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Abstract: The paper presents a survey of methods and approaches solving linear 
integer problems, developed during the last 50 years. These problems  belong to the 
class of NP-hard optimization problems. To find out exact optimal solutions for this 
class of problems requires use of considerable computational resources. The 
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features of different approaches (exact or approximate) is the actual direction, in 
which many researchers devote their efforts to solve successfully varioushard  
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I. Introduction 

The name linear integer programming refers to the class of combinatorial 
constrained optimization problems with integer variables, where the objective 
function is a linear function and the constraints are linear inequalities. The Linear 
Integer Programming (LIP) optimization problem can be stated in the following 
general form: 
(1)  Maximize cx 
(2)  subject to: Ax ≤ b, 
(3)  x ∈ Zn, 
where the solution x ∈ Zn is a vector of n integer variables: x = (x1, x2 , …, xn)T and 
the data are rational and are given by the m×n matrix A, the 1×n matrix c, and the  
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m×1 matrix b. This formulation includes also equality constraints, because each 
equality constraint can be represented by means of two inequality constraints like 
those included in (2). 

A wide variety of real life problems in logistics, economics, social science and 
politics can be formulated as linear integer optimization problems. The 
combinatorial problems, like the knapsack-capital budgeting problem, warehouse 
location problem, travelling salesman problem, decreasing costs and machinery 
selection problem, network and graph problems, such as maximum flow problems, 
set covering problems, matching problems, weighted matching problems, spanning 
trees problems and many scheduling problems can also be solved as linear integer 
optimization problems (see, e.g. [24, 79, 104, 119]). 

Some optimization problems, having nonlinear objective functions and linear 
constraints can be transformed in LIP optimization problems by simple 
approximation of the corresponding nonlinear functions by piecewise linear 
functions (see, e.g. [91, 116, 151]). 

Solving integer programming optimization problems, that is, finding an 
optimal solution to such kind of problems, can be a difficult task. To solve a 
nonconvex integer programming problem could be an algorithmically unsolvable 
task (see, e.g. [22, 95]). For this reason such problems have not been considered in 
our survey. The convex nonlinear integer programming problems belong to the 
class of NP-hard problems (see, e.g. [4, 45, 116]). There does not exist an exact 
algorithm, which can solve these problems in time, depending polynomially on the 
problem input data length or on the problem size. The linear integer programming 
problems are easier solvable than the convex nonlinear integer programming 
problems. An instance of problem (1)-(3) can be transformed in polynomial time to 
an instance of a 0-1 linear integer programming problem (see, e.g. [116]). But the   
0-1 linear integer programming problem can be solved by a brute-force enumerative 
algorithm in O(2nmn) time (see [116]). It should be noted, that there are many 
special cases (e.g. matching, node packing on appropriately restricted classes of 
graphs, and some matroid optimization problems) that belong to the class P of 
problems, solvable in polynomial time, i.e., there exist algorithms with polynomial 
time computational complexity, which can solve them. The difficulty to solve 
(linear and/or nonlinear) integer programming problems arises from the fact that 
unlike linear programming, for example, whose feasible region is a convex set, in 
integer programming problems, one must search for a lattice of feasible integer 
points to find an optimal solution. Unlike Linear Programming (LP) where, due to 
the convexity of the problem, we can exploit the fact that any local solution is a 
global optimum, the integer programming problems have many local optima and 
finding a global optimum to the problem requires one to prove that a particular 
solution dominates all the feasible points by arguments other than the calculus-
based derivative approaches of convex programming with continuous variables. For 
this reason, the approximate algorithms solving LIP optimization problems are 
widely spread. 

The aim of this paper is to make a survey of the techniques developed during 
the last 50 years to solve LIP problems and to motivate the necessity for 
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continuation of the researches in the area of creating more efficient metaheuristic 
and hybrid approaches. The paper is organized as follows: In Section II the 
development of exact methods for solving LIP optimization problems is considered. 
It is divided in three subsections as follows: cutting planes approaches based on 
polyhedral combinatorics, enumeration techniques and relaxation and 
decomposition techniques. Section III is devoted to some heuristics and 
metaheuristic approaches, as well as to population-based evolutionary algorithms, 
designed to solve such class of optimization problems. In Section IV some 
conclusions are given and directions for further research are outlined. 

II. Exact methods for solving linear integer programming  
optimization problems 

The development of exact optimization methods for LIP optimization problems 
during the last 50 years was very successful. There are, at least, three different 
approaches for solving integer programming problems, although they are frequently 
combined into “hybrid” solution procedures in computational practice (see [24, 80, 
91, 116, 150, 151]):  

• Cutting planes algorithms based on polyhedral combinatorics; 
• Enumerative approaches and Branch-and-Bound, Branch-and-Cut and 

Branch-and-Price methods; and 
• Relaxation and decomposition techniques. 
They are considered briefly as follows below. 

II. 1. Cutting Plane algorithms based on polyhedral combinatorics  

The underlying idea of polyhedral combinatorics is to replace the constraint set of 
an integer programming problem by an alternative convexification of the feasible 
points and extreme rays of the problem. Both the size and the complexity of the 
problems solved have been increased considerably when polyhedral theory was 
applied to numerical problem solving.  

