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Abstract:  The Linear Quadratic Regulator (LQR) problem is used to obtain a 
control law that can ensure stability of the closed-loop system, desired performance 
and minimizes a predefined cost function. The considered control problem can be 
implicitly realized using the solutions Q, Y of a system of Linear Matrix Inequalities 
(LMIs). In this paper we perform linear perturbation analysis for the discrete-time 
LMI based linear quadratic regulator problem. The problem of performing 
sensitivity analysis of the perturbed matrix inequalities is considered similarly to 
perturbed matrix equations, after introducing a slightly perturbed suitable right 
hand part. The proposed approach allows to obtain tight linear perturbation 
bounds for the LMIs’ solutions to the linear quadratic regulator problem. In the 
paper numerical examples are also presented. 
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1. Introduction 
There are many control problems where the design constraints have a simple 
reformulation in terms of Linear Matrix Inequalities (LMIs). This is because the 
LMIs are direct byproducts of Lyapunov based criteria, and that Lyapunov 
techniques plays a central role in the analysis and control of linear systems [1, 2]. 
The Linear Quadratic Regulator (LQR) problem is a good illustration of what is 
mentioned above.   

LMI approach is effective because it is applicable to all plants without 
restrictions on infinite or pure imaginary invariant zeros. LMI design is practical, 
interesting and useful thanks to the availability of efficient convex optimization 
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algorithms [3] and software [4] plus the MATLAB package Yalmip and SeDuMi 
solver [5]. 

The LQR problem is known to be investigated using solutions of a Riccati 
equation [6]. Perturbation analysis of Riccati equations is performed in [7]. 

The aim of this paper is to propose an approach to perform linear perturbation 
analysis of the LMI based LQR problem via introducing a suitable right hand part 
in the considered matrix inequalities. After the considered problem is solved the 
obtained results can be applied in the following ways. First it is possible to estimate 
the errors in the calculated solution of the LQR problem, which are due to rounding 
errors and parametric disturbances in the considered data. Second it is possible to 
study the robust stability and robust performance of the closed loop system with 
uncertainties in the plant and in the controller. The uncertainties in the controller 
appear because of the sensitivity of the linear quadratic regulator problem.  

Further the following notation is used: Rm×n – the space of real m×n matrices; 
Rn = Rn×1; In – the identity n×n  matrix; en – the unit m×1 vector; MT – the transpose 
of M; M ┴ – the pseudo-inverse of M; ||M||2 = σmax(M) – the spectral norm of M, 
where σmax(M) is the maximum singular value of M; vec(M)∈Rmn – the column-
wise vector representation of M∈Rm×n; Πm,n∈Rmn×mn – the vec-permutation matrix, 
such that vec(M T)= Πm,n vec(M); M ⊗ P – the Kroneker product of the matrices M 
and P. The notation “:=” stands for “equal by definition”. 

The rest of the paper is structured as follows. Section 2 presents the problem 
set up and objective. In Section 3 the performed linear sensitivity analysis of the 
LMI-based continuous linear quadratic regulator problem is presented. In Section 4 
some numerical examples are given before we conclude in Section 5 with some 
final remarks. 

2. Problem setup and objective 
In this paper we consider the linear continuous-time system 

(1) x
.
   (t) = Ax(t) + Bu(t),  

where x(t)∈Rn and u(t)∈Rm  are the system state and input vectors respectively, and 
BA,  are constant matrices of compatible size.  

Linear quadratic regulator problem means for a given initial state x(0) to find a 

control law, which minimizes the cost function ( )∫
∞

+
0

TT dtuRuxQx pp . It is also 

necessary to find a quadratic Lyapunov function V(x) = xTPx, P > 0, such that  

[ ] .)( TT xKRKQxxV
dt
d

pp +−<  

In order to solve the LQR problem and to ensure closed-loop stability and 
specified performance it is necessary to design a state-feedback control u=Kx.  

We consider an LMI approach to solve the linear quadratic regulator problem, 
as stated in [1]:  
(2) [ ] ( ) .0,)()( TTTT >+−<+++ pxKRKQxxBKAPPBKAx pp   
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From Schur complement argument [8] the above inequality is equivalent to 
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We pre- and post- multiply expression (3) by diag[P–1, I, I]. Later we introduce 
new variables Q = P–1, Q > 0 and Y = KP–1 to obtain the following system of LMIs: 
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The main objective of the paper is to perform a linear sensitivity analysis of 
the LMI system (4), needed to solve the continuous-time linear quadratic requlator 
problems. Further in the paper we will use the following notation: RP

–1 = Rip,  
Qp

–1 = Qip, ΔRp
–1 = ΔRip, ΔQp

–1 = ΔQip. 
Suppose that the matrices A, B, Rip, Qip are subject to perturbations ΔA, ΔB, 

ΔRip, ΔQip  and assume that they do not change the sign of the LMI system (4). The 
sensitivity analysis of the continuous-time LMI based linear quadratic regulator 
problem is aimed at determining perturbation bounds of the LMI system (4) as 
functions of the perturbations in the data A, B, Rip, Qip. 

3. Linear perturbation analysis 
In this section perturbation analysis of the LMI (4) for the continuous-time system 
(1) is performed 
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where ABQYT = (Q + ΔQ)(A + ΔA)T + (Y + ΔY)T(B + ΔB)T
,  

ABQY = (Q + ΔQ)(A + ΔA) + (Y + ΔY)(B + ΔB). 

