
 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 11, No 1

Sofia • 2011

Linear Integer Programming Methods and Approaches – A Survey

Krasimira Genova, Vassil Guliashki
Institute of Information and Communication Technologies, 1113 Sofia
E-mails: kgenova@iinf.bas.bg vggul@yahoo.com

Abstract: The paper presents a survey of methods and approaches solving linear
integer problems, developed during the last 50 years. These problems belong to the
class of NP-hard optimization problems. To find out exact optimal solutions for this
class of problems requires use of considerable computational resources. The
development of efficient hybrid methods, combining in a suitable way the best
features of different approaches (exact or approximate) is the actual direction, in
which many researchers devote their efforts to solve successfully varioushard
practical problems.

Keywords: Linear integer programming, exact methods, heuristic approaches and
approximate algorithms.

I. Introduction

The name linear integer programming refers to the class of combinatorial
constrained optimization problems with integer variables, where the objective
function is a linear function and the constraints are linear inequalities. The Linear
Integer Programming (LIP) optimization problem can be stated in the following
general form:
(1) Maximize cx
(2) subject to: Ax ≤ b,
(3) x ∈ Zn,
where the solution x ∈ Zn is a vector of n integer variables: x = (x1, x2 , …, xn)T and
the data are rational and are given by the m×n matrix A, the 1×n matrix c, and the

 4

m×1 matrix b. This formulation includes also equality constraints, because each
equality constraint can be represented by means of two inequality constraints like
those included in (2).

A wide variety of real life problems in logistics, economics, social science and
politics can be formulated as linear integer optimization problems. The
combinatorial problems, like the knapsack-capital budgeting problem, warehouse
location problem, travelling salesman problem, decreasing costs and machinery
selection problem, network and graph problems, such as maximum flow problems,
set covering problems, matching problems, weighted matching problems, spanning
trees problems and many scheduling problems can also be solved as linear integer
optimization problems (see, e.g. [24, 79, 104, 119]).

Some optimization problems, having nonlinear objective functions and linear
constraints can be transformed in LIP optimization problems by simple
approximation of the corresponding nonlinear functions by piecewise linear
functions (see, e.g. [91, 116, 151]).

Solving integer programming optimization problems, that is, finding an
optimal solution to such kind of problems, can be a difficult task. To solve a
nonconvex integer programming problem could be an algorithmically unsolvable
task (see, e.g. [22, 95]). For this reason such problems have not been considered in
our survey. The convex nonlinear integer programming problems belong to the
class of NP-hard problems (see, e.g. [4, 45, 116]). There does not exist an exact
algorithm, which can solve these problems in time, depending polynomially on the
problem input data length or on the problem size. The linear integer programming
problems are easier solvable than the convex nonlinear integer programming
problems. An instance of problem (1)-(3) can be transformed in polynomial time to
an instance of a 0-1 linear integer programming problem (see, e.g. [116]). But the
0-1 linear integer programming problem can be solved by a brute-force enumerative
algorithm in O(2nmn) time (see [116]). It should be noted, that there are many
special cases (e.g. matching, node packing on appropriately restricted classes of
graphs, and some matroid optimization problems) that belong to the class P of
problems, solvable in polynomial time, i.e., there exist algorithms with polynomial
time computational complexity, which can solve them. The difficulty to solve
(linear and/or nonlinear) integer programming problems arises from the fact that
unlike linear programming, for example, whose feasible region is a convex set, in
integer programming problems, one must search for a lattice of feasible integer
points to find an optimal solution. Unlike Linear Programming (LP) where, due to
the convexity of the problem, we can exploit the fact that any local solution is a
global optimum, the integer programming problems have many local optima and
finding a global optimum to the problem requires one to prove that a particular
solution dominates all the feasible points by arguments other than the calculus-
based derivative approaches of convex programming with continuous variables. For
this reason, the approximate algorithms solving LIP optimization problems are
widely spread.

The aim of this paper is to make a survey of the techniques developed during
the last 50 years to solve LIP problems and to motivate the necessity for

 5

continuation of the researches in the area of creating more efficient metaheuristic
and hybrid approaches. The paper is organized as follows: In Section II the
development of exact methods for solving LIP optimization problems is considered.
It is divided in three subsections as follows: cutting planes approaches based on
polyhedral combinatorics, enumeration techniques and relaxation and
decomposition techniques. Section III is devoted to some heuristics and
metaheuristic approaches, as well as to population-based evolutionary algorithms,
designed to solve such class of optimization problems. In Section IV some
conclusions are given and directions for further research are outlined.

II. Exact methods for solving linear integer programming
optimization problems

The development of exact optimization methods for LIP optimization problems
during the last 50 years was very successful. There are, at least, three different
approaches for solving integer programming problems, although they are frequently
combined into “hybrid” solution procedures in computational practice (see [24, 80,
91, 116, 150, 151]):

• Cutting planes algorithms based on polyhedral combinatorics;
• Enumerative approaches and Branch-and-Bound, Branch-and-Cut and

Branch-and-Price methods; and
• Relaxation and decomposition techniques.
They are considered briefly as follows below.

II. 1. Cutting Plane algorithms based on polyhedral combinatorics

The underlying idea of polyhedral combinatorics is to replace the constraint set of
an integer programming problem by an alternative convexification of the feasible
points and extreme rays of the problem. Both the size and the complexity of the
problems solved have been increased considerably when polyhedral theory was
applied to numerical problem solving.

In [149] W e y l proved that a convex polyhedron can alternatively be defined
as the intersection of a finite number of halfspaces or as the convex hull plus the
conical hull of some finite number of vectors or points. Based on this theoretical
result, G o m o r y [64] derived a “cutting plane” algorithm for integer programming
problems which can be viewed as a constructive proof of Weyl’s theorem.

The general cutting plane approach relaxes initially the integrality restrictions
on the variables and solves the resulting linear program over the constraint system
(2). In case the linear program is unbounded or infeasible, the same is valid for the
integer program. In case the solution to the linear program is integer, this is the
optimal solution to the integer program. When the linear program has a not integer
optimal solution, then a facet-identification problem has to be solved. Here the
objective is to find a linear inequality that “cuts off” the fractional linear
programming solution while assuring that all feasible integer points satisfy the
inequality – that is, an inequality that “separates” the fractional point from the

 6

polyhedron. The terminating conditions for this algorithm are as follows: 1) an
integer solution is found (the LIP problem is successfully solved); 2) the linear
program is infeasible and therefore the integer problem is infeasible; or 3) no cut is
identified by the facet-identification procedures either because a full description of
the facial structure is not known, or because the facet-identification procedures are
inexact, that is, there is no possibility for algorithmically generating cuts of a known
form. In case the cutting plane procedure is terminated because of the third
possibility, then, in general, the search process has “tightened” the linear
programming formulation so that the resulting linear programming solution value is
much closer to the integer solution value.

Gomory shows in [64, 65, 66] that the fractional cutting-plane algorithm is
finitely convergent with an approximate use of the lexicographic dual simplex
algorithm. The proof in [117] is a reinterpretation of Gomory’s proof and provides
an additional insight into the nature of convergence. In [68] it is shown that given a
fractional LP solution, the cuts Σj xj ≥ 1, where the sum is taken over all nonbasic
variables cannot yield a finite fractional cutting-plane algorithm. In [20] it is proved
that stronger cuts yield a finite algorithm.

A primal cutting-plane algorithm for general integer programs was proposed in
[17]. A finitely convergent primal cutting-plane algorithm was proposed in [152],
and simplified versions were published in [53, 153]. Because of poor computational
experience, this line of research has been very inactive. An exception is a primal
cutting-plane algorithm for the travelling salesman problem [119]. Although this
algorithm has been moderately successful, it seems to be inferior to a fractional
cutting-plane algorithm for the travelling salesman problem.

Another strategy for cutting-plane algorithms is to maintain integrality and
dual feasibility and then to use cuts to obtain primal feasibility. A finite algorithm
of this type has been given by G o m o r y [67]. Other similar algorithms have been
proposed in [51, 52].

II. 2. Enumerative approaches

These approaches are known under different names. The most popular of them are
Branch-and-Bound, implicit enumeration and divide and conquer (see [116]). The
explicit enumeration is the simplest approach to solving a pure integer
programming problem by means of enumeration of all possibilities, which are finite
in number. However, due to the “combinatorial explosion” of number of these
possibilities resulting from the parameter “size,” only instances having relative
small size could be solved by such an approach within a reasonable computational
time limit. Sometimes many possibilities can be implicitly eliminated by
domination or feasibility arguments. Besides straightforward or implicit
enumeration, the most commonly used enumerative approach is called Branch-and-
Bound (B&B), where the “branching” refers to the enumeration part of the solution
technique and bounding refers to the fathoming of possible solutions by comparison
to a known upper or lower bound on the solution value. The first B&B algorithm
for general integer programs was introduced by L a n d and D o i g [101]. The
popularity of B&B approach increased substantially after the publication of B&B

 7

algorithm for the travelling salesman problem by L i t t l e et al. [104], because it
demonstrated that large (at this time) problems could be solved by controlled
enumeration. B a l a s [7] gave the first implicit enumeration algorithm for general
0-1 integer programming problems.