In [149]  W e y l proved that a convex polyhedron can alternatively be defined 
as the intersection of a finite number of halfspaces or as the convex hull plus the 
conical hull of some finite number of vectors or points. Based on this theoretical 
result, G o m o r y  [64] derived a “cutting plane” algorithm for integer programming 
problems which can be viewed as a constructive proof of Weyl’s theorem.  

The general cutting plane approach relaxes initially the integrality restrictions 
on the variables and solves the resulting linear program over the constraint system 
(2). In case the linear program is unbounded or infeasible, the same is valid for the 
integer program. In case the solution to the linear program is integer, this is the 
optimal solution to the integer program. When the linear program has a not integer 
optimal solution, then a facet-identification problem has to be solved. Here the 
objective is to find a linear inequality that “cuts off” the fractional linear 
programming solution while assuring that all feasible integer points satisfy the 
inequality – that is, an inequality that “separates” the fractional point from the 
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polyhedron. The terminating conditions for this algorithm are as follows: 1) an 
integer solution is found (the LIP problem is successfully solved); 2) the linear 
program is infeasible and therefore the integer problem is infeasible; or 3) no cut is 
identified by the facet-identification procedures either because a full description of 
the facial structure is not known, or because the facet-identification procedures are 
inexact, that is, there is no possibility for algorithmically generating cuts of a known 
form. In case the cutting plane procedure is terminated because of the third 
possibility, then, in general, the search process has “tightened” the linear 
programming formulation so that the resulting linear programming solution value is 
much closer to the integer solution value.  

Gomory shows in [64, 65, 66] that the fractional cutting-plane algorithm is 
finitely convergent with an approximate use of the lexicographic dual simplex 
algorithm. The proof in [117] is a reinterpretation of Gomory’s proof and provides 
an additional insight into the nature of convergence. In [68] it is shown that given a 
fractional LP solution, the cuts Σj xj ≥ 1, where the sum is taken over all nonbasic 
variables cannot yield a finite fractional cutting-plane algorithm. In [20] it is proved 
that stronger cuts yield a finite algorithm. 

A primal cutting-plane algorithm for general integer programs was proposed in 
[17]. A finitely convergent primal cutting-plane algorithm was proposed in [152], 
and simplified versions were published in [53, 153]. Because of poor computational 
experience, this line of research has been very inactive. An exception is a primal 
cutting-plane algorithm for the travelling salesman problem [119]. Although this 
algorithm has been moderately successful, it seems to be inferior to a fractional 
cutting-plane algorithm for the travelling salesman problem. 

Another strategy for cutting-plane algorithms is to maintain integrality and 
dual feasibility and then to use cuts to obtain primal feasibility. A finite algorithm 
of this type has been given by G o m o r y [67]. Other similar algorithms have been 
proposed in [51, 52]. 

II. 2. Enumerative approaches  

These approaches are known under different names. The most popular of them are 
Branch-and-Bound, implicit enumeration and divide and conquer (see [116]). The 
explicit enumeration is the simplest approach to solving a pure integer 
programming problem by means of enumeration of all possibilities, which are finite 
in number. However, due to the “combinatorial explosion” of number of these 
possibilities resulting from the parameter “size,” only instances having relative 
small size could be solved by such an approach within a reasonable computational 
time limit. Sometimes many possibilities can be implicitly eliminated by 
domination or feasibility arguments. Besides straightforward or implicit 
enumeration, the most commonly used enumerative approach is called Branch-and-
Bound (B&B), where the “branching” refers to the enumeration part of the solution 
technique and bounding refers to the fathoming of possible solutions by comparison 
to a known upper or lower bound on the solution value. The first B&B algorithm 
for general integer programs was introduced by L a n d and D o i g [101]. The 
popularity of B&B approach increased substantially after the publication of B&B 
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algorithm for the travelling salesman problem by L i t t l e et al. [104], because it 
demonstrated that large (at this time) problems could be solved by controlled 
enumeration. B a l a s [7] gave the first implicit enumeration algorithm for general 
0-1 integer programming problems.  

The commercial B&B codes usually relax the problem by dropping the 
integrality conditions and solve the resultant continuous linear programming 
problem over the constraint system (2). In case the solution to the relaxed linear 
programming problem satisfies the integrality restrictions, the solution obtained is 
optimal. If the linear program is infeasible, the integer program is also infeasible. 
Otherwise, at least one of the integer variables is fractional in the linear 
programming solution. Each fractional variable is chosen and a “branch” is 
organized, creating two subproblems which exclude the prior solution, but do not 
eliminate any feasible integer solutions. These new problems arising by branching 
of all fractional variables constitute a branching tree, and a linear programming 
problem is solved for each node created. Nodes can be fathomed if the solution to 
the subproblem is infeasible, if it satisfies all the integrality restrictions, or if it has 
an objective function value, which is worse than a known integer solution. A variety 
of strategies that have been used within the general Branch-and-Bound framework 
is described in [90, 91]. 

Early general survey articles on enumerative methods are given in [2, 13, 46, 
49, 103, 110, 142, 144]. After that period many text books on integer programming 
have been published (see, e.g. [24, 91, 69, 116, 121, 122, 123, 138, 150, 151]).  

