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Abstract: In this paper a new algorithm for automatic construction of direct-
sequence complementary codes, which is based on theoretical methods for synthesis 
of complementary signals is developed and described. A numerical method for 
analysis and comparison of constructed complementary codes with well-known 
Barker and Z-complementary codes is also proposed. Using autocorrelation and 
ambiguity functions of signals, the numerical method estimates the volume of 
sidelobes separately for each signal. The results are obtained using the specialized 
software program in MATLAB R2007b. 
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1. Introduction 

Recently in the world the numbers of wireless communication systems like radio, 
TV, navigation and communication systems has increased very much. All these 
systems transmit energy of electromagnetic signals in the frequency range from kHz 
to GHz. According to the recent publications “Development and Implementation of 
GSM Experimental Passive Radar”, presented in the proceedings of the 
international conference on radar technology held in Adelaide, Australia, 2003, and 
“Determination the Coordinates of the Moving Target Based on GSM Passive 
Radar”, presented in the proceedings of the international conference Radar’2004 
held in Toulouse France, 2004, this energy  could be used for secondary 
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application, such as detection of objects that reflect energy. This concept is known 
as “Secondary Application of Wireless Technology (SAWT)” [5]. According to this 
concept, all sensors work in the passive receive mode, i.e., they do not emit 
electromagnetic waveforms. In literature such systems are often known as “passive 
radar systems”. 

It is known from the literature that the assessment of the “radiolocation” 
property of a signal used for a radar, communication and another purpose is made 
by means of the so-called Ambiguity Function (AF) [3, 6-12, 14]. In 1986 Griffiths 
and Long have made a series of studies on the ambiguity function of television 
signals [7], and in result they concluded that the usage of such radars is associated 
with many restrictions because of the insufficient quality of an ambiguity function 
of such signals combined with dynamic range restriction. Table 1 presents a brief 
classification of mono-static ambiguity functions of different signals and provides a 
visual overview of the features of signals, used in SAWT applications compared 
with the features of some “classical” radar signals.  The analysis of  
Table 1 answers the question of communication signals application in radar systems 
from the point of view of signal analysis. 
Table 1. Mono-static ambiguity functions 

Ambiguity function Range resolution Speed resolution 

  
Television signal (UHV) [30] 

  
Radio signal - news (BBC 93.5 MHz) [30] 

   

Radio signal,  music – jazz  [30] 

   
GSM signal [30] 



 77

According to this approach a new algorithm for evaluating AF of different 
radar and communication signals is developed and realized in Matlab. It calculates 
both the Peak Sidelobe Level (PSL) and Average Sidelobe Level (ASL) of an 
ambiguity function of different signals with zero and non-zero Doppler frequency. 
The goal of the paper is to evaluate the properties of some direct sequence 
Complementary Codes (CC) constructed by the authors on the base of the extension 
of the classical concept of the Golay. The main idea is that direct-sequence 
complementary codes of high structural complexity can be generated on the basis of 
well-known Golay complementary codes [1, 2]. 

The first section of the article clarifies how to use communication signals in 
passive radar by using some examples. The second section of the article represents 
the analytical study of signals, while the third section includes a brief presentation 
of the theory about bounds of the volume of an ambiguity function. The 
computational algorithm and the results obtained are described in the last section.  

2. Comparison of modern communication signals 
In this study, the radar properties of some complementary codes [15, 16] are 
estimated in respect of well-known communication or radar signals of different 
length [1, 2, 4, 13, 18-25]. The following types of modern communication signals 
are available: Orthogonal CDMA, Direct sequence complementary code (our 
designed codes [15, 16]), Z-complementary and Orthogonal Walsh sequences, and, 
finally, radar signals like Barker codes.    