The commercial B&B codes usually relax the problem by dropping the
integrality conditions and solve the resultant continuous linear programming
problem over the constraint system (2). In case the solution to the relaxed linear
programming problem satisfies the integrality restrictions, the solution obtained is
optimal. If the linear program is infeasible, the integer program is also infeasible.
Otherwise, at least one of the integer variables is fractional in the linear
programming solution. Each fractional variable is chosen and a “branch” is
organized, creating two subproblems which exclude the prior solution, but do not
eliminate any feasible integer solutions. These new problems arising by branching
of all fractional variables constitute a branching tree, and a linear programming
problem is solved for each node created. Nodes can be fathomed if the solution to
the subproblem is infeasible, if it satisfies all the integrality restrictions, or if it has
an objective function value, which is worse than a known integer solution. A variety
of strategies that have been used within the general Branch-and-Bound framework
is described in [90, 91].

Early general survey articles on enumerative methods are given in [2, 13, 46,
49, 103, 110, 142, 144]. After that period many text books on integer programming
have been published (see, e.g. [24, 91, 69, 116, 121, 122, 123, 138, 150, 151]).

The linear structure of LIP optimization problem (1)-(4) does not impose a
strong restriction on the application of B&B algorithm. This approach can be
applied also to solve Nonlinear Integer Programming (NIP) optimization problems.
The greatest part of the time during the algorithm execution is spent to solve the
relaxed subproblems. The choice of suitable algorithms for solving the subproblems
could improve the efficiency of B&B algorithm.

II. 3. Branch-and-Cut

The bounds obtained from the LP-relaxations are often weak, which may cause
standard B&B algorithms to fail in practice. It is therefore of crucial importance to
tighten the formulation of the problem to be solved. The idea of dynamically adding
the so called cutting planes to the problem is one way of obtaining stronger bounds.
Combining the cutting plane algorithm with B&B results in the very powerful class
of Branch-and-Cut (B&C) algorithms. The idea is to generate cutting planes
throughout the B&B tree of a standard B&B algorithm, in order to get tight bounds
at each node.

The B&C algorithm consists of following major components: 1) automatic
reformulation procedures, 2) heuristics which provide “good” feasible integer
solutions and 3) cutting plane procedures which tighten the linear programming
relaxation to the linear integer problem under consideration. These components are
embedded into a tree-search framework as in the B&B approach to integer
programming; whenever possible, there is used a fourth component: 4) the
procedure permanently fixes variables (by reduced cost implications and logical

 8

implications) and does comparable conditional fixing throughout the search-tree.
These four components are combined so as to guarantee optimality of the solution
obtained at the end of the calculation. In some cases the algorithm may also be
stopped prematurely to produce suboptimal solutions along with a bound on the
remaining error. The cutting planes generated by the algorithm are facets of the
convex hull of feasible integer solutions or good polyhedral approximations thereof
and as such they are the “tightest cuts” possible. Lifting procedures assure that the
cuts generated are valid throughout the search tree which aids the search process
considerably and is a substantial difference to traditional (Gomory) cutting-pane
approaches.

The B&C super-algorithms use all that is known about the problem. Some
B&C algorithms are considered in [77, 78, 79, 120].

The increasing empirical evidence indicates that both pure and mixed integer
programming problems can be solved to proven optimality in economically feasible
computation times by methods based on the polyhedral structure of integer
programs. For applications which use such Branch-and-Cut approach, see, e.g. [8,
25, 70, 107, 126, 145]. A direct outcome of these research efforts is that similar pre-
processing and constraint generation procedures can be found in commercial
software packages for combinatorial problems.

Various strategies for exploring the enumeration tree, together with
experimental comparison, are given in [13, 15, 16, 21, 43, 47, 109]. Some
theoretical results on node selection and branching strategies are presented in [44,
86, 87, 89, 134]. In [89] a family of problems is given, for which the number of
nodes that must be searched for, is exponential with respect to the size of the
problem, regardless of what strategies are used.

II. 4. Branch-and-Price

The philosophy of Branch-and-Price (B&P) is similar to the one of Branch-and-
Cut. Indeed, the pricing and the cutting are procedures for tightening the
LP-relaxation of the problem. In Branch-and-Price, the concept of column
generation is combined with a Branch-and-Bound algorithm. The simplex algorithm
arises at the origin from the column generation concept, where only variables with
negative reduced costs are allowed to enter the basis at each iteration. Given a LP
model with a huge number of variables, possibly depending exponentially on the
instance size, it would be efficient to consider only the variables potentially
improving the objective function. The main idea of column generation is to
efficiently determine a variable with negative reduced costs to enter the basis, add it
to the problem, resolve it and iteratively repeat this process until no variable with
negative reduced costs exists anymore.

In general, the method of Dantzig-Wolfe decomposition is often used for
obtaining LP/LIP models with an exponential number of variables, which provide
tighter bounds than the original compact LP/LIP pair. Description of Dantzig-Wolfe
decomposition is given in [116, 151].

Since column generation is an algorithm for solving LPs, it has to be combined
with another method in order to solve LIPs to optimality. The B&P algorithm [9] is

 9

the result of combining column generation with B&B. In each node of the B&B
tree, column generation is performed to solve the LP-relaxation. Branching is
usually performed on original variables or by other strategies to partition the
remaining search space in a balanced way.

An important point is that the column generation algorithm used must be
aware of branching decisions and may only generate solutions respecting them.
Another interesting question is whether the column generation algorithm should
search for optimal solutions of the pricing problem or not. For a detailed review of
column generation and B&P methods we refer to the recent book [32]. By means of
column generation the LIP problem is decomposed into a main problem and
subproblems. This decomposition has natural interpretation for some combinatorial
problems. Routing and scheduling are the most suitable areas for application of
Branch-and-Price methods [see 33].

From a theoretical point of view, B&C and B&P are closely related, since
column generation in the primal problem corresponds to cut generation in the dual
and vice-versa. Furthermore, B&C and B&P can be combined in the so called
branch-and-cut-and-price algorithms, where both cuts and variables are dynamically
generated.

II. 5. Relaxation and Decomposition Methods

There are three wide spread approaches for relaxation of the general LIP problem,
which are designed to find an upper bound of the optimal value for the maximizing
LIP problem: Linear Programming (LP) relaxation, Combinatorial relaxation and
Lagrangian relaxation. The first two approaches extend the feasible domain
without any change in the objective function of the problem. The third approach
provides another maximizing objective function, which has the same or greater
value in a fixed feasible domain.

The LP relaxation for the Integer Programming model is obtained by dropping
the integrality constraints on the variables. The first Branch-and-Bound algorithm
using LP relaxation was described by L a n d and D o i g [101], as mentioned above.
To solve the LP subproblems in the LP relaxation, a simplex-based algorithm is
normally used. The adding of new rows or variables does not lead to resolving the
main problem, but a re-optimization from the optimal basis of the previous step is
executed. The successful developments of interior point methods for large scale
linear programming [3] have attracted many researchers to direct their efforts to use
the interior point methods as the LP solver in Branch-and-Bound algorithms [140].

The now commonly used variable dichotomy scheme was proposed in [31].
The treatment of general upper-bound constraints by a division scheme together
with an indexing scheme was introduced in [11]. The sets considered are called
specially ordered sets. This terminology is now widely used and the concept is very
important in the global maximization of the piecewise linear nonconcave functions.
B e a l e and F o r r e s t [12] developed this approach which enables the
implementation of the division scheme without the explicit use of auxiliary integer
variables.

 10

II. 6. Combinatorial Relaxation

For realization of the combinatorial relaxation there are at least two approaches
exploiting the combinatorial structure of the problem. The first approach is based on
the concept of valuated matroids, introduced by D r e s s and W e n z e l [36, 37].
Greedy-type algorithms can be used for optimization. The other approach, which is
called the structural approach, utilizes algorithms to compute an upper bound on the
objective function and is often based on a graph-theoretic method (see [88, 114]).

