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Abstract: Physical and mathematical examples show that the increase of 
effectiveness of a system performance might lead to instability of operation. The 
question whether the development of Information and Communication Technologies 
(ICT) can lead to instability of economic systems will be examined. The final 
conclusion is yes, we cannot exclude that unlimited development of Information 
Technologies (IT) and telecommunication might induce structural instability. 
Slowing down technological development is out of question, other economic means 
could be applied, that add artificial friction to the systems in order to reserve 
stability. A potential instrument might be the application of transactional taxes. 
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1. The role of information technology  
and telecommunication in the economy 

Information Technologies (IT) is one of the most important factors of the operation 
and development of the contemporary economy. One can hardly find an area in 
manufacturing, service, finance, or any other business, where stopping all 
Information and Communication Technologies (ICT) operations by switching off 
the network will not disrupt all activities immediately.  

Development of ICT provided the basis for new business models that could 
not be even dreamed of in business forecasts 15-20 years ago. New businesses were 
created in hardware, software and telecommunication industry, but even more 
important are the businesses based on fast communication and IT services, e.g.  
e-Commerce, e-Government. 
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Amazon, eBay, Skype, Google established new business, communication and 
marketing models, built on contemporary ICT technologies. These businesses could 
not be established even half a decade before their launch. They are built on 
personalized customer service of tens of millions of people and very simple and 
user-friendly communication with the customers. They also focus on the full 
exploitation of the marketing and sales potential of the latest ICT technology.  

The significant role of ICT in the economy, society and private life has been 
dealt with in a vast amount of studies; it is not our goal to add just one more 
analysis.  Instead, we shall analyze the question how the development of ICT 
possibly affects the stability of economic systems. We shall demonstrate that ICT 
can destabilize the system and in order to regain stability it is recommended to 
throw some sand onto the gears in form of some transactional taxation.  

The following example from the era of industrial revolution will demonstrate 
that development of the engineering technology in some cases might lead to 
instability. 

2. A classic case – Watt’s centrifugal governor 
The centrifugal (flyball) governor for stem engines was designed and employed by 
James Watt in 1788 to regulate the speed of stem engines. He used the idea of a 
flyball governor previously applied for windmills. The governor became the icon of 
the process control since then. [10, 14, 3]. The role of the governor was the 
regulation of the speed of the stem engine at changing load. The governor is a 
mechanical device that automatically controls the throttle that allows more or less 
steam to the engine cylinder depending on the external load.  When an increase in 
external load slows down the rotation of the engine, the device opens the throttle 
and more steam is allowed to the engine and the process is stabilized in a relatively 
short time [14]. 

Tens of thousands of governors employed in a great number of steam engines 
performed flawlessly almost a hundred years.  However, after the fifties of the 19th 
century the regulators in general became unreliable, they started to oscillate or 
showed a chaotic behavior, they did not regulate the engines any more.  Engineers 
started to find out what happened, and the problem was solved by M a x w e l l [7] in 
1867 and V i s h n e g r a d s k y [17] in 1876. Vishnegradsky examined the stability 
of the regulator’s stable states using a system of differential equations, a dynamic 
model of the regulator’s movement. According to Vishnegradsky (see [10]) the 
sufficient condition of the stability of the equilibrium speed of the dynamic system 
is 

(1)  ,1**
>=

m
vbIs  

where I is the moment of inertia of the flywheel, b – friction of the regulator,  
m – mass of the regulator’s balls, v – inhomogeneity of the system (a derivative of 
the angular velocity of the engine’s flywheel divided by the load).  

In the second half of the 19th century the perfection of the manufacturing 
technology resulted in decrease of the friction. Several applications of the steam 
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engines required higher performance and speed and also faster feedback reaction. 
Those requirements were met by decreasing the flywheel mass and increasing the 
regulator balls mass. According to the Vishnegradsky condition (1), all three factors 
act against stability. It is quite interesting that the increase of the speed of a negative 
feedback is one of the destabilizing factors. After Vishnegradsky’s explanation 
engineers increased the friction, increased the inhomogeneity and slowed down the 
feedback process, and restored stability. It was necessary to throw sand on the 
gears.  

3. Stability 

So far we have used the concept of instability without any exact definition. Now we 
shall give a semi-intuitive definition of stability of dynamical systems without 
mathematical precision. The stability concept is used in connection with dynamical 
systems in two different cases:  

1) stability of an equilibrium state of the system, 
2) structural stability of the system itself. 
Further on we shall use discrete iterative models instead of differential 

equations, as they are sufficient to demonstrate all stability phenomena in question 
[4]. 

The trajectory of the k-dimensional vector  x0  in a multidimensional space is 
defined by the iteration  xn=f(xn–1), ∞= ...,,1n , where xn is a k-dimensional vector. 
We shall restrict our analysis to one-dimensional spaces, in fact most stability 
problems can be studied on one-dimensional iterations. 