The linear structure of LIP optimization problem (1)-(4) does not impose a 
strong restriction on the application of B&B algorithm. This approach can be 
applied also to solve Nonlinear Integer Programming (NIP) optimization problems. 
The greatest part of the time during the algorithm execution is spent to solve the 
relaxed subproblems. The choice of suitable algorithms for solving the subproblems 
could improve the efficiency of B&B algorithm. 

II. 3. Branch-and-Cut 

The bounds obtained from the LP-relaxations are often weak, which may cause 
standard B&B algorithms to fail in practice. It is therefore of crucial importance to 
tighten the formulation of the problem to be solved. The idea of dynamically adding 
the so called cutting planes to the problem is one way of obtaining stronger bounds. 
Combining the cutting plane algorithm with B&B results in the very powerful class 
of Branch-and-Cut (B&C) algorithms. The idea is to generate cutting planes 
throughout the B&B tree of a standard B&B algorithm, in order to get tight bounds 
at each node. 

The B&C algorithm consists of following major components: 1) automatic 
reformulation procedures, 2) heuristics which provide “good” feasible integer 
solutions and 3) cutting plane procedures which tighten the linear programming 
relaxation to the linear integer problem under consideration. These components are 
embedded into a tree-search framework as in the B&B approach to integer 
programming; whenever possible, there is used a fourth component: 4) the 
procedure permanently fixes variables (by reduced cost implications and logical 
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implications) and does comparable conditional fixing throughout the search-tree. 
These four components are combined so as to guarantee optimality of the solution 
obtained at the end of the calculation. In some cases the algorithm may also be 
stopped prematurely to produce suboptimal solutions along with a bound on the 
remaining error. The cutting planes generated by the algorithm are facets of the 
convex hull of feasible integer solutions or good polyhedral approximations thereof 
and as such they are the “tightest cuts” possible. Lifting procedures assure that the 
cuts generated are valid throughout the search tree which aids the search process 
considerably and is a substantial difference to traditional (Gomory) cutting-pane 
approaches.  

The B&C super-algorithms use all that is known about the problem. Some 
B&C algorithms are considered in [77, 78, 79, 120].  

The increasing empirical evidence indicates that both pure and mixed integer 
programming problems can be solved to proven optimality in economically feasible 
computation times by methods based on the polyhedral structure of integer 
programs. For applications which use such Branch-and-Cut approach, see, e.g. [8, 
25, 70, 107, 126, 145]. A direct outcome of these research efforts is that similar pre-
processing and constraint generation procedures can be found in commercial 
software packages for combinatorial problems.  

Various strategies for exploring the enumeration tree, together with 
experimental comparison, are given in [13, 15, 16, 21, 43, 47, 109]. Some 
theoretical results on node selection and branching strategies are presented in [44, 
86, 87, 89, 134]. In [89] a family of problems is given, for which the number of 
nodes that must be searched for, is exponential with respect to the size of the 
problem, regardless of what strategies are used. 

II. 4. Branch-and-Price 

The philosophy of Branch-and-Price (B&P) is similar to the one of Branch-and-
Cut. Indeed, the pricing and the cutting are procedures for tightening the               
LP-relaxation of the problem. In Branch-and-Price, the concept of column 
generation is combined with a Branch-and-Bound algorithm. The simplex algorithm 
arises at the origin from the column generation concept, where only variables with 
negative reduced costs are allowed to enter the basis at each iteration. Given a LP 
model with a huge number of variables, possibly depending exponentially on the 
instance size, it would be efficient to consider only the variables potentially 
improving the objective function. The main idea of column generation is to 
efficiently determine a variable with negative reduced costs to enter the basis, add it 
to the problem, resolve it and iteratively repeat this process until no variable with 
negative reduced costs exists anymore. 

In general, the method of Dantzig-Wolfe decomposition is often used for 
obtaining LP/LIP models with an exponential number of variables, which provide 
tighter bounds than the original compact LP/LIP pair. Description of Dantzig-Wolfe 
decomposition is given in [116, 151]. 

Since column generation is an algorithm for solving LPs, it has to be combined 
with another method in order to solve LIPs to optimality. The B&P algorithm [9] is 
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the result of combining column generation with B&B. In each node of the B&B 
tree, column generation is performed to solve the LP-relaxation. Branching is 
usually performed on original variables or by other strategies to partition the 
remaining search space in a balanced way.  

An important point is that the column generation algorithm used must be 
aware of branching decisions and may only generate solutions respecting them. 
Another interesting question is whether the column generation algorithm should 
search for optimal solutions of the pricing problem or not. For a detailed review of 
column generation and B&P methods we refer to the recent book [32]. By means of 
column generation the LIP problem is decomposed into a main problem and 
subproblems. This decomposition has natural interpretation for some combinatorial 
problems. Routing and scheduling are the most suitable areas for application of 
Branch-and-Price methods [see 33]. 

From a theoretical point of view, B&C and B&P are closely related, since 
column generation in the primal problem corresponds to cut generation in the dual 
and vice-versa. Furthermore, B&C and B&P can be combined in the so called 
branch-and-cut-and-price algorithms, where both cuts and variables are dynamically 
generated. 