II. 7. Lagrangian Relaxation

Considering LP relaxation it was mentioned that relaxing the integrality restriction
is one approach to solution of linear integer programming problems. But, this is not
the only approach to relaxing the problem. The idea of dropping constraints can be
embedded into a more general framework, called Lagrangian relaxation. This is an
alternative approach, where a set of “complicating” constraints is included into the
objective function in a Lagrangian fashion (with fixed multipliers that are iteratively
changed). The complicating constraints are removed from the constraint set. In this
way the resulting sub-problem could be solved considerably easier. The latter is
necessary in order that the approach can work, because the subproblems must be
repetitively solved until optimal values for the multipliers are found. The bound
found by Lagrangian relaxation can be tighter than that found by Linear
Programming, but only at the expense of solving subproblems in integers, that is,
only if the subproblems do not have the Integrality Property. (A problem has the
integrality property if the solution to the Lagrangian problem is unchanged when
the integrality restriction is removed). To realize a Lagrangian relaxation it is
necessary that the structure of the problem being solved is clear in order to relax
then the constraints that are “complicating” (see [40]). A related approach which
attempts to strengthen the bounds of Lagrangian relaxation is called Lagrangian
decomposition (see [71]). This approach consists of isolating sets of constraints. In
this way are obtained separate, easy problems to solve over each of the subsets. The
dimension of the problem is increased by creating linking variables which link the
subsets. All Lagrangian approaches are problem dependent. There is developed no
general theory – applicable to say, in arbitrary zero-one or LIP problems.

The most Lagrangian-based strategies provide approaches which deal with
special row structures. Some problems may possess a special column structure, such
that when specific values are assigned to some subset of the variables, the problem
is reduced to one that is easy to solve. There are decomposition algorithms, dealing
with complicating variables in the problem. Benders decomposition algorithm fixes
the complicating variables, and solves the resulting problem iteratively (see [14]).
Based on the problem’s associated dual, the algorithm must then find a cutting
plane (i.e., a linear inequality) which “cuts off” the current solution point but no
integer feasible points. This cut is added to the collection of inequalities and the
problem is resolved.

 11

Since each of the decomposition approaches above described provides a bound
on the integer solution, they can be incorporated into a branch and bound algorithm,
instead of the more commonly used linear programming relaxation. However, these
algorithms are special-purpose algorithms in that they exploit the “constraint
pattern” or a special structure of the problem.

As noted in [80] the computational success for difficult combinatorial
optimization problems reflects the intense efforts devoted to developing the
underlying polyhedral structure of these problems. Thus, in order to use this
approach, one must be able to both identify specific mathematical structures
inherent in the problem and then study the polyhedron associated with that
structure. As more structures are understood, and can be automatically detected, we
will see larger classes of problems solved by these methods. These codes will
certainly be complex, but they are likely to lead to methods for solving to optimality
– with reasonable computational effort – of many of the difficult combinatorial
problems for which only heuristic approximate solutions are known today.

II. 8. Preprocessing

A better formulation of a LIP problem creates the possibility for its easier solution
from the viewpoint of computational time and resources. All modern software
systems contain modules, which apply the so called preprocessor or presolver, and
which use some rules for improving the formulation of a concrete optimization
problem. The basic preprocessing techniques have the aim to tighten the bounds of
the variables, to fix variables, which have no influence on the optimal solution, to
remove surplus constraints or to find out that the constraint system of a concrete
LIP optimization problem is infeasible. The most often used techniques for
preprocessing are those, described in [5, 136].

In practice some problems arise, where great input data fluctuations are
available after the search process has been started. In other cases a series of related
integer optimization problems has to be solved. Examples in this connection are
found in many decomposition algorithms, parametrical programming algorithms,
some multiobjective optimization algorithms and algorithms for analysis of
mathematical models’ permissibility. Sensitivity and parametric analysis of integer
programs has been discussed in [29, 50, 83, 115, 135, 137, 139].

In contrast to LP optimization problems, the evaluation of the changes in the
objective function’s coefficients or in the right-hand side of constraint system (2) in
LIP problems is more complex. Most often the investigations are connected with a
concrete type of combinatorial problems.

Parallel processing presents new opportunities for computational advances in
discrete optimization. An annotated bibliography and an introduction to parallelism
in combinatorial optimization are given in [96, 97]. In the empirical study [127]
parallel computation is simulated and it is shown that by exploring several nodes of
an enumeration tree simultaneously it is possible to reduce substantially the total
number of nodes that need to be considered. These results have been summarized in
[128].

 12

III. Metaheuristics and population-based evolutionary algorithms

Since the integer programming optimization problems and the LIP optimization
problems (1)-(3), as mentioned above, belong to the class of NP-hard optimization
problems, it is very difficult and requires great computational efforts to find out an
optimal and even a feasible solution for large size problems. Very often it is more
important an acceptable solution to be found out, instead to wait a long time to
obtain the optimal solution. Some flexible constraints may exist in the description
of the problem model and they could be changed only a little bit. The exact
algorithms need to resolve the problem even in case of a little change of one
constraint. This may be very time consuming and could be expensive for real
applications. The approximate algorithms are not so sensitive to little changes in
some constraints. Some of them solve the problem consecutively, while it is
decomposed into parts. In such case the resolving of the entire problem is not
necessary. The approximate algorithms as subroutines in the exact algorithms find a
broad field of application. They could be used to find out a suitable initial solution
or to tighten the feasible domain of solutions and to direct the search for an optimal
solution. A huge number of approximate algorithms has been created for the
solution of large real life LIP optimization problems without any guarantee for
optimality of the final solution [141].

During the last three decades many local search based metaheuristics have
been developed to avoid the trap of local optimality and to find a global optimal
solution (see [130]). It was proven that they are highly useful in practice. In the last
fifteen years a lot of handbooks, devoted to the basic metaheuristic approaches, to
their features and characteristics, as well as to their typical applications were
published (see [10, 58, 148, 106, 61, 113, 41, 48]). They are directed to scientists
and operations researchers, as well as to engineers and applications specialists, who
are looking for the most appropriate optimization tool to solve particular problems.

According to the quality of the solutions obtained, the approximate algorithms
can be divided into three groups as follows:

- approximate algorithms having arbitrary predetermined accuracy (absolute or
relative);

- approximate algorithms having in advance determined accuracy, whereat the
approximation error does not tend to zero;

- heuristic algorithms – in this case it is supposed on the base of experiments
and other evaluations, that with great possibility they will find out a solution of the
problem with good quality using reasonable computational resources, but there is
not available any guaranteed mathematical evaluation of their accuracy.

The development of approximate algorithms, for which it has been
theoretically proven, that they terminate their performance using a polynomial
number of standard mathematical operations, is especially important.

The basic heuristic strategies, used in the approximate algorithms could be
considered as:

- constructive algorithms and
- local-improvement algorithms.

 13

The constructive algorithms generate the solution step by step, using the data
of the problem. Usually there is no solution found, until the algorithm has not
terminated its performance (in contrast to the improving algorithms). To this class
of algorithms belongs the so called “greedy” algorithm, where at each step a next
element of the solution is included, chosen in such a way, that the best local
improvement is achieved (for example the highest gain or the lowest price). One of
the widely known applications of a greedy algorithm is in the travelling salesman
problem [63]. These algorithms are among the fastest approximate algorithms, but
they achieve often very slow quality solutions. For this reason the constructive
algorithms include often some procedures of the type “look-ahead feature” [6],
where the future consequences and effects from the current choice are analyzed.

The main idea of the local-improvement algorithms is very simple [1]. They
usually start using a feasible solution of the problem, often obtained by means of a
constructive algorithm. The feasible solutions in the neighbourhood N(x) of the
current solution x are evaluated. When any of them is better than the current
solution x, it becomes the new current solution of the problem and its
neighbourhood is explored. This procedure continues until there is no new
improvement and the current solution at this step is a local optimum. The
importance of the way for defining the neighbourhood of a solution, is evident. The
neighbourhood N(x, t) of solution x is the set of solutions, which can be obtained
from x by means of a simple transformation t, i.e., the different transformations
define different neighbourhoods. Various strategies for the choice of a new current
solution x have been proposed:

- random choice of x from N(x, t),
- the first solution x, for which an improvement is found, is used (first-fit),
- all solutions in the neighbourhood N(x, t) are explored and the solution

having the greatest improvement is chosen (best-fit),
or some other intermediate conditions are imposed.
The question about the size of this neighbourhood is important; it shows what

is the distance around the current solution determining the neighbourhood for
exploration of feasible solutions [108]. The big shortcoming of these algorithms is
that they can guarantee only a local optimum. There are available different
approaches avoiding this problem:

by means of enlargening the size of the neighbourhood N(x, t) or defining
different transformations t, which determine the neighbourhood N(x, t),

by means of starting the search from different initial solutions, chosen
randomly in the feasible domain,

through perfecting the search techniques, allowing in some cases the choice of
a worse solution in the neighbourhood N(x, t).

