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Abstract: A different technique of CFAR detectors procedure for moving target 
detection in noise environment conditions with a Poisson distributed flow and 
Raleigh amplitude distribution is proposed in this paper . The expressions of the 
detection and false alarm probability are derived for a highly fluctuating Swerling 
II target. A comparative analysis of the performance of different radar detectors 
structures keeping constant false alarm rates is done. These are a CA CFAR (Cell 
Averaging Constant False Alarm Rate), an EXC CFAR (EXCision Constant False 
Alarm Rate), a CFAR BI (Constant False Alarm Rate with Binary Integration), an 
EXC CFAR BI (EXCision Constant False Alarm Rate with Binary Integration) and 
an API CFAR (Adaptive censoring Post detection Integration Constant False Alarm 
Rate). A method for losses estimation, which allows choosing of optimal detector 
parameters, is developed. The estimates are obtained of the effectiveness of CFAR 
detectors in noise environment conditions and they are compared to patterns, 
investigated by other authors. The results achieved can be successfully applied for 
radar target detection and in the existing communication network receivers, that 
use pulse signals.  

Keywords: Radar detector, CFAR detector, noise environment, randomly arriving 
impulse interference, probability of detection, probability of false alarm, 
detectability profits (losses).    

1. Introduction  

Modern radio-systems function in complex electromagnetic environment, under 
conditions of created artificial and natural interference with unknown or variable 
parameters. That is usually mutual interference, from adjacent radio-electronic 
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devices, as a rule powerful and appearing casually, i.e., having noise environment 
characteristics with large intensity. This concerns especially signals from similar 
radars for air traffic control. Randomly Arriving Impulse Interference (RAII), in 
such cases, is received not only at the basic radar antenna channel, but also at the 
sidelobe and the backlobe diagram of the antenna, and receiving is possible not only 
at the basic frequency channel.  

Signal detection in noisy or clutter environments is a very important part of 
target detection procedure. In theory the noise and clutter background will be 
described by a statistical model with e.g. Rayleigh, or exponentially distributed 
random variables of known average noise power. But in practical applications this 
average noise or clutter power is absolutely unknown and some statistical 
parameters can additionally vary over range, time and azimuth. In automatic radar 
detection, the signal received is sampled in range and frequency. Each sample is 
placed in an array of range and Doppler resolution cells. The clutter background in 
the cell under test is estimated by averaging the outputs of the nearby resolution 
cells (range and/or Doppler). The target detection is declared, if the signal value 
exceeds a preliminary determined threshold. Current estimating of the noise level in 
the reference window forms the threshold. The detection threshold is obtained by 
scaling the noise level estimate with a constant Tα to achieve a desired probability 
of false alarm PFA.  

As an estimate of the noise level, the estimate proposed by F i n n and 
J o h n s o n in [1] is quite often used. Averaging the outputs of the reference cells 
surrounding the test cell forms this estimate. Thus a constant false alarm rate is 
maintained in the process of detection. This is the conventional Cell Averaging 
Constant False Alarm Rate (CA CFAR) detector, proposed by F i n n and 
J o h n s o n in [1]. These CA CFAR processors are very effective in case of 
stationary and homogeneous interference and are effective almost as the ideal 
Neyman-Pearson detector, when the number of reference cells becomes very large. 
The presence of strong randomly arriving impulse interference in both, the test 
resolution cell and the reference cells, can cause drastic degradation in the 
performance of CA CFAR processor. Such type of interference is non-stationary 
and non-homogenous and is often caused by adjacent radar or other radio-electronic 
devices. In a non-homogenous environment, the detection performance and the 
false alarm regulation properties of CA CFAR detector may be seriously degraded. 

During the last few years a lot of different approaches have been proposed to 
improve the detectability of CFAR detectors operating in random impulse noise  
[2-9]. One way for keeping constant false alarm rate under these conditions is the 
using of the  excision CFAR detector presented in papers [11, 12], but it is not 
effective enough. More effective for the stabilization of false alarm is the 
implementation of  Post-detection Integration (PI), and Binary Integration (BI) in 
CFAR signal processors, studied and analyzed in papers [5, 9]. Most effective is the 
Adaptive Post-detection Integrator CFAR (API CFAR) signal processor with 
adaptive selection on impulse noise in reference and in test windows and a post-
detection integration procedure [5, 13]. 
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The noise in test cells is a Rayleigh envelope distributed and target returns are 
fluctuating according to Swerling II model in [2-4]. Impulse noise exists only in the 
test window in [5], the average repetition frequency of pulse jamming in this case is 
determined by the number of pulses in a window. In references [7-10, 12] the 
authors assume that the samples of the total interference are distributed according to 
the compound exponential law, where the weighting coefficients are the 
probabilities of corrupting and non-corrupting of the samples. These probabilities 
for appearing of the impulse noise with average length in the cells of range depend 
on the multiplication of the average repetition frequency of impulse noise and the 
noise length. 