Notations: 
(1)  the point  x*  is a fixed point of the mapping  f(x) if  f(xn)=x*  for all n ≥ 0; 
(2) a fixed point x* is called attracting, if there exists a domain R, where 
Rx ∈*  such that for any point Rx ∈0  *)(lim xxf nn

=
∞→

; 

(3)  attracting fixed points of an iteration are stable if the mapping is Ljapunov-
stable, i.e., the trajectory of the point stays near the equilibrium point.  

If an attracting fixed point is not stable, the behaviour of the dynamical system 
might be very complex. In some cases there exists a neighbourhood of the fixed 
point that all trajectories starting from this neighborhood diverge (a rejecting fixed 
point). In other cases there exist periodic trajectories, or e.g. the points of a Cantor 
set in the neighborhood of the fixed point converge to the fixed point, but all the 
other points diverge under the iteration. 

Structural stability is a property of dynamical systems, not the equilibrium 
points. Here we restrict ourselves to an intuitive description rather than 
mathematical definition. For an exact definition see [4]. 

A dynamical system is structurally stable in a given domain if all systems, 
sufficiently close to it possess similar dynamical properties. The distance between 
two systems is defined by the distance of the iterative mappings and their 
derivatives. Dynamical similarity means that fix points in one system match fixed 
points in the other system, periodic points match periodic points with the same 



 6

periods. Closeness means topological conjugacy, or more explicitly, structural 
stability means that small perturbations do not change qualitatively the trajectory of 
the system. 

As we have seen, the stability criterion for Watt’s governor was defined by 
Vishnegradsky, using the Ljapunov stability theory [10] which he applied to the 
system of differential equations that described the motion of the governor. 

We did not produce similar stability conditions for economic systems, we 
investigate the stability of equilibrium points of economic systems defined by 
classical economic theories instead. The equilibrium points are fixed points of 
dynamical economical systems and structural stability of those systems is of 
economical interest. We shall demonstrate the possibility of appearance of 
structural instability or, more precisely of lack of stability. We also shortly discuss 
the problem how to restore stability. 

4. Fixed points and equilibrium in economy 

In the 1870-ies Leon Walras published his famous work on the theory of general 
equilibrium, one of the most important works of neoclassical economy. The theory 
analyses the fixed points of economy and how to reach the equilibrium. The 
economy is without doubt a dynamical system and Walras’ theory in fact is the 
analysis of the behaviour of a dynamical system. Walras himself declared that 
neither the existence of the equilibrium, nor stability, nor uniqueness are not 
guaranteed in his theory. The general equilibrium theory was redefined and 
redeveloped in the 1950-ies (A r r o w, D e b r e u [1]; D e b r e u [2]). In the 
contemporary models – if a few conditions are satisfied – the existence of 
equilibrium states can be proved, however uniqueness of the equilibrium states is 
not common. 

It is well known, that equilibrium or the attempt to reach equilibrium are not 
absolute values or ultimate objectives in economy [6], but a great number of 
descriptive or decision models are based on the equilibrium situations or fixed 
development trajectories, which is mathematically similar to the fixed points. 
Equilibrium situations are predictable and computable, and planners like 
predictability and computability. 

Stability of equilibrium states is a practical problem of great importance in 
everyday economy, the question is whether the system returns to the original 
equilibrium after perturbations (and we could see quite serious perturbations in the 
past few years) and if yes, how fast the system returns to the original status. 
Another problem is that if a perturbation occurs, the systems might „switch” to 
another attractive fixed point, leave the attractive neigbourhood of the original 
equilibrium and enter the attractive neigborhood of another one. The new 
equilibrium might be quite different from the old one. 

In the following we shall demonstrate that the stability analysis might provide 
complex results even in simple models. 

The simplest equilibrium model is that of the Marshall crest, which illustrates 
the demand and supply function. The independent variable is the price of the 
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product. To make our example extremely simple, we suppose linear demand and 
supply functions (Fig. 1). 

           P           D(P)         S(P) 
       P* 
 
 
 
 
        D, S 
 

Fig. 1. Marshall crest 

On Fig. 1 P is the price of the product, D(P) and S(P) are the demand and 
supply functions respectively. 

It is well known, that the condition for arriving to the equilibrium P* is: 

(2) 
dP
dS <

dP
dD . 

If we suppose a very simple iteration (Fig. 2) it is intuitively obvious, that the 
equilibrium point is attractive, there exists an interval ( )εε +− ∗∗ PP ,  where the 
points iterate to the fixed point (Fig. 2a) 

In Fig. 2a condition (2) is satisfied at point P*. If one starts the iteration with a 
possible supply value, which also defines a given price, and jumps to the demand 
with the same value, the demand will result in a higher price. This higher price will 
be associated with a higher supply and if one continues the iteration, one gets closer 
and closer to the equilibrium. In this case the equilibrium is an attractive fixed 
point. As far as we applied linear supply and demand functions, the attractive 
domain of the fixed point is the whole positive quadrant. 