2.1. Orthogonal CDMA communication signals  

CDMA as a standard for transmitting of data is exploited in cellular telephony 
systems, GPS, contemporary UMTS communication systems of the 3rd generation, 
etc. In the core of new CDMA architectures will be placed the usage of orthogonal 
complete complementary codes. As known, G o l a y [l] and T u r y n [3] studied 
pairs of binary complementary codes whose autocorrelation function is zero for all 
even shifts except the zero shift. S u e h i r o [4] extended this concept to the 
generation of CC code families whose autocorrelation function is zero for all even 
and odd shifts except the zero shift and whose cross-correlation function for any 
pair is zero for all possible shifts. There exist several fundamental distinctions 
between traditional CDMA codes (Gold codes, m-sequences, Walsh-Hadamard 
codes, etc.) and CC codes used in the new proposed architecture of the a CDMA 
system [18]. The orthogonality of CC codes is based on a “flock” of element codes 
jointly, instead of a single code as in traditional CDMA codes. In other words, 
every user in the new CDMA system will be assigned a flock of element codes as 
its signature code, which must be transmitted, possibly via different channels, and 
arrive at a correlator receiver at the same time to produce an autocorrelation peak. 
For example, CC codes of element code length L = 4, are shown in Table 2 (which 
lists two families of CC codes: for L = 4 and L = 16). There are in total four element 
codes (A0, A1 B0, and B1), and each user must use two еlemеnt codes (either A0, A1 
or B0, B1). 
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Table 2  
Element code length L = 4     Element code length L = 16 

Flock1 A0; + + + −                         Flock1 A0; + + + + + – + – + + – – + – – + 
A1; + – + – + + + + + – – + + + – – 
A2; + + – – + – – + + + + + + – + – 
A3; + – – + + + – – + – + – + + + + 

A1; + − ++                           Flock2 B0; + + + + – + – + + + – – – + + – 
B1; + – + – – – – – + – – + – – + +  
B2; + +  – – – + + – + + + + – + – + 
B3; + – – + – – + + + – + – – – – – 

Flock2 B0; + + − +                            Flock3 C0 + + + + + – + – – – + + – + + –   
C1 + – + – + + + + – + + – – – + + 
C2 + + – – + – – + – – – – – + – + 
C3 + – – + + + – – – + – + – – – –  

B1; + − − −                           Flock4 D0 + + + + – + – + – – + + + – – +  
D1 + – + – – – – – – + + – + + – –  
D2 + + – – – + + – – – – – + – + – 
D3 + – – + – – + + – + – + + + + +  

2.2. Direct sequences complementary signals  

In this section some methods for synthesis of complementary signals are described. 
As is well known, direct-sequence complementary signals are defined by G o l a y 
[1]. The code sequences 1

0)}({ −
=

n
jjμ , 1

0)}({ −
=

n
jjη  composed by n numbers +1 and –1: 

1–1,..., 0,  1}, {–1,)(  };1,1{)( njjj =+∈+−∈ ημ , are called complementary signals 
or complementary codes if 
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⎩
⎨
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The example for n = 10 is presented in Table 3. On Fig. 1a and b the 
autocorrelation functions of direct-sequence signals with code sequences 1

0)}({ −
=

n
jjμ  

and 1
0)}({ −

=
n
jjη  are shown, and on Fig. 1c the sum autocorrelation function )(c kR  is 

shown and it is an ideal form of the delta pulse.  

Table 3 

k or j 0 1 2 3 4 5 6 7 8 9 

{µ(j)}j
n
=
–
0
1 1 1 1 1 1 –1 1 –1 –1 1 

{η(j)}j
n
=
–
0
1 1 1 –1 –1 1 1 1 –1 1 –1 

Rμμ(k) 10 1 2 3 –2 –1 0 –1 0 1 

Rηη(k) 10 –1 –2 –3 2 1 0 1 0 –1 

Rc(k) 20 0 0 0 0 0 0 0 0 0 
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In [15-17], the authors developed a new algorithm and the corresponding 
software for synthesis of probing pulses for radar systems representing direct 
sequences complementary codes. This algorithm uses matrix multiplication of 
popular Golay codes. The principle of multiplication of the elements of composing 
codes is different and allows developing new complementary codes with long 
sequences, such as codes that are constructed using the proposed numerical method. 
Popular Golay codes are summarized in Fig. 2. 
 