In such situations it would be desirable to know the CFAR losses depending 
on the parameters of the impulse noise, for rating the behavior of the radar. There 
are two approaches for calculation of CFAR losses, offered by Rohling and Kassam 
in [2, 14]. The conventional method is to compute the additional SNR needed for 
CFAR processing scheme beyond that for the optimum processor, to achieve a fixed 
detection probability (e.g., 0.5), used in [5, 7-10, 12]. For a particular CFAR 
scheme the loss obviously varies with the detection probability. Alternatively, the 
authors in [2, 14] use another criterion, related to this one based on the Average 
Decision Threshold (ADT), since the threshold and the detection probability are 
closely related to one another. Then the difference between two CFAR systems in a 
homogeneous clutter situation is expressed by the ratio between the two ADT’s 
measured in dB in [2, 14]. 

Such estimations and loss analysis are not described in [4, 5, 7]. On the other 
hand, in [8, 9, 12] the losses are estimated, but for a different value for the 
probability of detection 0.9755 and the results are compared with the same CFAR 
scheme in the situation without impulse noise. Similar investigation is presented in 
[2] and the results, which are achieved for CFAR processors, are equal to those 
presented in [2] for the case without impulse noise. Using the ADT approach and 
the Moment Generating Function (MGF) for modeling of the impulse noise is 
presented in [2]. The losses of CFAR detectors are calculated for different values of 
false alarm probability, for a different number of observations in the reference 
window, an average Interference-to-Noise Ratio (INR) and probabilities for 
appearance of impulse noise with average length in the cells in range. 

The detection performance of CFAR processors is proposed by H o u in [2] for 
the case of homogeneous environment and chi-square family of fluctuating target 
models (Swerling I, II, III, and IV). In this paper the study is presented of the 
situation for a highly fluctuating target − Swerling II type target model detection 
under intensive noise environment conditions. 

A comparative analysis of the performance of different types of CFAR 
detectors is carried out. This structure gives the possibility for keeping a constant 
false alarm rate in the presence of random arriving impulse interference. In this 
study one very interesting case is considered − the limit, when increasing the 
probability of the appearance changes the distribution law from Poisson to 
binominal. The binominal model is more general than Poisson distribution model 
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[3]. The change of the distribution law and the parameters of RAII leads to 
worsened detection process.  

The research work is performed in MATLAB computational environment. 

2. Signal model 

Using the approach proposed in [1], new results are obtained for Swerling II type 
target detection model of performance in noise environment (Randomly Arriving 
Impulse Interference – RAII). The signal in the reference window is assumed to be 
with Poisson distribution and has the following Probability Density Function (PDF) 
[4]: 
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where s is the per pulse average Signal-to-Noise Ratio (SNR), λ0 is the average 
power of the receiver noise, rj is the average INR, e0 is the probability of 
appearance of RAII. 

Under conditions of binomial distribution of pulse interference, the probability 
of interference-plus-noise occurrence in the background environment is ( )00 12 ee − . 

The probability of appearance of two interferences in a single cell is 2
0e  and having 

only noise probability is ( )2

01 e− , where Fte c0 11 −−= , F is the average repetition 
frequency of pulse interference and tc is the length of pulse transmission [4].  

The distribution is binomial when the probability of pulse interference is above 
0.1 [4]. In these situations the outputs of the reference window are observations 
from statistically independent exponential random variables. Consequently, the 
PDF of the reference window outputs may be defined by: 
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where λ0 is the average power of the receiver noise and rj /λ0 is the per pulse 
average INR. 

In the  next two figures, according to paper [15], comparative simulation 
examples are shown for Poisson and for binomial distributions of pulse 
interference, with signal and noise parameter values − s = 70 dB, 10 =λ , rj = 30 dB, 
e0 = 0.1.     
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Fig. 1. Example of Poisson distribution of pulse interference 

 

 
Fig. 2. Example of binominal distribution of pulse interference 

3. CFAR processors statistical analisys  

In the modern radars system, keeping constant false alarm rates, the target is 
detected according to the following algorithm [1]: 
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where 1H  is the hypothesis that the test resolution cell contains the echoes from the 
target and 0H  is the hypothesis that the test resolution cell contains the randomly 
arriving impulse interference only, V is the noise level estimation. The constant αT  
is a scale coefficient, which is determined in order to maintain a given constant 
false alarm rate.  

The different CFAR structures make use of different algorithms for noise level 
estimation – V [5-14]. In this paper several types of signal processors are analyzed − 
a CA (Cell Averaging), an EXC (EXCision), a BI (Binary Integration), an EXC BI 
(EXCision with Binary Integration) and an API (Adaptive censoring Post detection 
Integration). On Fig. 3 one example is presented of the adaptive threshold 
procedure for one-dimensional CFAR processor in conditions of randomly arriving 
impulse interferences [15].  

The general structure of an adaptive CFAR processor is shown on Fig. 4.  