II. 5. Relaxation and Decomposition Methods  

There are three wide spread approaches for relaxation of the general LIP problem, 
which are designed to find an upper bound of the optimal value for the maximizing 
LIP problem: Linear Programming (LP) relaxation, Combinatorial relaxation and 
Lagrangian relaxation. The first two approaches extend the feasible domain 
without any change in the objective function of the problem. The third approach 
provides another maximizing objective function, which has the same or greater 
value in a fixed feasible domain.  

The LP relaxation for the Integer Programming model is obtained by dropping 
the integrality constraints on the variables. The first Branch-and-Bound algorithm 
using LP relaxation was described by L a n d and D o i g [101], as mentioned above. 
To solve the LP subproblems in the LP relaxation, a simplex-based algorithm is 
normally used. The adding of new rows or variables does not lead to resolving the 
main problem, but a re-optimization from the optimal basis of the previous step is 
executed. The successful developments of interior point methods for large scale 
linear programming [3] have attracted many researchers to direct their efforts to use 
the interior point methods as the LP solver in Branch-and-Bound algorithms [140]. 

The now commonly used variable dichotomy scheme was proposed in [31]. 
The treatment of general upper-bound constraints by a division scheme together 
with an indexing scheme was introduced in [11]. The sets considered are called 
specially ordered sets. This terminology is now widely used and the concept is very 
important in the global maximization of the piecewise linear nonconcave functions. 
B e a l e and F o r r e s t [12] developed this approach which enables the 
implementation of the division scheme without the explicit use of auxiliary integer 
variables. 
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II. 6. Combinatorial Relaxation 

For realization of the combinatorial relaxation there are at least two approaches 
exploiting the combinatorial structure of the problem. The first approach is based on 
the concept of valuated matroids, introduced by D r e s s and W e n z e l [36, 37]. 
Greedy-type algorithms can be used for optimization. The other approach, which is 
called the structural approach, utilizes algorithms to compute an upper bound on the 
objective function and is often based on a graph-theoretic method (see [88, 114]). 

II. 7. Lagrangian Relaxation   

Considering LP relaxation it was mentioned that relaxing the integrality restriction 
is one approach to solution of linear integer programming problems. But, this is not 
the only approach to relaxing the problem. The idea of dropping constraints can be 
embedded into a more general framework, called Lagrangian relaxation. This is an 
alternative approach, where a set of “complicating” constraints is included into the 
objective function in a Lagrangian fashion (with fixed multipliers that are iteratively 
changed). The complicating constraints are removed from the constraint set. In this 
way the resulting sub-problem could be solved considerably easier. The latter is 
necessary in order that the approach can work, because the subproblems must be 
repetitively solved until optimal values for the multipliers are found. The bound 
found by Lagrangian relaxation can be tighter than that found by Linear 
Programming, but only at the expense of solving subproblems in integers, that is, 
only if the subproblems do not have the Integrality Property. (A problem has the 
integrality property if the solution to the Lagrangian problem is unchanged when 
the integrality restriction is removed). To realize a Lagrangian relaxation it is 
necessary that the structure of the problem being solved is clear in order to relax 
then the constraints that are “complicating” (see [40]). A related approach which 
attempts to strengthen the bounds of Lagrangian relaxation is called Lagrangian 
decomposition (see [71]). This approach consists of isolating sets of constraints. In 
this way are obtained separate, easy problems to solve over each of the subsets. The 
dimension of the problem is increased by creating linking variables which link the 
subsets. All Lagrangian approaches are problem dependent. There is developed no 
general theory – applicable to say, in arbitrary zero-one or LIP problems.  

The most Lagrangian-based strategies provide approaches which deal with 
special row structures. Some problems may possess a special column structure, such 
that when specific values are assigned to some subset of the variables, the problem 
is reduced to one that is easy to solve. There are decomposition algorithms, dealing 
with complicating variables in the problem. Benders decomposition algorithm fixes 
the complicating variables, and solves the resulting problem iteratively (see [14]). 
Based on the problem’s associated dual, the algorithm must then find a cutting 
plane (i.e., a linear inequality) which “cuts off” the current solution point but no 
integer feasible points. This cut is added to the collection of inequalities and the 
problem is resolved.  
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Since each of the decomposition approaches above described provides a bound 
on the integer solution, they can be incorporated into a branch and bound algorithm, 
instead of the more commonly used linear programming relaxation. However, these 
algorithms are special-purpose algorithms in that they exploit the “constraint 
pattern” or a special structure of the problem.  

As noted in [80] the computational success for difficult combinatorial 
optimization problems reflects the intense efforts devoted to developing the 
underlying polyhedral structure of these problems. Thus, in order to use this 
approach, one must be able to both identify specific mathematical structures 
inherent in the problem and then study the polyhedron associated with that 
structure. As more structures are understood, and can be automatically detected, we 
will see larger classes of problems solved by these methods. These codes will 
certainly be complex, but they are likely to lead to methods for solving to optimality 
– with reasonable computational effort – of many of the difficult combinatorial 
problems for which only heuristic approximate solutions are known today. 