 
 A= [1] 
 A1=[1 j 1] 
 A2=[–j j 1 1 1] 
 A3=[1 1 1 1 1–1 1–1–1 1] 
 A4=[–1–1 1 1 1 1 1–1 1 1] 
 A5=[–1 1–1–1 1 1–1 1 1 1 1–1 1–1 1 1 1 1–1–1 1 1 1–1 1–1] 

 
 B =[1] 
 B1=[1 1 –1] 
 B2=[1 j –1 1 –j] 
 B3=[1 1–1–1 1 1 1–1 1–1] 
 B4=[1 1–1–1 1–1 1–1 1 1] 
 B5=[1–1 1 1–1–1 1–1–1–1–1 1 1 1 1 1 1 1–1–1 1 1 1–1 1–1] 

Fig. 2.  Well-known complementary codes of Golay 
 

Rμμ(k)

Rηη(k)
 

10 

10 

20 Rc (k)

-9 9 

a) 

k 

k 
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k 

b) 

c) 

 

At the same 
 like B ÷B 5 
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D1 
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D3 
D4 
D5 

At the same 
like A-A5 

Fig.1. The autocorrelation functions of direct-sequence signals with code sequences  
1
0)}({ −

=
n
jjμ   (a, b) and  1

0)}({ −
=

n
jjη   (c) 

At the same 
like B-B5 
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New complementary Code A       N =200 

–1 –1 –1 –1 –1 1 –1 1 1 –1 –1 –1 –1 –1
 –1 1 –1 1 1 –1 1 1 1 1 1 –1 1
 –1 –1 1 1 1 1 1 1 –1 1 –1 –1 1
 1 1 1 1 1 –1 1 –1 –1 1 1 1 1
 1 1 –1 1 –1 –1 1 1 1 1 1 1 –1
 1 –1 –1 1 –1 –1 –1 –1 –1 1 –1 1 1
 –1 1 1 1 1 1 –1 1 –1 –1 1 1 1
 1 1 1 –1 1 –1 –1 1 1 1 –1 –1 1
 1 1 –1 1 –1 1 1 –1 –1 1 1 1 –1
 1 –1 –1 –1 1 1 –1 –1 –1 1 –1 1 –1
 –1 1 1 –1 –1 –1 1 –1 1 1 1 –1 –1
 1 1 1 –1 1 –1 –1 –1 1 1 –1 –1 –1
 1 –1 1 1 1 –1 –1 1 1 1 –1 1 –1
 –1 –1 1 1 –1 –1 –1 1 –1 1 1 1 –1
 –1 1 1 1 –1 1 –1 1 1 –1 –1 1 1
 1 –1 1 –1 
 

 
  New complementary Code B       N =200 

1 1 1 1 1 –1 1 –1 –1 1 1 1 1 1
 1 –1 1 –1 –1 1 –1 –1 –1 –1 –1 1 –1
 1 1 –1 1 1 1 1 1 –1 1 –1 –1 1
 –1 –1 –1 –1 –1 1 –1 1 1 –1 1 1 1
 1 1 –1 1 –1 –1 1 –1 –1 –1 –1 –1 1
 –1 1 1 –1 –1 –1 –1 –1 –1 1 –1 1 1
 –1 1 1 1 1 1 –1 1 –1 –1 1 1 1
 1 1 1 –1 1 –1 –1 1 –1 –1 1 1 –1
 –1 –1 1 –1 1 –1 –1 1 1 –1 –1 –1 1
 –1 1 1 1 –1 –1 1 1 1 –1 1 –1 –1
 –1 1 1 –1 –1 –1 1 –1 1 –1 –1 1 1
 –1 –1 –1 1 –1 1 –1 –1 1 1 –1 –1 –1
 1 –1 1 –1 –1 1 1 –1 –1 –1 1 –1 1
 –1 –1 1 1 –1 –1 –1 1 –1 1 1 1 –1
 –1 1 1 1 –1 1 –1 1 1 –1 –1 1 1
 1 –1 1 –1 
 