It is necessary that we study the effect of the perturbations ΔA, ΔB, ΔRip, ΔQip, 
on the perturbed LMI solutions Q* + ΔQ and Y* + ΔY, where Q*, Y* and ΔQ, ΔY 
are the nominal solution of the inequality (4) and the perturbations, respectively. 
The essence of our approach is to perform perturbation analysis of the inequality (4) 
similarly to a perturbed matrix equation, after introducing a slightly perturbed 
suitable right hand part. In this way LMI (5) is obtained: 
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Here ABQY*T = (Q* + ΔQ)(A + ΔA)T + (Y* + ΔY)T(B + ΔB)T, 

ABQY* = (Q* + ΔQ)(A + ΔA) + (Y* + ΔY)(B + ΔB), 
and L* is calculated using the following nominal LMI:  
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The matrix Δ L1 includes information regarding data and closed-loop 
performance perturbations, the rounding errors and the sensitivity of the interior 
point method that is used to solve the LMIs. 

If we use the relation (7) the perturbed equation (6) can be written in the 
following way: 
(8) ΔQ + ΩQ = ΔL1,  
where  
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Since we perform linear sensitivity analysis here the terms of second and 
higher order are neglected.  Then the vectorized form of relation (8) can be obtained 

(9) vec(ΔQ)+ vec(ΩQ)= vec(ΔL1),  

where 

vec(ΔQ) = [I ⊗ A + A ⊗ I, 0, I, 0, 0, 0, I, 0, 0]T vec(ΔQ) := TΔq, 
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The derivations made allow us to obtain the expression 

(10) TΔq + Tt1vec(ΔA) + Tt2 vec(ΔY) + Tt3 vec (ΔB) + Tt4vec (ΔRip) +  
+ Tt5 vec(ΔQip) = vec (ΔL1). 

At the end the relative perturbation bound for the solution *Q  of the LMI (4) 
is obtained 
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are the individual relative condition numbers of the LMI (4) with respect to the 
perturbations ΔA, ΔB, ΔRip, ΔQip, and ΔY. 

Using a similar procedure the relative perturbation bounds for the solution Y* 
of the LMI (4) may be obtained. We use the following expression: 

(12) ΔY +ΩY = ΔL2 , 

where     
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Since we perform linear sensitivity analysis  here the terms of second and 
higher order are neglected. Then the vectorized form of relation (12) can be 
obtained as 
(13) vec(ΔY)+ vec(ΩY)= vec(ΔL2),  

where 
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The derivations made allow us to obtain the expression 

(14) WΔy + Wt1 vec (ΔA) + Wt2 vec (ΔQ) + Wt3 vec (ΔB) +  
+ Wt4 vec (ΔRip) + Wt5 vec (ΔQip) = vec (ΔL2). 

At the end the relative perturbation bound for the solution Y* of the LMI (4) is 
obtained: 
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are the individual relative condition numbers of the LMI (2) with respect to the 
perturbations ΔA, ΔB, ΔRip, ΔQip, and ΔQ. 

4. Numerical examples 

4.1. Example 1 [10] 

Consider the following continuous-time system (1), where  
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The perturbations in the system matrices are chosen as: 
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The perturbed solutions Q* + ΔQ and Y* + ΔY of LMI (6) are computed using 
the method derived in [9] and applying the software [4]. Based on the proposed 
approach the relative perturbation bounds for the solutions Q*and Y* of the LMI 
system (4) are obtained by the linear bounds (11) and (15), respectively.  

The results obtained for different size of perturbations are shown in Table 1. 
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Y
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8 5.1250×10-8 1.1304×10-7 3.8134×10-8 6.7272×10-8 
7 5.1250×10-7 1.1304×10-6 3.8134×10-7 6.7272×10-7 
6 5.1250×10-6 1.1304×10-5 3.8134×10-6 6.7272×10-6 

5 5.1250×10-5 1.1304×10-4 3.8134×10-5 6.7272×10-5 

4 5.1250×10-4 1.1304×10-3 3.8134×10-4 6.7272×10-4 

Based on the proposed solution approach we obtain the perturbation bounds 
(11) and (15), which are close to the real relative perturbation bounds   
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4.2. Example 2 

Consider the continuous-time system (1), where  
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The perturbations in the system matrices of the discrete-time system are 
chosen as 
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The perturbed solutions QQ Δ+* and YY Δ+*  of LMI (6) are computed using 
the method derived in [9] and applying the software [4]. Based on the proposed 
approach the relative perturbation bounds for the solutions *Q and *Y  of the LMI 
system (4) are obtained by the linear bounds (11) and (15), respectively.  

The results obtained for different size of perturbations are shown in the     
Table 2. 

Table 2 

i 
2

2

||*)(ve||
||||

Qc
qΔ  Bound(11) 

2

2

||*)(vec||
||||

Y
yΔ  Bound(15) 

8 3.0160×10-8 2.2967×10-7 2.1338×10-8 1.3296×10-7 

7 3.0160×10-7 2.2967×10-6 2.1338×10-7 1.3296×10-6 

6 3.0160×10-6 2.2967×10-5 2.1338×10-6 1.3296×10-5 

5 3.0160×10-5 2.2967×10-4 2.1338×10-5 1.3296×10-4 

4 3.0160×10-4 2.2967×10-3 2.1338×10-4 1.3296×10-3 

Based on the proposed solution approach we obtain the perturbation bounds 

(11) and (15), which are close to the real relative perturbation bounds
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and 
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Y
yΔ , thus they are good in sense that they are tight. 
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5. Conclusion 

In this paper the linear perturbation analysis of the continuous-time LMI based 
linear quadratic regulator problem has been investigated. Tight linear perturbation 
bounds have been obtained for the matrix inequalities determining the problem 
solution. Based on derived theoretical results we have presented  numerical 
examples to explicitly reveal the applicability and performance of the proposed 
solution approach to analyze the sensitivity of the LMI based linear quadratic 
regulator problem. 
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