II. 8. Preprocessing 

A better formulation of a LIP problem creates the possibility for its easier solution 
from the viewpoint of computational time and resources. All modern software 
systems contain modules, which apply the so called preprocessor or presolver, and 
which use some rules for improving the formulation of a concrete optimization 
problem. The basic preprocessing techniques have the aim to tighten the bounds of 
the variables, to fix variables, which have no influence on the optimal solution, to 
remove surplus constraints or to find out that the constraint system of a concrete 
LIP optimization problem is infeasible. The most often used techniques for 
preprocessing are those, described in [5, 136]. 

In practice some problems arise, where great input data fluctuations are 
available after the search process has been started. In other cases a series of related 
integer optimization problems has to be solved. Examples in this connection are 
found in many decomposition algorithms, parametrical programming algorithms, 
some multiobjective optimization algorithms and algorithms for analysis of 
mathematical models’ permissibility. Sensitivity and parametric analysis of integer 
programs has been discussed in [29, 50, 83, 115, 135, 137, 139]. 

In contrast to LP optimization problems, the evaluation of the changes in the 
objective function’s coefficients or in the right-hand side of constraint system (2) in 
LIP problems is more complex. Most often the investigations are connected with a 
concrete type of combinatorial problems. 

Parallel processing presents new opportunities for computational advances in 
discrete optimization. An annotated bibliography and an introduction to parallelism 
in combinatorial optimization are given in [96, 97]. In the empirical study [127] 
parallel computation is simulated and it is shown that by exploring several nodes of 
an enumeration tree simultaneously it is possible to reduce substantially the total 
number of nodes that need to be considered. These results have been summarized in 
[128]. 
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III. Metaheuristics and population-based evolutionary algorithms 

Since the integer programming optimization problems and the LIP optimization 
problems (1)-(3), as mentioned above, belong to the class of NP-hard optimization 
problems, it is very difficult and requires great computational efforts to find out an 
optimal and even a feasible solution for large size problems. Very often it is more 
important an acceptable solution to be found out, instead to wait a long time to 
obtain the optimal solution. Some flexible constraints may exist in the description 
of the problem model and they could be changed only a little bit. The exact 
algorithms need to resolve the problem even in case of a little change of one 
constraint. This may be very time consuming and could be expensive for real 
applications. The approximate algorithms are not so sensitive to little changes in 
some constraints. Some of them solve the problem consecutively, while it is 
decomposed into parts. In such case the resolving of the entire problem is not 
necessary. The approximate algorithms as subroutines in the exact algorithms find a 
broad field of application. They could be used to find out a suitable initial solution 
or to tighten the feasible domain of solutions and to direct the search for an optimal 
solution. A huge number of approximate algorithms has been created for the 
solution of large real life LIP optimization problems without any guarantee for 
optimality of the final solution [141]. 

During the last three decades many local search based metaheuristics have 
been developed to avoid the trap of local optimality and to find a global optimal 
solution (see [130]). It was proven that they are highly useful in practice. In the last 
fifteen years a lot of handbooks, devoted to the basic metaheuristic approaches, to 
their features and characteristics, as well as to their typical applications were 
published (see [10, 58, 148, 106, 61, 113, 41, 48]). They are directed to scientists 
and operations researchers, as well as to engineers and applications specialists, who 
are looking for the most appropriate optimization tool to solve particular problems. 

According to the quality of the solutions obtained, the approximate algorithms 
can be divided into three groups as follows: 

- approximate algorithms having arbitrary predetermined accuracy (absolute or 
relative); 

- approximate algorithms having in advance determined accuracy, whereat the 
approximation error does not tend to zero; 

- heuristic algorithms – in this case it is supposed on the base of experiments 
and other evaluations, that with great possibility they will find out a solution of the 
problem with good quality using reasonable computational resources, but there is 
not available any guaranteed mathematical evaluation of their accuracy. 

The development of approximate algorithms, for which it has been 
theoretically proven, that they terminate their performance using a polynomial 
number of standard mathematical operations, is especially important.  

The basic heuristic strategies, used in the approximate algorithms could be 
considered as: 

- constructive algorithms and 
- local-improvement algorithms. 
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The constructive algorithms generate the solution step by step, using the data 
of the problem. Usually there is no solution found, until the algorithm has not 
terminated its performance (in contrast to the improving algorithms). To this class 
of algorithms belongs the so called “greedy” algorithm, where at each step a next 
element of the solution is included, chosen in such a way, that the best local 
improvement is achieved (for example the highest gain or the lowest price). One of 
the widely known applications of a greedy algorithm is in the travelling salesman 
problem [63]. These algorithms are among the fastest approximate algorithms, but 
they achieve often very slow quality solutions. For this reason the constructive 
algorithms include often some procedures of the type “look-ahead feature” [6], 
where the future consequences and effects from the current choice are analyzed. 

