1 4
22

1
ww

b
w

bw

w

, 

we consider the following identity 
(4) 2242 )1()1()1( −−− ++=+ bbb xxx . 

Equating coefficients of 4−wx from both sides, we get  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

∑
−

= 1

4

0 1 4
22

4
42

1
ww

b
w

b
w
b w

w

. 

Using this identity, the total number of 2-repeated bursts of length b and 

weight w, with sum of their starting position 
2

)22)(12( +−+− bnbn  is 

2
)22)(12()1(

4
42 +−+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
− bnbnq

w
b w . 

This proves Lemma 3.1. 
Note. Let us sum up the result of Lemma 3.2, where w takes all possible 

values, that is, bw 24 ≤≤ . In this way, the number of all vectors that have 2-bursts 
of length b each is 

∑
=

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+−+− bw

w

wq
w
bbnbn 2

4

)1(
4
42

2
)22)(12( = 

 ∑
−=

=

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+−+−

=
42

0

4)1(
4
42

2
)22)(12( bi

i

iq
w
bbnbn = 

424)1(
2

)22)(12( −−
+−+−

= bqqbnbn . 

This is same as the result of Lemma 3.1.  
Now we return to finding an expression for bW2 , the total weight of all vectors 

having 2-repeated bursts of length b in the space of all n-tuples. 
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Theorem 3.1.  For bn ≥  

(5)  2
2 )1(

2
)1(

−
−

= qnnW   

and 

(6) ]4)1(2[)1(
2

)22)(12( 524
2 +−−

+−+−
= − qbqqbnbnW b

b . 

P r o o f: The value of W2 follows simply by considering all vectors having any 
two non-zero entries out of n . Their number clearly is given by  

22 )1(
2

)1()1(
2

−
−

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
qnnq

n
. 

This gives the value of W2 as stated. 
Next, for b > 1, using the Lemma 3.2, the total weight of all vectors having              

2-repeated bursts of length b each is given by 

].4)1(2[)1(
2

)22)(12(

]4)1)(42[()1(
2

)22)(12(

])1(4.)1)(42)[(1(
2

)22)(12(

])1[()1(
2

)22)(12(

])}1(1{)1[(
)1(

1)1(
2

)22)(12(

)1(
42

)4()1(
2

)22)(12(

)1(
2

)22)(12(
4
42

524

524

342524

424

424
3

4
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0

4

2

4

+−−
+−+−

=

=+−−−
+−+−

=

=−+−−−
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=

=−−
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=

=−+−
−

−
+−+−

=

=−⎟⎟
⎠

⎞
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⎝

⎛ −
+−
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=

=−
+−+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−

−

−−

−

−

−

=

=

∑

∑

qbqqbnbn

qqbqqbnbn

qqqqbqbnbn

qq
dq
dqbnbn

qq
dq
d

q
qbnbn

q
i

b
iqbnbn

qbnbn
w
b

w

b

b

bb

b

b

i
b

i

w
b

w

 

This completes the proof of the Theorem 3.1.  
Further, in coding theory, an important criterion is to look for minimum 

weight in a group of vectors. Our following theorem is a result in that direction.  
Theorem 3.2. The minimum weight of a vector having 2-repeated burst of 

length b>1 in the space of all n-tuples is at most 

(7) 
q

bb )2(22 −
− .  

P r o o f:  From Lemma 3.1, it is clear that the number of 2-repeated bursts of 
length b in the space of all n-tuples with symbols taken from the field of q elements 
is 

2
)22)(12(])1([ 22)2( +−+−

−− bnbnqq b . 

Also from Theorem 3.1, their total weight is 
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].4)1(2[)1(
2

)22)(12( 524 +−−
+−+− − qbqqbnbn b  

Since the minimum weight element can at most be equal to the average 
weight, an upper bound on minimum weight of a 2-repeated burst of length b is 
given by  

=
+−+−−

+−−+−+−
−

−

2).22)(12(])1([
]4)1(2[)1)(22)(12.(2

22)2(

524

bnbnqq
qbqqbnbn

b

b

 

.)2(22
q

bb −
−=  

This proves the result. 
In this section, we considered a problem which allows greater fine tuning of 

error patterns for efficient coding. This is obtained by considering 2-repeated bursts 
with weight constraints. It is not uncommon to find error patterns in the form of 
bursts, receiving some positions correctly. Such error vectors have only a limited 
number of non-zero positions spread up over the burst length. Thus we come to a 
problem more general than the one handled above. We study vectors with two 
repeated bursts having weight constraint on them.  

4. Combinatorial results on weights of vectors having 2-repeated bursts 
with weight constraint  

Let wbW ,2 denote the total weight of those vectors having 2-repeated bursts of length 
b each, which are of weight w  or less in the space of all n-tuples over 

)(GF q .Before obtaining main results, we state a simple result in lemma below. 