Fig. 3. Two new constructed complementary codes by the authors 
 

Two new complementary code sequences, obtained using the algorithm that 
includes matrix multiplication are shown on Fig. 3. Each one of the new code 
sequences has two hundreds chips. The developed algorithm for synthesis is based 
on the following theorem: 

Theorem of Golay. If Complementary codes 1
0)}({ −

== n
jjA μ , 1

0)}({ −
== n

jjB η  are 
known with length n and Complementary codes 1

0)}({ −
== r

jjC ξ , 1
0)}({ −

== r
jjD ζ  with 

length r then we have the sequences: 

1)  
};)0(...,,)2(,)1(,)0(...,,)2(,)1({

};)1(...,,)1(,)0(,)1(...,,)1(,)0({
BBrBrAArArL

BrBBArAAK
ξξξζζζ

ζζζξξξ
−−−−−−−=

−−=  

2)  
}.)0(,)0(...,,)2(,)2(,)1(,)1({

};)1(,)1(...,,)1(,)1(,)0(,)0({
BABrArBrArN

BrArBABAM
ξζξζξζ

ζξζξζξ
−−−−−−−=

−−=  
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Two software programs (a numerical method and synthesis of CC) have been 
uploaded on Matlab site: user community/file exchange.  

2.3. Z-complementary  

Z-complementary sequences include the conventional complementary sequences as 
special cases. Constructions of Z-complementary binary sequences and their mates 
are given together with some conjectures.  It is shown that there exist many more  
Z-complementary binary sequences and many more Z-complementary mates in 
comparison with the normal complementary counterparts [21]. 

Let a = (a(0), a(1), …, a(N – 1)) and b = (b(0), b(1), …, b(N – 1)) be binary 
sequences of length N with a(i) ± 1, b(i) ± 1, respectively, 0 ≤ i ≤ N – 1. The 
aperiodic Cross-Correlation Function (CCF) of a and b is defined as 

(2)  ( ) ( ) ( ),
1

0
, kjbjakA

kN

j
ba += ∑

−−

=

     10 −≤≤ Nk . 

When ba = , the above definition becomes an aperiodic Auto-Correlation 
Function (ACF) ( )kA a . A set of P binary sequences {a1, a2, …, ap}, each having 

length N, is called a set of Z-complementary sequences (Z-CSP
N
) if  

(3)  ∑
= ⎩

⎨
⎧

−≤≤
=

=
P

i
a Zk

kNP
kA

i
1 11,0

,0,
)(  

Z is called as a Zero Correlation Zone (ZCZ). Obviously, the above definition 
includes the conventional complementary set as a special case when NZ = . For 

2=P , it is well-known that the complementary binary sequences exist only for 
very limited lengths such as cba 26102  for a, b, c ≥ 0. In fact, for N ≤ 100, only 
Golay pairs of lengths 2, 4, 8, 10, 16, 20, 26, 32, 40, 52, 64, 80, 100 have been 
found. However, the Z-complementary pair of binary sequences exists for many 
more lengths when 100≤N . Another set of Z-CSP 

N
{b1, b2, …, bp} is called a          

Z-complementary mate of Z-CSP
N
{a1, a2, …, ap} if 

(4)  ( ) 0
1

=∑
=

kA
P

i
ba ii

,         10 −≤≤ Zk .  