The main idea of the local-improvement algorithms is very simple [1]. They 
usually start using a feasible solution of the problem, often obtained by means of a 
constructive algorithm. The feasible solutions in the neighbourhood N(x) of the 
current solution x are evaluated. When any of them is better than the current 
solution x, it becomes the new current solution of the problem and its 
neighbourhood is explored. This procedure continues until there is no new 
improvement and the current solution at this step is a local optimum. The 
importance of the way for defining the neighbourhood of a solution, is evident. The 
neighbourhood N(x, t) of solution x is the set of solutions, which can be obtained 
from x by means of a simple transformation t, i.e., the different transformations 
define different neighbourhoods. Various strategies for the choice of a new current 
solution x have been proposed: 

- random choice of x from N(x, t), 
- the first solution x, for which an improvement is found, is used (first-fit),  
- all solutions in the neighbourhood N(x, t) are explored and the solution 

having the greatest improvement is chosen (best-fit),  
or some other intermediate conditions are imposed.  
The question about the size of this neighbourhood is important; it shows what 

is the distance around the current solution determining the neighbourhood for 
exploration of feasible solutions [108]. The big shortcoming of these algorithms is 
that they can guarantee only a local optimum. There are available different 
approaches avoiding this problem: 

by means of enlargening the size of the neighbourhood N(x, t) or defining 
different transformations t, which determine the neighbourhood N(x, t), 

by means of starting the search from different initial solutions, chosen 
randomly in the feasible domain, 

through perfecting the search techniques, allowing in some cases the choice of 
a worse solution in the neighbourhood N(x, t). 

During the last 30 years some approximate algorithms have been developed of 
a new type, where combinations of different heuristic approaches are used. These 
approximate algorithms are known as metaheuristics. The term “metaheuristic” is 
introduced for the first time by G l o v e r [55] in the meaning of search for a global 
optimum (the highest level solution). The algorithms of this type are known also as 
“modern heuristics” [132]. In [147] the following definition is proposed:  “The 
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metaheuristic is an iterative generating process, which manages subordinated 
heuristics through an intelligent combination of different ideas for search that 
explores the feasible domain, using teaching strategies for structuring the 
information with the aim to find an effective, near optimal solution”. Each 
metaheuristic has one or several parameters, which have to be tuned. This makes 
them flexible, but for any different application (a specific class of problems), 
careful tuning on the base of a set of numerical examples for the problem is 
required. It is also necessary to make verification of the test experiments using a set 
of independent benchmark examples. The metaheuristics use a condition to 
terminate the search process. Such conditions are, for example: 

- reaching in advance a given computer time or a given limit of iterations, 
- expiration of a given computer time or a given iterations number, for which 

no improvement has been found, 
- reaching a given number of changes of the current solution or a given 

number of evaluated solutions, and others. 
The most familiar and powerful metaheuristics are Simulated Annealing [35, 

98, 118, 125], and Tabu Search (see [55, 57, 59, 118, 124]). They are based on 
Local Search techniques (see [1, 10, 58, 85, 146]). Other well-known approaches in 
this group are Guided Local Search [146, 148], Iterated Local Search [106] and 
Variable Neighbourhood Search [72, 74]. The Population-based algorithms are a 
large group of metaheuristics based on the natural practices of surviving of the best 
that have a learning capability. These include: Genetic Algorithms (see [10, 42, 62, 
81, 82, 131, 133]), Scatter Search (see [54, 56, 60]), Ant Systems/Ant Colony 
Optimization (see [26, 27, 28, 30, 34]), Particle Swarm Optimization (see [38, 39, 
92, 93, 94, 99, 102]) and Memetic Algorithms [112, 113]. The most important 
heuristic approaches and algorithms are briefly considered below. 

III. 1. Simulated Annealing 

Simulated Annealing is one of the oldest metaheuristics, designed to avoid the local 
optima. It is proposed by K i r k p a t r i c k et al. [98] in 1983 and independently by 
C e r n y [23] in 1985. The Simulated Annealing extends the main idea of local 
search allowing movement towards worse solutions. The basic algorithm of 
Simulated Annealing is presented in [35]. In this approach the step from the 
solution xk  to a new solution xk+1 is performed with a probability: 

P(xk+1 ← xk) =
⎥
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Here Tk is a parameter, called temperature. The probability for accepting the 

movement to xk+1 decreases with increase of the deterioration Δ = f(xk+1) – f(xk) of 
the objective function or with the decrease of the temperature Tk. The control of the 
possibility for accepting the new solution is realized by means of the parameter Tk, 
the idea for which arises from the physical annealing process. The temperature Tk is 
initiated usually high (i.e., the probability for movement towards a worse solution is 
high), and then it is gradually decreased during the ahead going search process. For 
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Tk → 0 the behaviour of Simulated Annealing becomes the same as the one of the 
local search. 

Different authors suggest concrete variants of this generalized algorithm of 
Simulated Annealing. Like each heuristic they are connected with the procedures 
for changing the tuneable parameters. In this case those are the temperature Tk and 
the criterion for terminating the search [118]. 