During the last 30 years some approximate algorithms have been developed of
a new type, where combinations of different heuristic approaches are used. These
approximate algorithms are known as metaheuristics. The term “metaheuristic” is
introduced for the first time by G l o v e r [55] in the meaning of search for a global
optimum (the highest level solution). The algorithms of this type are known also as
“modern heuristics” [132]. In [147] the following definition is proposed: “The

 14

metaheuristic is an iterative generating process, which manages subordinated
heuristics through an intelligent combination of different ideas for search that
explores the feasible domain, using teaching strategies for structuring the
information with the aim to find an effective, near optimal solution”. Each
metaheuristic has one or several parameters, which have to be tuned. This makes
them flexible, but for any different application (a specific class of problems),
careful tuning on the base of a set of numerical examples for the problem is
required. It is also necessary to make verification of the test experiments using a set
of independent benchmark examples. The metaheuristics use a condition to
terminate the search process. Such conditions are, for example:

- reaching in advance a given computer time or a given limit of iterations,
- expiration of a given computer time or a given iterations number, for which

no improvement has been found,
- reaching a given number of changes of the current solution or a given

number of evaluated solutions, and others.
The most familiar and powerful metaheuristics are Simulated Annealing [35,

98, 118, 125], and Tabu Search (see [55, 57, 59, 118, 124]). They are based on
Local Search techniques (see [1, 10, 58, 85, 146]). Other well-known approaches in
this group are Guided Local Search [146, 148], Iterated Local Search [106] and
Variable Neighbourhood Search [72, 74]. The Population-based algorithms are a
large group of metaheuristics based on the natural practices of surviving of the best
that have a learning capability. These include: Genetic Algorithms (see [10, 42, 62,
81, 82, 131, 133]), Scatter Search (see [54, 56, 60]), Ant Systems/Ant Colony
Optimization (see [26, 27, 28, 30, 34]), Particle Swarm Optimization (see [38, 39,
92, 93, 94, 99, 102]) and Memetic Algorithms [112, 113]. The most important
heuristic approaches and algorithms are briefly considered below.

III. 1. Simulated Annealing

Simulated Annealing is one of the oldest metaheuristics, designed to avoid the local
optima. It is proposed by K i r k p a t r i c k et al. [98] in 1983 and independently by
C e r n y [23] in 1985. The Simulated Annealing extends the main idea of local
search allowing movement towards worse solutions. The basic algorithm of
Simulated Annealing is presented in [35]. In this approach the step from the
solution xk to a new solution xk+1 is performed with a probability:

P(xk+1 ← xk) =
⎥
⎦

⎤
⎢
⎣

⎡ −+

k

kk

T
xfxf

e
)()(1

.
Here Tk is a parameter, called temperature. The probability for accepting the

movement to xk+1 decreases with increase of the deterioration Δ = f(xk+1) – f(xk) of
the objective function or with the decrease of the temperature Tk. The control of the
possibility for accepting the new solution is realized by means of the parameter Tk,
the idea for which arises from the physical annealing process. The temperature Tk is
initiated usually high (i.e., the probability for movement towards a worse solution is
high), and then it is gradually decreased during the ahead going search process. For

 15

Tk → 0 the behaviour of Simulated Annealing becomes the same as the one of the
local search.

Different authors suggest concrete variants of this generalized algorithm of
Simulated Annealing. Like each heuristic they are connected with the procedures
for changing the tuneable parameters. In this case those are the temperature Tk and
the criterion for terminating the search [118].

III. 2. Tabu search

This is one of the most widely used metaheuristics designed mainly to solve
combinatorial optimization problems, like control of transport nets, distribution of
electroenergy, schedules, etc. [61]. The main idea of this algorithm was first
introduced by G l o v e r [55]. The basic algorithm includes a local search with the
greatest improvement (best-fit) and a short term memory to avoid the local optima
and the cycling. The short term memory is applied as a Tabu list, where the last
solutions considered are stored and the movements directed towards them are
forbidden. The neighbourhood of a current solution includes only solutions, which
are not in the Tabu list. The set of these solutions is called allowed set. At each
iteration the best solution of this set is chosen as a new current solution. This
solution is included in the Tabu list and one of the solutions stored in it is removed
(usually FIFO order is used). In order to avoid the local optimum, the movement
towards worse neighbour solutions is allowed. Another type of memory is also
used, called long term memory, where information about past search steps is stored,
as well as how many times a given solution has been chosen and the frequency of
changing one concrete solution, etc. This memory is used to direct the search to
regions of the feasible domain, which have remained still unexplored, i.e., its
purpose is to realize diversification of the search. On this occasion, Glover called
this metaheuristic “Adaptive Memory Programming” (see [55, 57]). Usually the
search procedure is terminated after executing a given common limit of iterations or
after a given number of consecutive iterations without improving the best obtained
solution.

There exist many extensions of this main idea of Tabu search
(www.tabusearch.net). Some of them are directed to the use of an approximate
objective function evaluation for the different solutions. Others use an evaluation
concerning the constraint violation (the approach of Lagrangian relaxation).
Different heuristics [58] for the choice of the next candidate for a solution are used,
methodical and/or randomly the length of the Tabu list is changed, evaluations of
the stored solutions are made with the aim of diversification of the search or making
a choice of the direction to search for a new solution, etc.

III. 3. Population-based algorithms

These are metaheuristics (see [76, 143]), that unlike the previously discussed
metaheuristics handle not only one, but a group, or a population of solutions. At
each iteration, periods of self-adaptation (intensification of the search process in
some region of the search space), alternate with periods of co-operation
(information collectively gathered during the search process is used to direct further

 16

the search). The periods of self-adaptation correspond to the execution of mutation,
improvement or local search procedure, and the periods of co-operation are
connected with the selection, crossover, trace updating or generation of trial points,
i.e., with some (explicit or implicit) sharing among the individuals of the useful
information gathered during the search. The general scheme of population-based
algorithms is presented below:
 Generate an initial population of individuals;
 While no stopping condition is met do
 Co-operation,
 Self-adaptation,

 EndWhile.
This approach for exploration of the feasible domain is taken from nature. The

final result of these algorithms depends on the manner, in which the population is
changed. Well known population-based algorithms used for discrete optimization
are the evolutionary algorithms, as well as the ant colony optimization and the
particle swarm optimization.

The evolutionary algorithms mimic the natural evolutionary processes [10, 62,
108, 132]. At each iteration a set of operators is applied on the individuals in the
current population in order to generate the individuals of the next generation. The
fitness value of each solution in the population is evaluated. To make it an objective
function or another qualitative, some evaluations are used, which are obtained
experimentally or in another way. The individuals, having the highest fitness are
used in the next population direct or as parents generating new individuals through
a change or by means of a combination between them. The operators used are:
modification or mutation which changes the individuals directly, and combination
or crossover between two or more individuals for generating new individuals. The
remaining solutions (individuals) are rejected, i.e., a selection is performed. The
evolutionary algorithms are nondeterministic algorithms. They differ from one
another in the way of their presentation, evaluation, selection and change of
solutions. The term evolutionary algorithms includes, besides genetic algorithms, a
wide class of other population-based algorithms, since almost all functions in their
common form can be free defined and adapted to the problems, for which they are
applied.

Some pioneering works on Genetic algorithms (GA) have been published in
the mid sixties (see [42, 81, 131]), but they have been further developed by
H o l l a n d [82] and G o l d b e r g [62]. They use different strategies for improving
the efficiency of the search (strategies for intensification of the search) [62, 125].
Their mechanism mimics the genetic evolution of species. GA use a population of
feasible solutions, called individuals. A number of parent’s pairs of individuals are
selected from the current population by means of a selection operator. Each pair
performs reproduction by means of a crossover operator and generates two new
individuals (solutions), called an offspring. A mutation operator is used to modify
randomly with a small probability the offspring individuals imitating the mutation
during the natural evolution. At the end the population individuals, having worse
objective function values are replaced by the corresponding better offspring

 17

individuals. This procedure is iteratively repeated and it usually stops when the
population does not improve anymore or after a fixed number of iterations
(generations). Although GA have been demonstrated to work well for a variety of
problems, there is no guarantee of convergence to a global optimum. Their
convergence can be sensitive to the choice of genetic operators, mutation
probability, selection criteria, and fine-tuning of these parameters is often required.
There is a theoretical basis for the effectiveness of GA (see [62]), but in practice
most problems do not fit naturally into this paradigm. It is possible genetic
algorithms to be hybridized with other heuristic strategies, as well as to be
organized as parallel algorithms (see, e.g. [100]).

Scatter search (SS) has been proposed by G l o v e r [54] in 1977 to solve
integer programming problems. This is a search strategy (see [55]), that generates
systematically a set of dispersed points (solutions), from chosen reference points by
means of convex or non-convex combinations of subsets (of two or more) reference
points. The generated new points are called trial points. Some of them may violate
the constraints in the problem. For this reason a repair procedure is used to
transform the infeasible trial points into feasible points. A kind of a local search
procedure is used to improve each new obtained feasible trial point. The obtained
improved points form the set of dispersed points. Then a new set of reference points
is selected at the next iteration among the current reference and disperse points. In
comparison to GA, the reproduction in SS may be considered as multisex, because
more than two parents can be matched to produce a new child.