When Z = N, the Z-complementary mate becomes the conventional 
complementary mate. For a given complementary set, containing P  sequences, it is 
shown that there exist at most P distinct complementary mates. However, for a  
Z-complementary set with a zero correlation zone Z and P binary sequences each 
having length N, there exist more than P distinct Z-complementary mates. Similar 
to conventional complementary sequences, Z-complementary binary sequences can 
be constructed by basic sequence operations or from basic kernels. 
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Fig. 4. Kernels of Z-complementary sequences [21] 

 
Table 4. Ortogonal Walsh 
sequences 

 

2.4. Orthogonal Walsh sequences  

Orthogonal Walsh sequences and their different possible variations are perfectly 
orthogonal binary (antipodal) block codes that are in use in many popular 
applications over several decades including synchronous multiuser communications 
and signal processing. It is well known that they perform poorly for the case of 
asynchronous multiuser communications like Direct Sequence – Code Division 
Multiple Access (DS-CDMA) communications standards [22-25]. 13 Orthogonal 
Walsh sequences are given in Table 4. Walsh codes are defined as a set of N codes, 
denoted Wj, for j = 0, 1, ... , N − 1, which has the following properties: 
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Wj takes on the values  +1 and −1. 
Wj [0] = 1 for all j. 
Wj has exactly j zero crossings, for j = 0, 1, ... , N −1. 

⎩
⎨
⎧

=
≠

=
,,
,,0T

kjN
kj

WW kj  

∫ =
T

0

.)()(1
jkkj dttWtW

T
δ  

Each code Wj is either even or odd with respect to its midpoint. 

3. Algorithm for partial minimization of the volume of the body of 
ambiguity of communication signals 

For evaluating the quality of the signals under study, we use the well-known 
practical approach used in radar applications [9-11, 13], according to which the 
“good” signal has the lowest level of sidelobes of its ambiguity function. Such a 
signal is called a signal with partially minimization of the volume of the body of 
ambiguity [9-11, 13] Vi(σm) in the area σm  (Fig. 5). The optimization criterion is 
minimization of the integral estimate of AF: 
(5)  Vi(σm) = min|),(|

m

d
2

d =∫∫
σ

ττχ dfdf  

wherever ( ) ( ) dttfitutuf d*
d

2)(, πττχ −+∫
∞

∞−
= l − an ambiguity function of signal ).(tu  

 

 
Fig. 5. Preferred form of the ambiguity function of signal  

by restriction max range and speed of target  

This approach allows us to synthesize or select one of the known signals, in 
order to provide the required both resolution and measurement errors of 
coordinates ),( dfτ , and to guarantee the minimal level of sidelobes in the signal 
parameter space (in workspace): 
(6)  

max
τ

max
ττ ≤≤ ;

dmax
f .

dmaxd ff ≤≤  

fd 

τeff

1

T
 

τmax τmax 2Feff 

2fdmax 

2Тeff 

a) b) 
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The solution of this problem is the complicated procedure for approximate 
estimating of the Peak Sidelobe Level (PSL) and the Average Sidelobe Level (ASL) 
of an ambiguity function with zero and non-zero Doppler frequency, in condition of 
partial minimization of the volume of the ambiguity body.    

3.1. Numerical evaluation of sidelobes 

In the study we use the general definition of the following quality factors: Maximal 
Peak Sidelobe Power (PSP), Peak Sidelobe Level (PSL), Integrated Sidelobe Level 
(ISL) and Golay Merit Factor (MF). These quality factors are often used in order to 
analyze the volume of signal sidelobes at the filter output:  

• Max PSP = 1/N is the maximum amplitude at the filter output , and N is the 
code length, 

• PSL – the highest sidelobe power level relative to the main lobe: 

(7) PSL=
Power Mainlobe Total

Power SidelobePeak 
log  10 ,  

• ISL –the power distributed in all sidelobes and defined as: 

(8) ISL=
Power Mainlobe Total

 Sidelobesover  IntegratedPower  
log  10 . 

Binary sequences with a high Merit Factor are desirable objects, having 
application in telecommunication and information theory. However, they are also 
very difficult for construction, in particular, when a  sequence length increases. The 
Merit Factor metric was firstly proposed by Golay, as a way to measure sequences 
with low aperiodic autocorrelation sidelobes. The highest Merit Factor known as 
14:08 is satisfied by a binary Barker sequence of length 13. Barker sequences are 
binary sequences with aperiodic autocorrelation coefficients, ak∈{–1, 0.1},  k ≠ 0. 