In Fig 2b at point P* the two derivatives are equal. If one starts from any 
supply value one gets a cycle, and the equilibrium point is not attractive. 

In Fig. 2c at point P* the opposite to the relation (2) is valid and the process is 
obviously divergent. 

The above examples are illustrations only, the limitations of the model are 
straightforward. We wanted to demonstrate that in everyday business practice the 
equilibrium is reached as a result of a sequence of decisions. (Walras described the 
„tatonnement” process of reaching the equilibrium, which is in fact an iterative 
process). 

For example, if a new product is marketed (a new mobile phone, a DVD 
player, flat-TV) it usually starts with a high price, and the prices are stabilized on a 
lower level after an iterative process, i.e., after some iterations the consumers will 
pay the same price for a long period of time for the products, representing the same 
relative category. (With the assumption that the players can provide the validity of 
the relation (2)). If not, the product will disappear (e.g., HD TV technology.) 
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Fig. 2. An attractive fixed point (a), a periodic cycle (b), a repelling fixed point (c) 

It is important to find out more about the real properties of the above iteration, 
how different players act in practice and construct a plausible model. It is a complex 
question, a great number of factors beyond economical rationality should be 
considered like psychology of consumers, social issues, etc. Now we are not aimed 
at modeling of the practical process, but the description of the dynamic phenomena, 
we shall use the widely applied logistic model for the description of the dynamics.  
Logistic models are used in mathematical biology and ecology with success and 
also for description of economic systems [16]. 

Let F(P)=S(P) − D(P), where P is the price of the product, S(P) denotes the 
supply, D(P) the demand at price P. According to the logistic model the change of 
F(P) is proportional to F(P) and the difference between F(P) and a fixed limiting 
value. One can interpret the model in a way, that the change in the difference 
between demand and supply depends on the difference itself, and the growth of 
difference is limited from above by the limit L. 
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Formally, the differential equation (3) gives the description of the above 
model: 

(3) )),()(( PFLPF
dP
dF

−∗= λ  

where  λ>1. 
As one can see, the equation (3) is consistent with condition (2), i.e., if 

F(P)=L, we have a cycle, if F(P)<L, the process is convergent, and, if F(P)>L, it is 
divergent. 

Further on we shall describe the dynamic phenomena occuring in the process 
of approaching the equilibrium. The differential equation (3) will be replaced by the 
equivalent discrete model (4) which provides a relatively easy tool for studying the 
dynamical behaviour. Anyway, the sequence of an economic decision is a discrete 
process. 

(4) ),1(1 nnn FFF −∗=+ λ  

where λ > 1. 
The iteration (4) is analyzed in the domain  [0, 1] as outside this domain the 

process is divergent for any λ > 1. 
The points of the domain [0, 1] will move on various trajectories. (Trajectory 

of point P0 is the infinite sequence of points P0, F(P0), F(F(P0)), …) 
The properties of a trajectory are defined by the value of λ. A detailed 

mathematical explanation is given in [4], we present only the most important results 
for our purposes. 

If 1< λ < 3, the iteration has an attractive fixed point ( ) λλ /1−  and a repelling 
fixed point 0 for any initial value from the domain [0, 1]. If we continuously 
increase the λ value from 3 up to 4, instead of one fixed point, more and more 
periodic points will appear. The phenomenon is called the Hopf bifurcation, and the 
sequence of the periodicities is given by Sarkovsky’s theorem [8].  

It must be noted that the number of periodic points – if there exists an iteration 
where the period is not the power of 2 – is infinite. If λ > 4, the set of points, whose 
trajectories remain in the domain (0, 1) is a Cantor set. Practically this means, that 
in the infitesimally small neigbourhood of any point, whose trajectory remains in 
the domain (0, 1) there exists another point, whose trajectory diverges to the 
infinity. Without presenting the exact definition of chaotic dynamics, it should be 
mentioned that the iteration at λ > 4 is chaotic.  

One can see that for small λ values the system’s behaviour is predictable, 
while for larger λ values oscillations and chaos will appear. Even a very small 
change in λ can change dramatically the system’s behaviour. The Hopf bifurcation 
doubles or multiplies the number of periodic points, one can observe a typical 
example of structural instability. 

In decision making the processes λ can be interpreted as efficiency of the 
system, the greater λ value the model assigns, the greater weight to the actual status 
of the system and the gap between the actual status and the limiting value. Here we 

)1(1 nnn FFF −∗=+ λ
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again identified a situation (in a very simplified model construction) where growth 
of effectiveness results in destabilization of the system. The similarity with Watt’s 
governor is obvious. It can be proved that the stability condition is λ < 3.  