The so called Ant systems (AS) have been proposed by C o l o r n i, D o r i g o
and M a n i e z z o [26, 27, 28] in 1991. They are also population-based algorithms.
AS are inspired from the behaviour of ants, searching food in the neighbourhood of
their formicary using the best route to the food source. In the optimization methods
of this kind, each ant is a constructive procedure that is able to generate a new
solution of the problem at hand. The ants make choice by generating their
corresponding new solutions on the base of two factors: the trace factor and the
desirability factor [30, 34]. The first factor reflects the historical information
gathered throughout the individual search of the ants. The second factor guides each
ant to the choice of a solution with the best objective function value in its
neighbourhood. After each iteration the ants share their new information to update
the trace factor. The different AS modify the trace factor in different ways. One
way, for example, is to direct the search around the neighbourhood of the best
solution found so far.

Particle Swarm Optimization (PSO) has been first developed by E b e r h a r t
and K e n n e d y [39] in 1995 (see also [92, 93, 94]). The basic idea in PSO is to
imitate the intelligent swarming behaviour, observed in flocks of birds, schools of
fish, swarms of bees, etc. Each object (particle) in PSO makes steps from its current
position to a new position and this motion is determined as a sum of three vectors:
inertia, competition and cooperation. The inertia vector is determined by the current
velocity of the particle v(t) weighted by a constant w. In this way the tendency of
the particle to maintain its current velocity is reflected. The competition vector links
the current position of the particle y(t) to its personal best position found during the

 18

search process. This vector is weighted using a uniformly distributed random
function. The cooperation vector links the current position of the particle y(t) to the
global best position, found by the particles. This vector is weighted using a second
uniformly distributed random function. It is clear that the cooperation among
particles is important for finding the global optimum solution. The inertia and the
competition are necessary for the particle to avoid trapping in the local minima.

The term “Memetic Algorithms” (MA) [111] is introduced at the end of the
eighties to denote a family of metaheuristics, which is a hybridization of
evolutionary or any population-based approach with separate individual learning or
local improvement procedures to solve a given problem. MA often apply local
improvement heuristics to each individual in the population [113]. The use of local
improvement heuristics directs the search procedure to regions with better solutions.
Another strategy for intensification is the one, which combines the good parts of
individuals. In this way the search procedure is directed to regions, where the
individuals have good qualities. Techniques of this type are called “linkage
learning” [75].

For the success of every metaheuristic method in solving NP-hard integer
optimization problems, it is necessary to achieve both depth and breadth in the
search process. There are no problems with the depth of the search in the local
improvement algorithms and they can often find quickly very good solutions. In
contrast to the depth, the breadth can be a critical issue for them. The population-
based algorithms are better in discovering the promising areas in the variables
space, since they can achieve great breadth in their search process. The exact
balance between intensification and diversification in the search process is
necessary for the development of efficient approximate algorithms [19]. For this
reason the hybrid algorithms, combining the advantages of these two groups of
algorithms are very successful [84]. Another approach for creating efficient
algorithms especially designed to solve real life (combinatorial) problems is the
combination of metaheuristics and logic programming with constraints [41, 105].
Some algorithms, combining metaheuristics and exact algorithms (see [130]) are
developed to solve concrete classes of problems. The use of the features of a
feasible domain of concrete problems leads to improvement in the quality of the
solutions found.

IV. Conclusions

A large variety of different real life problems in practice are formulated as integer
optimization problems. Their number and their size increase continuously.
Regardless of the fact, that the productivity of exact algorithms designed to solve
integer problems has been considerably improved during the last years, very often
they can not be applied to solve practical problems of middle and large size because
of their excessive runtimes and memory requirements. The published theoretical
and also algorithmic investigations are devoted to combinatorial or binary
problems. As a result, the most wide spread heuristic procedures for obtaining
suitable initial solutions, evaluations of candidate-solutions, cutting planes,

 19

specialized search strategies, etc., integrated in the commercial programming
products, are effective for problems with 0-1 variables or for problems having a
special structure. The solution of the integer problem in the general case remains
considerably harder. The hybrid methods are promising tools, since they combine
the best features of different methods (exact techniques or metaheuristics) in a
complementary mode [18, 73, 84, 129, 154]. Since the obtaining of a good feasible
solution in reasonable time is completely satisfactory for many practical problems,
the development of heuristic algorithms, having polynomial computational
complexity, is still a problem of the present day. Many large size real problems can
not be solved by exact algorithms due to their exponential computational
complexity. In such case the only way is the use of approximate polynomial time
algorithms.

Acknowledgement: The paper is partially supported by the Bulgarian National Science Fund, Grant
No DTK02/71 “Web-Based Interactive System, Supporting the Building Models and Solving
Optimization and Decision Making Problems”, by the European Social Fund and Bulgarian Ministry
of Education, Youth and Science under Operative Program “Human Resources Development”, Grant
BG051PO001-3.3.04/40 and IICT-BAS research project “Modeling, Optimization and Multiple
Criteria Decision Making”.

R e f e r e n c e s

1. A a r t s, E., J. K. L e n s t r a. Local Search in Combinatorial Optimization. John Wiley and Sons,
1997.

2. A g i n, N. Optimum Seeking with Branch-and-Bound. – Management Science, 13, 1966,
B176-B185.

3. A n d e r s e n, E. D., J. G o n d z i o, C. M e s z a r o s, X. X u. Implementation of Interior Point
Methods for Large Scale Linear Programming. – In: Interior Point Methods in Mathematical
Programming, T. Terlaky (Ed.), Chapter 6, Kluwer Academic Publisher, 1996, 189-252.

4. A r o r a, S., B. B a r a k. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

5. A t a m t u r k, G., L. N e m h a u s e r, M. S a v e l s b e r g h. Conflict Graphs in Integer
Programming. – European Journal of Operations Research, 121, 2000, 40-55.

6. A t k i n s o n, J. B. A Greedy Look-Ahead Heuristic for Combinatorial Optimization: An
Application to Vehicle Scheduling with Time Windows. – Journal of Operational Research
Society, 45, 1994, 673-684.

7. B a l a s, E. An Additive Algorithm for Solving Linear Programs with Zero-One Variables, –
Operations Research, 13, 1965, 517-546.

8. B a r a h o n a, M., M. G r ö t s c h e l, M., G. J ü n g e r, G. R e i n e l t. An Application of
Combinatorial Optimization to Statistical Physics and Circuit Layout Design. – Operations
Research, 36, 1988, 493-513.

9. B a r n h a r t, C., E. L. J o h n s o n, G. L. N e m h a u s e r, M. W. P. S a v e l s b e r g h, P. H.
V a n c e. Branch-and-Price: Column Generation for Solving Huge Integer Programs. –
Operations Research, Vol. 46, 1998, No 3, 316-329.

10. B ä c k, T., D. B. F o g e l, Z. M i c h a l e w i c z. Handbook of Evolutionary Computation. New
York, Oxford University Press, 1997.

11. B e a l e, E. M. L., J. A. T o m l i n. Special Facilities in a General Mathematical Programming
System for Nonconvex Problems Using Ordered Sets of Variables. – In: Proc. of the Fifth
International Conference on Operational Research, J. Lawrence, (Ed.), Tavistock
Publications, 1970, 447-454.

 20

12. B e a l e, E. M. L., J. J. H. F o r r e s t. Global Optimization Using Sprcial Ordered Sets. –
Mathematical Programming, 10, 1976, 52-69.

13. B e a l e, E. M. L. Branch and Bound Methods for Mathematical Programming Systems. – Annals of
Discrete Mathematics, 5, 1979, 201-219.

14. B e n d e r s, J. F. Partitioning Procedures for Solving Mixed-Variables Programming Problems. –
Numerische Mathematik, 4, 1962, 238-252.

15. B e n i c h o u, M., J. M. G a u t h i e r, P. G i r o d e t, G. H e n t g e s, G. R i b i e r e, O. V i n c e n t.
Experiments in Mixed Integer Linear Programming. – Mathematical Programming, 1, 1971,
76-94.

16. B e n i c h o u, M., J. M. G a u t h i e r, G. H e n t g e s, G. R i b i e r e. The Efficient Solution of Large
Scale Linear Programming Problems – Some Algorithmic Techniques and Computation
Results. – Mathematical Programming, 13, 1977, 280-322.

17. B e n-I s r a e l, A., A. C h a r n e s. On Some Problems of Diophantine Programming. – Cahiers du
Centre d’Etudes de Recherche Operationelle, 4, 1962, 215-280.

18. B e r t a c c o, L., M. F i s c h e t t i, A. L o d i. A Feasibility Pump Heuristic for General Mixed-
Integer Problems. – Discrete Optimization, Vol. 4, 2007, No 1, 63-76.

19. B l u m, C., A. R o l i. Metaheuristics in Combinatorial Optimization: Overview and Conceptual
Comparison. – ACM Computing Surveys, Vol. 35, 2003, No 3, 268-308.