• The Golay Merit Factor (MF) of a binary sequences of length N is given by 

(9)  MF = 
∑ −

=

1

1
2

2

||2
N

k ka

N ,  

(10)  ( ) ,1           ,1AACF
1

0

Nka
kN

i

kisis
k <≤−== ∑

−−

=

+−   

AACF − an Aperiodic AutoCorrelation Function. 

4. Experiment description  

The effectiveness of various types of complex communication signals is evaluated 
for their use in a contemporary radar system. The computational algorithm 
approximately computes the Peak Sidelobe Level and the Integral volume of 
Sidelobe Level of an ambiguity function when Doppler velocity is equal or not to 
zero. The ambiguity function for the Doppler velocity in the range of [0,−50] m/s 
will be identical. In the study we use the algorithm for partially minimization of the 
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volume of an ambiguity function. The effectiveness of the algorithm depends on 
such parameters of a complex communication signal as the number of pulses and 
the amplitude of pulses.  

The amplitudes of the communication signals are normalized in order to be 
compared in equal conditions. In order to carry out the experiment, the input data 
must be complex signals of type [−1 −1 −1 −1 −1 1 1 −1 −1 1 −1 1 −1]. 

The block diagram of the computational algorithm used in the study is given in 
Fig. 6. 
 

 
Fig. 6. Block-diagram of the computational algorithm 

Description of the experiment: The specialized program package, whose 
structure is presented in Fig. 6, is developed in Matlab environment. First this 
program package computes the PSL and the ISL of the autocorrelation function of 
the signals. Then it calculates the minimal volume of the ambiguity function and 
again calculates both PSL and ISL on the new area of the ambiguity function       
(Fig. 5a).   

The following activities are made according to the block scheme of the 
program package.  At the first stage, the ACF is computed according to the 
parameters of a signal and then normalized. In the case of a complementary signal 
two codes are input, their ACF are calculated and summed.  After that, the Merit 
factor and both PSL and ISL are computed by using (7, 8 and 9), and finally the 
numerical and graphical results are displayed. 

Fig. 7 demonstrates one type of a direct-sequence communication signal and 
its autocorrelation function. 

At the next stage, the algorithm performs partial minimization of the volume 
of an ambiguity function by using (5) and a new matrix is then normalized. In the 
case of complementary codes their new matrices are summed. Next, the PSL and 

Plot resulting pulse compression signal 
 

Compute ISL and PSL  

Minimize Volume of Ambiguity function and 
normalize. 

 If Signal complementary SUM their new 
minimize Ambiguity function 

 

Compute Merit Factor 

Compute ISL and PSL on New minimize 
Ambiguity function 

End and Plot New 
Ambiguity function. 

Input data to estimate 
signal  

Complex 
signals 

Compute Autocorrelation function and normalize 
result. 

 If Signal complementary SUM their 
Autocorrelation function 
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ISL of a new minimized matrix (i.e., a new ambiguity function) are calculated and 
the numerical and graphical results obtained are displayed. A new minimized 
ambiguity function is shown in Fig. 8. The main purpose of this study is to see 
which of these communication signals has the best PSL and ISL. 

 

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1
 Phase coded transmit waveform

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
 Resulting Pulse Compression

main lobe power

range sidelobes

 
    Fig. 7. Direct sequence communication signal                   Fig. 8. Graphic on a new minimized 
               and its autocorrelation function                                             ambiguity function 

4.1. Results obtained for different communication signal 

In the study different kinds of communication signals with different parameters of 
contemporary communications codes are divided in different groups. Our 
hypothesis, realized in this experiment is that all signals should be compared in 
equal conditions, which in practice means that different codes must be of equal or 
close length. For that reason we separated all codes under study in two groups: long 
and short. 