Lemma 4.1.  Let [ ] ),(1 rnx+ denote the incomplete binomial expansion 

rx
r
n

x
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ ...

1
1 of nx)1( +  

up to the term rx , ,nr ≤  in the ascending powers of x . 

Then [ ] [ ] )1.1(),( 11 −−+=+ rnrn xnx
dx
d , where 

dx
d  for the derivative with respect 

to x  [6]. 
Theorem 4.1. In the space of all n -tuples over )(GF q , for wbn ≥≥ 2  >1 

(8) 
[

].)]1(1)[42)(1(

)]1(1[2)1(
2

)22)(12(

)5,52(

)4,42(4
,2

−−

−−

−+−−+

+−+−
+−+−

=

wb

wb
wb

qbq

qqbnbnW
 

P r o o f:  We know, from Lemma 3.2, that the total number of vectors having      
2-repeated bursts of length  1>b  each, with weight w  in the space of all n-tuples is 

2
)22)(12()1(

4
42 +−+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
− bnbnq

w
b w . 
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Therefore, wbW ,2  the total weight of 2-repeated bursts of length b  each with 
weight w or less, where ,24 bw ≤≤  is given by  

=
⎥
⎥
⎦

⎤

⎭
⎬
⎫

−⎟⎟
⎠
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−⎟⎟
⎠
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⎞
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⎠
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q
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q
b
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[ ] ,)]1(1[)1()1(
2

)22)(12( )4,42(4 −−−+−−
+−+−

= wbqqqbnbn  

and using Lemma 4.1, 

[
] [

].)]1(1)[42)(1()]1(

1[2)1(
2

)22)(12()]1(1[)1(2

)]1(1)[42()1()1(
2

)22)(12(

)5,52()4,42(

4)4,42(3

)5,52(4
,2
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−−

−−

−+−−+−+

+−
+−+−

=−+−+

+−+−−−
+−+−

=

wbwb
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wb
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qbqq

qbnbnqq

qbqqbnbnW

 

This proves Theorem 4.1. 
Next we give a recurrence relation for weights in this very general case. 

Theorem 4.2. A recurrence relation between wbW ,2  and 1,12 −− wbW  is given by 

(9) =⎥
⎦

⎤
⎢
⎣

⎡
−+−+−

−
+−+−

4
,24

)1)(22)(12(
.2

)1(
2

)22)(12(
qbnbn

W
dq
dqbnbn wb  

= )5,52(4
1,12 )]1(1)[42()1(

2
)22)(12()42( −−

−− −+−−
+−+−

+− wb
wb qbqbnbnWb . 

P r o o f: From Theorem 4.1, we have 

[
].)]1(1)[42)(1(

)]1(1[2)1(
2

)22)(12(

)5,52(

)4,42(4
,2

−−

−−

−+−−+

+−+−
+−+−

=

wb

wb
wb

qbq

qqbnbnW
 

Therefore,  

(10) 
[

])6,62(

)5,52(4
1,12

)]1(1)[52)(1(

)]1(1[2)1(
2

)32)(22(

−−

−−
−−

−+−−+

+−+−
+−+−

=

wb

wb
wb

qbq

qqbnbnW
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and 

(11) 
[

].)]1(1)[42)(1(

)]1(1[2
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Differentiating with respect to q and then using Lemma 4.1, we get 

.
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The result now follows by using the value of 1,12 −− wbW . 
Finally, we have the result on upper bound on the minimum weight vector in 

the class of vectors considered in this section. 
Theorem 4.3. The minimum weight of a 2-repeated burst of length b with 

weight w or less in the space of all n-tuples over GF(q) is at most 

(12) )4,42(

)5,52(

)]1(1[
)]1(1)[42)(1(2 −−
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−+
−+−−

+ wb
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q
qbq .  

P r o o f: Using the Lemma 3.2, the total number of 2-repeated bursts of length 
b with weight w in the space of all n-tuples over GF(q) is 

.)]1(1[)1(
2

)22)(12( )4,42(4 −−−+−
+−+− wbqqbnbn  

From Theorem 4.1, the total weight is  

[
].)]1(1)[42)(1(

)]1(1[2)1(
2

)22)(12(

)5,52(

)4,42(4
,2

−−

−−

−+−−+

+−+−
+−+−

=

wb

wb
wb

qbq

qqbnbnW
 

Since the minimum weight element is at the most equal to the average weight, 
the minimum weight of a 2-repeated burst of length b with weight w or less is at 
most 

.
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This proves the result. 
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5. Concluding remarks  

Multiple bursts present interesting class of error patterns over an alphabet of size q. 
Results for binary case can be derived immediately. Also, here we have considered 
vectors having two bursts of equal lengths, with or without weight constraints. 
Studies generalizing these considerations have also attracted our attention that will 
be reported separately. With these bursts as error patterns, codes capable of 
correcting these patterns will improve the communicate rate. Constructing such 
codes will be a part of continued study.  
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