20. B o w m a n, V. J., G. L. N e m h a u s e r. A Finiteness Proof for Modified Dantzig Cuts in Integer
Programming. – Naval Research Logistics Quarterly, 17, 1970, 309-313.

21. B r e u, R., C. A. B u r d e t. Branch and Bound Experiments in Zero-One Programming. –
Mathematical Programming Study, 2, 1974, 1-50.

22. B r i t t о n, J. K. Integer Solution of Systems of Quadratic Equations. – Mathematical Proceedings of
the Cambridge Philosophical Society, 86, 1979, 385-389.

23. C e r n y, V. A Thermodynamical Approach to the Traveling Salesman Problem: An Efficient
Simulated Algorithm. – J. Optim. Theory Appl., 45, 1985, 45-51.

24. C h e n, D., R. G. B a t s o n, Y. D a n g. Applied Integer Programming: Modeling and Solution. John
Wiley & Sons, 2010.

25. C h o p r a S., E. G o r r e s, M. R. R a o. Solving the Steiner Tree Problem on a Graph Using Branch
and Cut. – ORSA Journal on Computing, 4, 1992, 320-335.

26. C o l o r n i, A., M. D o r i g o, V. M a n i e z z o. Positive Feedback as a Search Strategy. Department
of Electronics, Politechnico di Milano, Italy, Working paper, 1991, 91-16.

27. C o l o r n i, A., M. D o r i g o, V. M a n i e z z o. Distributed Optimization by Ant Colonies. – In:
Proc. of the 1st European Conference on Artificial Life (ECAL-91), F. J. Varela and P.
Bourgine (Eds.), Cambridge, MA, MIT Press, 1991, 134-142.

28. C o l o r n i, A., M. D o r i g o, V. M a n i e z z o. An Investigation of Some Properties of an Ant
Algorithm. – In: Parallel Problem Solving from Nature, 2, R. Männer and B. Mandrieck
(Eds.), Amsterdam, North-Holland, 1992, 509-520.

29. C o o k, A. M., H. G e r a r d s, A. S c h r i j v e r, E. T a r d o s. Sensitivity Results in Integer
Programming. – Mathematical Programming, 34, 1986, 251-264.

30. C o r d o n, O., F. H e r r e r a, T. S t ü t z l e. A Review on the Ant Colony Optimization
Metaheuristic: Basis, Models and New Trends. – Mathware & Soft Computing, 2002, 1-35.

31. D a k i n, R. J. A Tree Search Algorithm for Mixed Integer Programming Problems. – Computer
Journal, 8, 1965, 250-255.

32. G. Desaulniers, J. Desrosiers, M. Solomon (Eds.). Column Generation. Kluwer, 2005.
33. D e s a u l n i e r s G., J. D e s r o s i e r s, M. S o l o m o n. Accelerating Strategies in Column

Generation Methods for Vehicle Routing and Crew Scheduling Problems. – In: Essays and
Surveys in Metaheuristics, C. C. Ribeiro and P. Hansen (Eds.), Kluwer, 2001, 309-324.

34. D o r i g o, M., T. S t ü t z l e. Ant Colony Optimization. Cambridge, MA, MIT Press, 2004.
35. D o w s l a n d, K. Simulated Annealing. – In: Modern Heuristic Techniques for Combinatorial

Problems, C. R. Reeves (Ed.). Blackwell, 1993, 20-69.
36. D r e s s, A. W. M., W. W e n z e l, A New Look at the Greedy Algorithm. – Appl. Math. Lett., 3,

1990, 33-35.
37. D r e s s, A. W. M., W. W e n z e l. Valuated Matroids. – Adv. Math., 93, 1992, 214-250.
38. E b e r h a r t, R., Y. S h i. Particle Swarm Optimization: Developments, Applications and Resources.

– In: Proc. Congr. Evolutionary Computation (CEC 01), Vol. 1, 2001, 81-86.

 21

39. E b e r h a r t, R. C., J. K e n n e d y. A New Optimizer Using Particle Swarm Theory. – In: Proc. 6th
International Symposium on Micromachine and Human Science, Japan, Nagoya, 1995, 39-
43.

40. F i s h e r M. L. The Lagrangian Method for Solving Integer Programming Problems. – Management
Science, 27, 1981, 1-18.

41. F o c a c c i, F., F. L a b u r t h e, A. L o d i. Local Search and Constraint Programming. – In:
Handbook of Metaheuristics, F. Glover and G. Kochenberger (Eds.), International Series in
Operations Research and Management Science, Vol. 57, Kluwer Academic Publishers, 2002.

42. F o g e l, L. J., A. J. O w e n s, M. J. W a l s h. Artificial Intelligence through Simulated Evolution.
New York, Wiley, 1966.

43. F o r r e s t, J. J. H., J. P. H. H i r s t, J. A. T o m l i n. Practical Solution of Large Mixed Integer
Programming Problems with UMPIRE. – Management Science, 20, 1974, 736-773.

44. F o x, B. L., J. K. L e n s t r a, A. H. G. R i n n o o y K a n n, L. E. S c h r a g e. Branching from the
Largest Upper Bound: Folklore and Facts. – European Journal of Operations Research, 2,
1978, 191-194.

45. G a r e y, M. R., D. S. J o h n s o n. Computers Intractability: A Guide to the Theory of NP-
Completeness. San Francisco, W. H. Freeman, 1979.

46. G a r f i n k e l, R. S. Branch and Bound Methods for Integer Programming. – In: Combinatorial
Optimization, N. Christofides, et al. (Eds.), John Wiley & Sons, 1979, 1-20.

47. G a u t h i e r, J. M., G. R i b i e r e. Experiments in Mixed-Integer Programming Using Pseudo-Costs.
– Mathematical Programming, 12, 1977, 26-47.

48. M. Gendreau, J. Y. Potvin (Eds.). Handbook of Metaheuristics. Series “International Series in
Operations Researches/Management Science”. Vol. 146. 2nd Ed. Springer, 2010.

49. G e o f f r i o n, A. M., R. E. M a r s t e n. Integer Programming Algorithms: A Framework and State-
of-the-Art Survey. – Management Science, 18, 1972, 465-491.

50. G e o f r i o n, A. M., R. N a u s s. Parametric and Postoptimality Analysis in Integer Linear
Programming. – Management Science, 18, 1977, 453-466.

51. G l o v e r, F. A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem. –
Operations Research, 13, 1965, 879-919.

52. G l o v e r, F. A Pseudo Primal-Dual Integer Programming Algorithm. – Journal of Research of the
National Bureau of Standards, 71B, 1967, 187-195.

53. G l o v e r, F. A New Foundation for a Simplified Primal Integer Programming Algorithm. –
Operations Research, 23, 1968, 434-451.

54. G l o v e r, F. Heuristics for Integer Programming Using Surrogate Constraints. – Decision Sciences,
8, 1977, 156-166.

55. G l o v e r, F. Future Paths for Integer Programming and Links to Artificial Intelligence. – Computers
and Operations Research, Vol. 13, 1986, No 5, 533-549.

56. G l o v e r, F. Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic
Algorithms). – Discrete Applied Mathematics “Viewpoints on Optimization”, 1994, No 49,
231-255.

57. G l o v e r, F. Tabu Search and Adaptive Memory Programming – Advances, Applications and
Challenges. – In: Advances in Metaheuristics, Optimization and Stochastic Modeling
Technologies, Barr, Helgason and Kennington (Eds.), Boston, MA., Kluwer, 1997, 1-75.

58. F. Glover, G. Kochenberger (Eds.). Handbook of Metaheuristics. Vol. 57. International Series in
Operations Research & Management Science. Norwell, MA, Kluwer Academic Publishers,
2003.

59. G l o v e r, F., M. L a g u n a. Tabu Search. Kluwer Academic Publishers, 1997.
60. G l o v e r, F., M. L a g u n a, R. M a r t. Fundamentals of Scatter Search and Path Relinking. –

Control and Cybernetics, Vol. 39, 2000, No 3, 653-684.
61. G l o v e r, F., M. L a g u n a. Tabu Search. – In: Handbook of Applied Optimization, P. M. Pardalos

and M. G. C. Resende (Eds.). Oxford University Press, 2002, 194-208.
62. G o l d b e r g, D. E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading,

Mass., Addison Wesley, 1989.
63. G o l d e n, B., L. B o d i n, T. D o y l e, J. W. S t e w a r t. Approximate Traveling Salesman

Algorithm. – Operations Research, 28, 1980, 694-711.

 22

64. G o m o r y, R. E. Outline of an Algorithm for Integer Solution to Linear Programs. – Bulletin
American Mathematical Society, 64, 1958, 275-278.

65. G o m o r y, R. E. Solving Linear Programming Problems in Integers. – In: Combinatorial Analysis,
R. E. Bellman and M. Hall, Jr. (Eds.), American Mathematical Society, 1960, 211-216.