III. 2. Tabu search 

This is one of the most widely used metaheuristics designed mainly to solve 
combinatorial optimization problems, like control of transport nets, distribution of 
electroenergy, schedules, etc. [61]. The main idea of this algorithm was first 
introduced by G l o v e r [55]. The basic algorithm includes a local search with the 
greatest improvement (best-fit) and a short term memory to avoid the local optima 
and the cycling. The short term memory is applied as a Tabu list, where the last 
solutions considered are stored and the movements directed towards them are 
forbidden. The neighbourhood of a current solution includes only solutions, which 
are not in the Tabu list. The set of these solutions is called allowed set. At each 
iteration the best solution of this set is chosen as a new current solution. This 
solution is included in the Tabu list and one of the solutions stored in it is removed 
(usually FIFO order is used). In order to avoid the local optimum, the movement 
towards worse neighbour solutions is allowed. Another type of memory is also 
used, called long term memory, where information about past search steps is stored, 
as well as how many times a given solution has been chosen and the frequency of 
changing one concrete solution, etc. This memory is used to direct the search to 
regions of the feasible domain, which have remained still unexplored, i.e., its 
purpose is to realize diversification of the search. On this occasion, Glover called 
this metaheuristic “Adaptive Memory Programming” (see [55, 57]). Usually the 
search procedure is terminated after executing a given common limit of iterations or 
after a given number of consecutive iterations without improving the best obtained 
solution. 

There exist many extensions of this main idea of Tabu search 
(www.tabusearch.net). Some of them are directed to the use of an approximate 
objective function evaluation for the different solutions. Others use an evaluation 
concerning the constraint violation (the approach of Lagrangian relaxation). 
Different heuristics [58] for the choice of the next candidate for a solution are used, 
methodical and/or randomly the length of the Tabu list is changed, evaluations of 
the stored solutions are made with the aim of diversification of the search or making 
a choice of the direction to search for a new solution, etc.  

III. 3. Population-based algorithms 

These are metaheuristics (see [76, 143]), that unlike the previously discussed 
metaheuristics handle not only one, but a group, or a population of solutions. At 
each iteration, periods of self-adaptation (intensification of the search process in 
some region of the search space), alternate with periods of co-operation 
(information collectively gathered during the search process is used to direct further 
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the search). The periods of self-adaptation correspond to the execution of mutation, 
improvement or local search procedure, and the periods of co-operation are 
connected with the selection, crossover, trace updating or generation of trial points, 
i.e., with some (explicit or implicit) sharing among the individuals of the useful 
information gathered during the search. The general scheme of population-based 
algorithms is presented below: 
   Generate an initial population of individuals; 
   While no stopping condition is met do 
         Co-operation, 
         Self-adaptation, 

   EndWhile. 
This approach for exploration of the feasible domain is taken from nature. The 

final result of these algorithms depends on the manner, in which the population is 
changed. Well known population-based algorithms used for discrete optimization 
are the evolutionary algorithms, as well as the ant colony optimization and the 
particle swarm optimization. 

The evolutionary algorithms mimic the natural evolutionary processes [10, 62, 
108, 132]. At each iteration a set of operators is applied on the individuals in the 
current population in order to generate the individuals of the next generation. The 
fitness value of each solution in the population is evaluated. To make it an objective 
function or another qualitative, some evaluations are used, which are obtained 
experimentally or in another way. The individuals, having the highest fitness are 
used in the next population direct or as parents generating new individuals through 
a change or by means of a combination between them. The operators used are: 
modification or mutation which changes the individuals directly, and combination 
or crossover between two or more individuals for generating new individuals. The 
remaining solutions (individuals) are rejected, i.e., a selection is performed. The 
evolutionary algorithms are nondeterministic algorithms. They differ from one 
another in the way of their presentation, evaluation, selection and change of 
solutions. The term evolutionary algorithms includes, besides genetic algorithms, a 
wide class of other population-based algorithms, since almost all functions in their 
common form can be free defined and adapted to the problems, for which they are 
applied.  

Some pioneering works on Genetic algorithms (GA) have been published in 
the mid sixties (see [42, 81, 131]), but they have been further developed by 
H o l l a n d [82] and G o l d b e r g [62]. They use different strategies for improving 
the efficiency of the search (strategies for intensification of the search) [62, 125]. 
Their mechanism mimics the genetic evolution of species. GA use a population of 
feasible solutions, called individuals. A number of parent’s pairs of individuals are 
selected from the current population by means of a selection operator. Each pair 
performs reproduction by means of a crossover operator and generates two new 
individuals (solutions), called an offspring. A mutation operator is used to modify 
randomly with a small probability the offspring individuals imitating the mutation 
during the natural evolution. At the end the population individuals, having worse 
objective function values are replaced by the corresponding better offspring 
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individuals. This procedure is iteratively repeated and it usually stops when the 
population does not improve anymore or after a fixed number of iterations 
(generations). Although GA have been demonstrated to work well for a variety of 
problems, there is no guarantee of convergence to a global optimum. Their 
convergence can be sensitive to the choice of genetic operators, mutation 
probability, selection criteria, and fine-tuning of these parameters is often required. 
There is a theoretical basis for the effectiveness of GA (see [62]), but in practice 
most problems do not fit naturally into this paradigm. It is possible genetic 
algorithms to be hybridized with other heuristic strategies, as well as to be 
organized as parallel algorithms (see, e.g. [100]). 