The group of short codes includes 11 and 30 chips. We investigated the most 
famous codes like: Barker (n = 11; n = 13); the complementary codes of Golay with 
n = 10; two new constructed complementary codes with n = 18 (our designed 
codes); Z-complementary codes with n from 13 to 26; Walsh-Chirp with n =16. The 
group of long codes includes 150 and 300 chips. The following codes are 
considered: IS-95A (128 chips) from Matlab; direct-sequence complementary code 
(n = 200) shown in Fig. 3 [15, 17]; IS-95A Walsh code with n = 320 from 
MATLAB.  

The values of PSL and ISL obtained for the ACF are presented in Table 5 – for 
short codes and in Table 6 − for long codes. The values of PSL and ISL obtained 
for the ambiguity function are presented in Table 7 – for short codes and in Table 8 
– for long codes.   

The results in Table 7 and Table 8 are obtained for the case when the Doppler 
frequency is different from zero and the partial minimization of the volume of an 
ambiguity function is performed. 
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Table 5 

No Short codes to ACF ASL PSL Merit Factor S(A) 

1  Barker, n=11 –10.8279 dB –20.8279 dB 12.1000 1 
2  Barker, n=13 –11.4871 dB –22.2789 dB 14.0833 1 

3  Complementary code – Golay,  
n=10, (CodeA4, CodeB4); Fig. 1 [15] –169.5459 dB –176.0241 dB – 1 

4  

A1=[1 j 1] B1=[1 1 –1] Golay,  
complementary code n=3 
Synthesize of two new  
complementary codes with n=18 [15] 

–169.0883 dB –177.3394 dB – 1 

5  Z-complementary sequences n=13 Fig. 4 –14.4974 dB –25.2892 dB – 1 
6  Z-complementary sequences n=15 Fig. 4 –13.9794 dB –21.7609 dB – 1 
7  Z-complementary sequences n=22 Fig. 4 –19.0669 dB –23.8382 dB – 1 
8  Z-complementary sequences n=26 Fig. 4 –170.6853 dB –178.1928 dB – 1 

9  Complementary code (A0, A1), n=16 from  
Table 2; [18] –15.0515 dB –21.0721 dB – 1 

10  Complementary code (B0, B1), n=16 from  
Table 2; [18] –15.0515 dB –21.0721 dB – 1 

11  Walsh-Chirp sequences, n=16 (1 from Table 4) –2.8767 dB –13.2906 dB 1.9394 1 
12  Walsh-Chirp sequences, n=16 (2 from Table 4) –3.0103 dB –13.2906 dB 2 1 
13  Walsh-Chirp sequences, n=16 (3 from Table 4) –3.9121 dB –15.0515 dB 2.4615 1 

 
 
      Table 6 

№ Long codes to ACF ASL PSL Merit Factor S(A) 

 IS-95A (128 chips extract), MATLAB  –13.2802 dB –32.2728 dB – 1 

1 Complementary code, n=200, synthesize; 
Fig. 3 [15] –173.5253 dB –190.6529 dB – 1 

2 IS-95A Walsh Code, n=320, MATLAB  –10.9206 dB –26.9224 dB 12.3612 1 
 
 

     Table 7 
No Short  codes to MAF ASL PSL S(A) Volume 

1  Barker, n=11 −12.4832 dB −25.1462 dB 1 t/2; f/2 
2  Barker, n=13 −12.4716 dB −26.5362 dB 1 t/2; f/2 

3  Complementary code – Golay,  n=10  
(Code A4, Code B4); Fig. 2 [15] −19.5044 dB −30.3786 dB 1 t/2; f/2 

4  

A1 =[1 j 1] B1=[1 1 −1]    
Golay Complementary code, n=3 
Synthesize of two new complementary codes  
with n=18  [15] 