66. G o m o r y, R. E. An Algorithm for Integer Solutions to Linear Programs. – In: Recent Advances in
Mathematical Programming, R. Graves and P. Wolfe (Eds.), McGraw-Hill, 1963, 269-302.

67. G o m o r y, R. E. An All-Integer Programming Algorithm, in Industrial Scheduling. J. F. Muth and
G. I. Thompson (Eds.), Prentice-Hall, 1963, 193-206.

68. G o m o r y, R. E., A. J. H o f f m a n. On the Convergence of an Integer-Programming Process. –
Naval Research Logistics Quarterly, 10, 1963, 121-123.

69. G r ö t s c h e l, M., L. L o v a s z, A. S c h r i j v e r. Geometric Algorithms and Combinatorial
Optimization. Berlin, Springer, 1988.

70. G r ö t s c h e l, M., C. L. M o n m a, M. S t o e r. Computational Results with a Cutting Plane
Algorithm for Designing Communication Networks with Low-Connectivity Constraint.
Report No 187, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft, Universität
Augsburg, 1989.

71. G u i g n a r d, M., S. K i m. Lagrangian Decomposition: A Model Yielding Stronger Lagrangian
Bounds. – Mathematical Programming, 39, 1987, 215-228.

72. H a n s e n, P., N. M l a d e n o v i ć. An Introduction to Variable Neighborhood Search in
Metaheuristics: Advances and Trends in Local Search Paradigms for Optimization, S. Voß,
S. Martello, I. Osman, and C. Roucairol (Eds.), Kluwer Academic Publishers, 1999, 433-438.

73. H a n s e n, P., N. M l a d e n o v i c, D. U r o š e v i c. Variable Neighborhood Search and Local
Branching. – Computers & Operations Research, Vol. 33, 2006, No 10, 3034-3045.

74. H a n s e n, P., N. M l a d e n o v i ć, J. A. M o r e n o P e r e z. Variable Neighborhood Search:
Methods and Applications. – Annals of Operations Research, Vol. 175, 2010, 367-407.

75. H a r i k, G. Linkage Learning via Probabilistic Modeling in the ECGA. Tech. Rept. IlliGal 99010,
University of Illinois, Urbana-Champaign, 1999.

76. H e r t z, A., D. K o b l e r. A Framework for Description of Population Based Methods. – In:
Tutorials and Research Reviews, 16th European Conference on Operational Research
Brussels, Belgium, 1998, 48-59.

77. H o f f m a n K. L., M. P a d b e r g. LP-Based Combinatorial Problem Solving. – Annals Operations
Research, 4, 1985, 145-194.

78. H o f f m a n, K. L., M. P a d b e r g. Improving the LP-Representation of Zero-One Linear Programs
for Branch-and-Cut. – ORSA Journal Computing, 3, 1991, 121-134.

79. H o f f m a n, K. L., M. P a d b e r g. Solving Airline Crew Scheduling Problems by Branch-and-Cut.
– Management Science, 39, 1993, 657-682.

80. H o f f m a n, K. L., M. P a d b e r g. Combinatorial and Integer Optimization. – Solution Techniques
for Integer Programming, 1999.
http://www.esi2.us.es/~mbilbao/combiopt.htm#combi4

81. H o l l a n d, J. H. Outline for a Logic Theory of Adaptive Systems. – Journal of the ACM, Vol. 9,
1962, Issue 3, 297.

82. H o l l a n d, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI, The University of
Michigan Press, 1975.

83. H o l m, S., D. K l e i n. Three Methods for postoptimal Analysis in Integer Linear Programming. –
Mathematical Programming Study, 21, 1984, 97-109.

84. H o p p e r, E. Two-Dimensional Packing Utilising Evolutionary Algorithms and other Meta-
Heuristic Methods. PhD Thesis, Cardiff University, UK. 2000.

85. H o o s, H., T. S t ü t z l e. Stochastic Local Search – Foundations and Applications. San Francisco,
Morgan Kaufmann, CA, 2004.

86. I b a r a k i, T. Theoretical Comparisons of Search Strategies in Branch-and-Bound Algorithms. –
Journal of Computer and Information Science, 5, 1976, 315-344.

87. I b a r a k i, T. Power of Dominance Relations in Branch-and-Bound Algorithms. – Journal of the
Association for Computing Machinery, 22, 1977, 463-468.

88. I w a t a, S., K. M u r o t a. Combinatorial Relaxation Algorithm for Mixed Polynomial Matrices. –
Math. Program., Ser. A 90, 2001, 353-371.

 23

89. J e r o s l o w, R. G. Trivial Integer Programs Unsolvable by Branch-and-Bound. – Mathematical
Programming, 6, 1974, 105-109.

90. J o h n s o n, E. L., S. P o w e l l. Integer Programming Codes. Design and Implementation of
Optimization Software, H. J. Greenberg (Ed.), NATO Advanced Study Institute Series,
Sijthoff & Noordhoff, 1978, 225-248.

91. M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. L. Pulleyblank, G. Reinelt, G. Rinaldi,
L. A. Wolsey (Eds.). 50 Years of Integer Programming 1958-2008: From the Early Years to
the State-of-the-Art, Springer, 2009.

92. K e n n e d y, J., R. C. E b e r h a r t. Particle Swarm Optimization. – In: Proc. of IEEE International
Conference on Neural Networks, N. J. Piscataway (Ed.), 1995, 1942-1948.

93. K e n n e d y, J., R. C. E b e r h a r t. A Discrete Binary Version of the Particle Swarm Algorithm. –
In: Proc. IEEE Int. Conf. Systems, Man, and Cybernetics: Computational Cybernetics and
Simulation, Vol. 5, 1997, 4104-4108.

94. K e n n e d y, J., R. C. E b e r h a r t, Y. S h i. Swarm Intelligence. San Francisco, Morgan Kaufmann
Publishers, 2001.

95. K h a c h i y a n, L. Convexity and Algorithmic Complexity Solving Polynomial Programming
Problems. – Technitcheskaya Kibernetika, 6, 1982, 47-56 (in Russian).

96. K i n d e r v a t e r, G. A. P., J. K. L e n s t r a. Parallel Algorithms. – In: O’hEigeartaigh et al. (Eds.),
1985, 106-128.

97. K i n d e r v a t e r, G. A. P., J. K. L e n s t r a. An Introduction to Parallelism in Combinatorial
Optimization. – Discrete Applied Mathematics, 14, 1986, 135-156.

98. K i r k p a t r i c k, S., C. G e l l a t, M. V e c c h i. Optimization by Simulated Annealing. – Science,
220, 1983, 671-680.

99. K r u s i e n s k i, D. J., W. K. J e n k i n s. Design and Performance of Adaptive Systems, Based on
Structured Stochastic Optimization Strategies. – IEEE Circuits and Systems, Vol. 5, First
Quarter 2005, No 1, 8-20.

100. K u, M. -Y., M. H. H u, M. -J. W a n g. Simulated Annealing Based Parallel Genetic Algorithm for
Facility Layout Problem. – International Journal of Production Research, 2010.
http://www.informaworld.com/smpp/content~db=all~content=a921530351~tab=content

101. L a n d, A. H., A. G. D o i g. An Automatic Method for Solving Discrete Programming Problems. –
Econometrica, 28, 1960, 97-520.

102. L a s k a r i, E. C., K. E. P a r s o p o u l o s, M. N. V r a h a t i s. Particle Swarm Optimization for
Integer Programming, 2002.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.4972&rep=rep1&type=pdf

103. L a w l e r, E. L., D. E. W o o d. Branch-and-Bound Methods: A Survey. – Operations Research, 14,
1966, 699-719.

104. L i t t l e, J. D. C., K. G. M u r t y, D. W. S w e e n e y, C. K a r e l. An Algorithm for the Traveling
Salesman Problem. – Operations Research, 11, 1963, 972-989.

105. L i t t l e, J. Integer Programming, Constraint Logic Programming and Their Collaboration in Solving
Discrete Optimisation Problems. PhD Thesis, Department of Mathematical Sciences, Brunel
University, 2000.

106. L o u r e n c o, H. R., O. M a r t i n, T. S t ü t z l e. Iterated Local Search. – In: Handbook of
Metaheuristics, F. Glover and G. Kochenberger (Eds.). – International Series in Operations
Research and Management Science, Vol. 57, Kluwer Academic Publishers, 2002, 321-353.

107. M a g n a n t i, T. L., R. V a c h a n i. A Strong Cutting Plane Algorithm for Production Scheduling
with Changeover Costs. – Operations Research, 38, 1990, 456-473.

108. M i c h a l e w i c z, Z., D. B. F o g e l . How to Solve It: Modern Heuristics. New York, Springer-
Verlag, 2000.

109. M i t r a, G. Investigations of some Branch and Bound Strategies for the Solution of Mixed Integer
Linear Programs. – Mathematical Programming, 4, 1973, 155-170.