We have demonstrated with a simple model that if we apply a simple iterative 
process, it is impossible to get into the equilibrium point, if the process is very 
effective. The behaviour of the system will be incomputable. 

Further on we return to analysis of the impact of ICT on economy. It will be 
shown that ICT, as a driver of increasing efficiency might have a destabilizing 
effect. 

5. Role of ICT in economic decisions 

The economic development of a small or large business, or of a country, or of the 
global world economy depends on human decisions. The various branches of 
decision theory provide a throughout description of the role of economic rationality, 
human psychology, social factors in decision making. We shall analyze the relation 
of rational decisions and ICT. 

The following conclusions are “soft” in a sense that no mathematical proofs 
will be provided. 

In the fifties of the 20th century Herbert Simon [13] demonstrated the thesis of 
limited rationality, saying that rationality in decision making and optimization have 
their limits. The “rational man” has boundaries. Boundaries are of different types, 
e.g., information used by the decision maker is not complete or not correct, 
outdated, or, the man who tries to be rational doesn’t possess adequate tools for 
processing great amount of information and make optimal decision, it is not always 
possible to identify unambiguous and computable optimality criteria. The rational 
decision making is in most cases bounded by cognitive and social factors. 

Simon’s theory of bounded rationality however, became the part of economic 
research only in the last twenty years when mathematical models were constructed 
to describe the decision systems with bounded rationality for finding satisfactory (in 
opposite to optimal), economic solutions. 

In the following we focus on the case of bounded rationality when the most 
important boundaries are capturing, storing and processing relevant information. 
R u b i n s t e i n [11] set up a few formal models to describe decisions made with 
bounded information capture, storage, communication and processing. These 
models show, that with the decrease of the costs of information gathering, 
processing, etc., the decisions are more and more effective. One can observe, that 
using Rubinstein’s models it can be formally proved, that if one sets aside the 
psychological and social aspects, which were emphasized by Simon, the fast 
development of ICT – where development means less cost, higher speed, easy 
access of the services and applications – increases the effectiveness of the economic 
decisions. 

In the following part we shall analyze how these stability issues appear in 
practice. 
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6. Stability of economic systems, is it necessary to throw sand in the 
gears? 

Local and global “crisis” phenomena are in fact unstable behaviour of the system. 
In the time of a crisis the systems show typical properties of structural instability, 
while in a “normal” status of the system one can expect, that small changes in the 
decisions or regulations result in small, predictable changes of the system’s 
behaviour, in the status of structural instability even a small change in the input, 
e.g., additional information might result in significant oscillations. 

The fact that crises usually do not end with a full collapse of the economy is 
due to the fact, that the communities of countries apply anti-crisis measurements, 
which are beyond the boundaries of usual economy (intervention of central 
monetary banks, IMF, government help to the banks, etc.) 

The fast development of information technology and telecommunication might 
lead to instability, as development of manufacturing technology resulted in the 
instability of the Watt’s regulator. 

In the past decades one could witness the intensive commerce of complex 
financial package-products, adding its share to the outburst of the global crisis. 
Those products were so complex, that their exact components and risks were known 
and “understood” only by the computers. The complexity and speed of the 
processes excluded the human decision as a limiting factor. The consequence was 
the unpredictability of the systems’s behaviour.  

There is no question that the development of ICT will not be hindered at all by 
the fear of a possible instability. The stability issue should not be addressed by 
slowing down the technological development.  

The idea of implementing feedback control systems to preserve stability is not 
new. E.g., K e y n e s [5] in 1936 suggested to launch a new federal taxation of the 
stock exchange transactions in order to break down the speculative trade on Wall 
Street. T o b i n [15] in 1978 suggested the idea of international taxation of the 
currency exchange transactions to prevent the destabilization of the international 
financial system. P a l l e y [9] demonstrated on a microeconomic model, that the 
Tobin tax will provide a comparative advantage for the fundamental investors, who 
prefer stable economy over speculative noise traders, who are interested in 
instability. The various taxes will reduce the effectiveness of the trading, and in fact 
they will contribute to the preservation of the stability. 

7. Conclusions 

The case of Watt’s governor demonstrates that the increase in effectiveness might 
lead to instability. We have also demonstrated on a simple model, that a generally 
accepted iteration method leading to the equilibrium point, if it is effective, might 
destabilize the system. Information technology and telecommunication are 
generally used in decision making as tools to increase effectiveness, and thus can 
lead to destabilization of the economic systems. The simplest method of preserving 
stability is the application of taxes, which in turn reduces effectiveness.  
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The question “how much sand should be thrown in the gears” could be 
answered only by further research. Several publications aim at the determination of 
the optimal volume the Tobin tax (e.g., [12]) in special cases, but for general results 
more exact dynamical models should be built and analyzed. 
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