−23.3011 dB −35.2902 dB 1 t/2; f/2 

5  Z-complementary sequences, N=13, Fig. 4 −22.0817 dB −32.5568 dB 1 t/2; f/2 

6  Z-complementary sequences, N=15, Fig. 4 −23.2595 dB −33.7550 dB 1 t/2; f/2 

7  Z-complementary sequences, N=22, Fig. 4 −24.0284 dB −36.9892 dB 1 t/2; f/2 

8  Z-complementary sequences, N=26, Fig. 4 −23.4602 dB −38.4098 dB 1 t/2; f/2 

9  Complementary code (A0, A1), L=16  
from Table 2;[18] −23.1129 dB −34.2974 dB 1 t/2; f/2 

10  Complementary code(B0, B1), L=16 
from Table 2; [18] −23.1129 dB −34.2974 dB 1 t/2; f/2 

11  Walsh-Chirp Sequences, n=16 (1 from Table 4) −12.4636 dB −26.5812 dB 1 t/2; f/2 

12  Walsh-Chirp Sequences, n=16 (2 from Table 4) −12.8136 dB −26.5812 dB 1 t/2; f/2 
13  Walsh-Chirp Sequences, n=16 (3 from Table 4) −13.4391 dB −28.2768 dB 1 t/2; f/2 

 



 88

          Table 8 
No Long  codes to MAF ASL PSL S(A) Volume 

 IS-95A (128 chips extract), MATLAB −28.2769 dB −52.1211 dB 1 t/2; f/2 

14  Complementary code (n=200)  
synthesize; Fig. 3 [15] −24.1118 dB −49.9647 dB 1 t/2; f/2 

15  IS-95A Walsh Code n=320, MATLAB −25.2661 dB −53.8447 dB 1 t/2; f/2 
 

The experimental results given in Table 4 show that the constructed 
complementary signals with 18 chips and the Z-complementary signals composed 
of 26 chips have the lowest sidelobe level of the ACF, but the constructed 
complementary code is shorter than the Z-complementary code, and for this reason 
it is the best code. Similar results, obtained for the Minimized Ambiguity Function 
(MAF) of short signals, are shown in Table 7. As expected, the constructed 
complementary codes have the lowest sidelobe level of the ACF and the MAF, 
which decreases with increase of the code length. The other interesting result is that 
the short complementary codes have better characteristics (ACF, MAF) compared 
with some well-known very long communication codes. It can be concluded by 
analyzing the characteristics (ACF, MAF) of two different short and long  
(Z-complementary n = 26; IS-95A Walsh code n = 320, MATLAB) codes. It can be 
seen that the Z-complementary codes with n = 26 have better quality parameters 
(PSL and ISL) of ACF compared with the ones of the long code sequence IS-95A 
Walsh code with n = 320.  
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Fig. 9. Autocorrelation function of two difference pair of codes 

 
On Figs. 10 and 11 the minimized ambiguity functions of the following codes 

are presented: two new constructed complementary codes with n = 18 and a Walsh 
code n = 16. The comparison analysis of the results presented in Figs. 10 and 11 
shows that the Walsh codes have the highest side lobes of ACF and MAF. 
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5. Conclusion  

The study performed for different communication signals enables us conclude that:  
• The Barker code with 13 chips is used as a reference signal in order to test 

the developed algorithm and its program version. The numerical results obtained for 
the ACF are:  Average Sidelobes Level − 11.4871 dB, Peak Sidelobe Level − 
22.2789 dB, Merit factor − 14.0833. These results are published earlier in the 
literature.  

• During the experiment, all codes under test are divided into two groups: 
short and long. This means that all tested signals must be codes of the same or close 
length, i.e., all tested signals must be analyzed under equal conditions. 

• The analysis shows that each group of signals contains such codes, ACF 
and MAF, which have much better parameters compared to the other codes.  

• According to theory the code characteristics are improved with increase of 
the code length, but the comparison analysis of known long codes and shorter 
complementary code couple shows that the characteristics of the sum of ACF and 
MAF of the complementary code couple are better.  
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