Scatter search (SS) has been proposed by G l o v e r [54] in 1977 to solve 
integer programming problems. This is a search strategy (see [55]), that generates 
systematically a set of dispersed points (solutions), from chosen reference points by 
means of convex or non-convex combinations of subsets (of two or more) reference 
points. The generated new points are called trial points. Some of them may violate 
the constraints in the problem. For this reason a repair procedure is used to 
transform the infeasible trial points into feasible points. A kind of a local search 
procedure is used to improve each new obtained feasible trial point. The obtained 
improved points form the set of dispersed points. Then a new set of reference points 
is selected at the next iteration among the current reference and disperse points. In 
comparison to GA, the reproduction in SS may be considered as multisex, because 
more than two parents can be matched to produce a new child.  

The so called Ant systems (AS) have been proposed by C o l o r n i, D o r i g o 
and M a n i e z z o [26, 27, 28] in 1991. They are also population-based algorithms. 
AS are inspired from the behaviour of ants, searching food in the neighbourhood of 
their formicary using the best route to the food source. In the optimization methods 
of this kind, each ant is a constructive procedure that is able to generate a new 
solution of the problem at hand. The ants make choice by generating their 
corresponding new solutions on the base of two factors: the trace factor and the 
desirability factor [30, 34]. The first factor reflects the historical information 
gathered throughout the individual search of the ants. The second factor guides each 
ant to the choice of a solution with the best objective function value in its 
neighbourhood. After each iteration the ants share their new information to update 
the trace factor. The different AS modify the trace factor in different ways. One 
way, for example, is to direct the search around the neighbourhood of the best 
solution found so far. 

Particle Swarm Optimization (PSO) has been first developed by E b e r h a r t 
and K e n n e d y [39] in 1995 (see also [92, 93, 94]). The basic idea in PSO is to 
imitate the intelligent swarming behaviour, observed in flocks of birds, schools of 
fish, swarms of bees, etc. Each object (particle) in PSO makes steps from its current 
position to a new position and this motion is determined as a sum of three vectors: 
inertia, competition and cooperation. The inertia vector is determined by the current 
velocity of the particle v(t) weighted by a constant w. In this way the tendency of 
the particle to maintain its current velocity is reflected. The competition vector links 
the current position of the particle y(t) to its personal best position found during the 
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search process. This vector is weighted using a uniformly distributed random 
function. The cooperation vector links the current position of the particle y(t) to the 
global best position, found by the particles. This vector is weighted using a second 
uniformly distributed random function. It is clear that the cooperation among 
particles is important for finding the global optimum solution. The inertia and the 
competition are necessary for the particle to avoid trapping in the local minima.  

The term “Memetic Algorithms” (MA) [111] is introduced at the end of the 
eighties to denote a family of metaheuristics, which is a hybridization of 
evolutionary or any population-based approach with separate individual learning or 
local improvement procedures to solve a given problem. MA often apply local 
improvement heuristics to each individual in the population [113]. The use of local 
improvement heuristics directs the search procedure to regions with better solutions. 
Another strategy for intensification is the one, which combines the good parts of 
individuals. In this way the search procedure is directed to regions, where the 
individuals have good qualities. Techniques of this type are called “linkage 
learning” [75]. 

For the success of every metaheuristic method in solving NP-hard integer 
optimization problems, it is necessary to achieve both depth and breadth in the 
search process. There are no problems with the depth of the search in the local 
improvement algorithms and they can often find quickly very good solutions. In 
contrast to the depth, the breadth can be a critical issue for them. The population-
based algorithms are better in discovering the promising areas in the variables 
space, since they can achieve great breadth in their search process. The exact 
balance between intensification and diversification in the search process is 
necessary for the development of efficient approximate algorithms [19]. For this 
reason the hybrid algorithms, combining the advantages of these two groups of 
algorithms are very successful [84]. Another approach for creating efficient 
algorithms especially designed to solve real life (combinatorial) problems is the 
combination of metaheuristics and logic programming with constraints [41, 105]. 
Some algorithms, combining metaheuristics and exact algorithms (see [130]) are 
developed to solve concrete classes of problems. The use of the features of a 
feasible domain of concrete problems leads to improvement in the quality of the 
solutions found. 

IV. Conclusions 

A large variety of different real life problems in practice are formulated as integer 
optimization problems. Their number and their size increase continuously. 
Regardless of the fact, that the productivity of exact algorithms designed to solve 
integer problems has been considerably improved during the last years, very often 
they can not be applied to solve practical problems of middle and large size because 
of their excessive runtimes and memory requirements. The published theoretical 
and also algorithmic investigations are devoted to combinatorial or binary 
problems. As a result, the most wide spread heuristic procedures for obtaining 
suitable initial solutions, evaluations of candidate-solutions, cutting planes, 
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specialized search strategies, etc., integrated in the commercial programming 
products, are effective for problems with 0-1 variables or for problems having a 
special structure. The solution of the integer problem in the general case remains 
considerably harder. The hybrid methods are promising tools, since they combine 
the best features of different methods (exact techniques or metaheuristics) in a 
complementary mode [18, 73, 84, 129, 154]. Since the obtaining of a good feasible 
solution in reasonable time is completely satisfactory for many practical problems, 
the development of heuristic algorithms, having polynomial computational 
complexity, is still a problem of the present day. Many large size real problems can 
not be solved by exact algorithms due to their exponential computational 
complexity. In such case the only way is the use of approximate polynomial time 
algorithms. 
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