110. M i t t e n, L. G. Branch-and-Bound Methods: General Formulation and Properties. – Operations
Research, 18, 1970, 24-34.

111. M o s c a t o, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards
Memetic Algorithms. Technical Report Caltech Concurrent Computation Program, Report.
826, California Institute of Technology, Pasadena, California, USA, 1989.

 24

112. M o s c a t o, P. Memetic Algorithms: A Short Introduction. – In: New Ideas in Optimization, D.
Corne et al. (Eds.), McGraw Hill, 1999, 219-234.

113. M o s c a t o, P. Memetic Algorithms. – In: Handbook of Applied Optimization, P. Pardalos and M.
Resende (Eds.), Oxford University Press, 2002, 157-167.

114. M u r o t a, K. Combinatorial Relaxation Algorithm for the Maximum Degree of Subdeterminants:
Computing Smith-McMillan Form at Infinity and Structural Indices in Kronecker Form. –
Appl. Algebra Engin. Comm. Comput., 6, 1995, 251-273.

115. N a u s s, R. M. Parametric Integer Programming. Columbia, University of Missouri Press, 1979.
116. N e m h a u s e r, G. L., L. A. W o l s e y. Integer and Combinatorial Optimization. New York,

Chichester, Brisbane, Toronto, Singapore, John Wiley & Sons, 1988.
117. N o u r i e, F. J., E. R. V e n t a. An Upper Bound on the Number of Cuts Needed in Gomory’s

Method for Integer Forms. – Operations Research Letters, 1, 1982, 129-133.
118. O s m a n, H., G. L a p o r t e. Meta-Heuristics: A Bibliography. – Annals of Operations Research,

63, 1996, 513-628.
119. M. W. Padberg, Ed. Combinatorial Optimization. – Mathematical Programming Study, 12, 1980.
120. P a d b e r g, M., G. R i n a l d i. A Branch-and-Cut Algorithm for the Resolution of Large-Scale

Symmetric Traveling Salesman Problems. – SIAM Review, 33, 1991, 60-100.
121. P a d b e r g, M. Linear Optimization and Extensions. Heidelberg, Springer-Verlag, 1995.
122. P a d b e r g, M., M. P. R i j a l. Location Scheduling and Design in Integer Programming. Kluwer’s

Academic Publishers, MA, 1996.
123. P a r k e r, R. G., R. L. R a r d i n. Discrete Optimization. San Diego, Academic Press, 1988.
124. P e d r o s o, J. P. Tabu Search for Mixed Integer Programming. Technical Report Series: DCC-2004-

02, 2004.
http://www.dcc.fc.up.pt/~jpp/publications/PDF/mip-ts-WP.pdf

125. P i r l o t, M. Heuristic Search Methods. – In: Oper. Res. Designing Practical Solutions; Tutorial and
Research Review Papers, Euro XIII/OR 36, The Joint EURO/Oper. Res. Society Conference;
University of Strathclyde, Glasgow, 19-22 July, 1994, 180-201.

126. P o c h e t, Y., L. A. Wolsey. Solving Multi-Item Lot Sizing Problems Using Strong Cutting Planes. –
Management Science, 37, 1991, 53-67.

127. P r u u l, E. Parallel Processing and Branch-and-Bound Algorithm. M. S. Thesis, Cornell University,
1975.

128. P r u u l, E., G. L. N e m h a u s e r, R. R u s h m e i e r. Parallel Processing and Branch-and-Bound: A
Historical Note. – Operations Research Letters, Vol. 7, 1988, Issue 2, 65-69.

129. P u c h i n g e r, J., G. R. R a i d l. Combining Metaheuristics and Exact Algorithms in Combinatorial
Optimization: A Survey and Classification, IWINAC 2005. – In: Lecture Notes in Computer
Science. Berlin, Springer, 2005, 41-53.

130. P u c h i n g e r, J. Combining Metaheuristics and Integer Programming for Solving Cutting and
Packing Problems. PhD Thesis, Vienna University of Technology, Institute of Computer
Graphics and Algorithms. Supervised by G. R. Raidl and U. Pferschy, January 2006.

131. R e c h e n b e r g, I. Cybernetic Solution Path of an Experimental Problem, Royal Aircraft
Establishment Transl., 1122, B. F. Toms Transl. Ministry of Aviation, Royal Aircraft
Establishment, Farnborough, Hants, United Kingdom, 1965.

132. R e e v e s, C. R. Modern Heuristic Techniques for Combinatorial Problems. McGraw-Hill, 1995.
133. R e i d, D. J. Enhanced Genetic Operators for the Resolution of Discrete Constrained Optimization

Problems. – Computers & Operations Research, Vol. 24, 1997, No 5, 399-411.
134. R i n n o o y K a n n, A. H. G. On Mitten’s Axioms for Branch and Bound. – Operations Research,

24, 1976, 1176-1178.
135. R i n o o y K a n, A. H. G. An Introduction to the Analysis of Approximation Algorithms. – Discrete

Applied Mathematics, 14, 1986, 111-134.
136. S a v e l s b e r g h, M. W. P. Preprocessing and Probing for Mixed Integer Programming Problems. –

ORSA J. on Computing, 6, 1994, 445-454.
137. S c h r a g e, L., L. A. W o l s e y. Sensitivity Analysis for Branch and Bound Integer Programming. –

Operations Research, 33, 1985, 1008-1023.
138. S c h r i j v e r, A. Linear and Integer Programming. New York, Wiley, 1984.
139. S h a p i r o, J. F. Sensitivity Analysis in Integer Programming. – Annals of Discrete Mathematics, 1,

1977, 467-477.

 25

140. D a S i l v a, A., D. A b r a m s o n. A Parallel Interior Point Method and Its Application to Facility
Location Problems. – Computational Optimization and Applications, Vol. 9, 1998, Issue 3,
249-273.

141. S i l v e r, E. A. An Overview of Heuristic Solution Methods. – Journal of the Operational Research
Society, 55, 2004, 936-956.

142. S p i e l b e r g, K. Enumerative Methods in Integer Programming. – Annals of Discrete
Mathematics, 5, North Holland, 1979, 139-183.

143. T a i l l a r d, E. D., L. M. G a m b a r d e l l a, M. G e n d r e a u, J.-Y. P o t v i n. Adaptive Memory
Programming: A Unified View of Metaheuristics, Tutorials and Research Reviews. – In:
16th European Conference on Operational Research Brussels, Belgium, 1998, 30-38.

144. T o m l i n, J. A. Branch-and-Bound Methods for Integer and Non-Convex Programming. – In:
Integer and Nonlinear Programming. J. Abadie, Ed., American Elsevier, 1970, 437-450.

145. V a n R o y, T. J., L. A. W o l s e y. Solving Mixed Integer Programming Problems Using Automatic
Reformulation. – Operations Research, 35, 1987, 45-57.

146. V e r a c h i, S., S. P r e s t w i c h. Constructive Vs. Perturbative Local Search for General Integer
Linear Programming. – In: 18th Irish Conference on Artificial Intelligence and Cognitive
Science, 2007.
http://sysrun.haifa.il.ibm.com/hrl/lscs2008/papers/03_constructive.pdf

147. V o s s, S. Metaheuristics: The State of the Art. – In: Local Search for Planning and Scheduling,
Lecture Notes in Computer Science, A. Nareyek (Ed.), Springer, 2001, 1-23.

148. V o u d o u r i s, C., E. T s a n g. Guided Local Search, Handbook of Metaheuristics. F. Glover and G.
Kochenberger (Eds.). International Series in Operations Research and Management Science,
Kluwer Academic Publishers, 2002.

149. W e y l, H. Elementare Theorie der konvexen Polyheder. – Comm. Math. Helv., 7, 1935, p. 290,
(Translated in Contributions to the Theory of Games, 1, 1950, No 3).

150. W i l l i a m s, H. P. Logic and Integer Programming. – In: International Series in Operations
Research & Management Science. Springer, 2009.

151. W o l s e y, L. Integer Programming. – In: Wiley – Interscience Series in Discrete Mathematics and
Optimization. John Wiley & Sons, Inc., 1998.

152. Y o u n g, R. D. A Primal (All Integer), Integer Programming Algorithm. – Journal of Research of
the National Bureau of Standards, 69B, 1965, 213-250.

153. Y o u n g, R. D. A Simplified Primal (All Integer), Integer Programming Algorithm. – Operations
Research, 16, 1968, 750-782.

154. Y u h - C h y u n, L., M. G u i g n a r d, C h u n - H u n g C h e n. A Hybrid Approach for Integer
Programming Combining Genetic Algorithm, Linear Programming and Ordinal
Optimization. – Journal of Intelligent Manufacturing, 12, 2001, 509-519.