 
Fig. 3. Adaptive threshold procedure for one-dimensional CFAR processor 

 
 
         
 
 
 
 
 
    
 
 
 
 

Fig. 4. General structure of an adaptive CFAR processor 
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Let us assume that L pulses hit the target, which is modeled according to 
Swerling II case. The signal received is sampled in range by using  N +1 resolution 
cells resulting in a matrix with  N+1 rows and  L columns. Each column of the data 
matrix consists of the values of the signal obtained for L  pulse intervals in one 
range resolution cell. Let us also assume that the first  N/2 and the last  N/2 rows of 
the data matrix are used as a reference window in order to estimate the “noise-plus-
interference” level in the radar test resolution cell. In this case the samples of the 
reference cells result in a matrix X of size Ν ×Λ. The test cell or the radar target 
image includes the elements of the  N/2+1 row of the data matrix and is a vector Z 
of length L. 

The probability of detection for a CA CFAR processor for target of case 
Swerling II, according to [8] is 
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where CAT  is the threshold constant for CA CFAR processor.  

The probability of detection for CFAR BI signal processor in this noise 
situation [9] is 
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where BIT  is the threshold constant for CFAR BI processor. 
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For comparison on the next two figures, the outputs of CA CFAR and CFAR 
BI detectors are presented.  

 
Fig. 5. Example of a CA CFAR output detector 

The probability of detection for an EXC CFAR processor for target model 
Swerling II, according to [6] is 
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where ( ).VM  is the Moment Generating Function (MGF) and EXCT  is a 
predetermined scale factor for EXC CFAR processor. 

 
 

Fig. 6. Example of a CFAR BI output detector 
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The MGF of the noise level estimate V, may be obtained as 
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where ( )0EXC ,,, λjrsTfU =  and the probability that a sample ix  survives at the 
excision output is calculated as 
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The function ( )kUMV ,  is the conditional MGF of the estimate V where k is 
the number of samples survived at the excision output. 

The probability of pulse train detection for EXC CFAR BI processors is 
evaluated in such noise situation as in [7, 11] by 
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where M is binary decision rule, 
EXCDP  is the probability of pulse detection, which 

may be found using the expressions for EXC CFAR processor with Poisson impulse 
noise.  

In this one very effective CFAR detector case paper is considered, when both 
the two-dimensional reference window and the test cells are corrupted by randomly 
arriving impulse interference, whose average repetition frequency and magnitude 
are unknown, [13]. The censoring procedure given in [4, 5], in order to remove the 
unwanted samples from both the reference window and the test cell before forming 
the adaptive threshold and the test statistic, is used. In this case the numbers of the 
integrated samples in the test cell and also in the reference window are random 
variables with binomial distribution. According to the censoring algorithm all the 
elements with high intensity of signal are removed from the reference window and 
the test resolution cell. The censoring algorithm consists of the following stages: 

Stage 1. The elements of the reference window ( )Nxxxx ,...,, 21=
r  and the test 

resolution cell ( )Lzzzz ,...,, 21=
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After the stop of the recursive procedure, it is assumed that most or all of the 
randomly arriving impulse interferences are in the second part of the reference 
window and the test resolution cell. In this paper is proposed the more general 
expression for the probability of target detection in the presence of Poisson 
distribution noise environment conditions may be calculated as in [13]:  
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where APIT  is a predetermined scale factor for API CFAR processor that provides a 
constant false alarm rate (PFA). 

The probability of false alarm for the CFAR processors with target model case 
Swerling II in randomly arriving impulse interference is obtained for value of 
signal-to-noise ratio s = 0. 

For comparison and calculation of CFAR detector losses the ratios are used 
between two values of SNR for different CFAR processors, measured in dB. This 
approach is considered in [14]: 
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4. Numerical results 

It is proved in this paper that different CFAR processors used for signal detection 
on the homogeneous background of unknown intensity and in the presence of 
randomly arriving impulse interference with known parameters, improve the 
detection performance. In such CFAR processors it is usually assumed that the 
noise amplitude is a Rayleigh distributed variable and the power, therefore, is an 
exponentially distributed variable. The numerical results presented are obtained 
after detailed simulational analysis of CFAR detectors performance under noise 
environment conditions. The analysis of the performance of different structures of 
one-dimensional and two-dimensional CFAR signal processors – CA CFAR (cell 
average), EXC CFAR (excision), CFAR BI (binary integration), EXC CFAR BI 
(excision and binary integration) and API CFAR (adaptive post integration) is done.  
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The achieved results for CA CFAR detector threshold analysis with three 
values of the probability of false alarm (PFA), for two values of number of 
observations in the reference window (N), for two values of average interference-to-
noise ratio (INR) and for five different values for a probability of appearance of 
impulse interference with average length in the cells in range are presented in  
Table 1. 

Table 1 

N = 16 N = 32 
e0 PFA INR=10, dB INR=30, dB INR=10, dB INR=30, dB  

10-4 0.778 0.778 0.334 0.334 
10-6 1.37 1.37 0.54 0.54 0 

10-8 2.16 2.16 0.778 0.778 
10-4 3.56 320 1.63 143 
10-6 8.4 761 3.56 320 0.01 

10-8 14.85 1345 5.805 524 
10-4 4.41 389 1.925 159 
10-6 9.5 845 3.86 338 0.033 

10-8 16.3 1472 6.125 546 
10-4 4.68 400 1.94 144.5 
10-6 9.8 869 3.818 321 0.066 

10-8 16.68 1493 6.04 526 
10-4 4.67 386 1.845 117 
10-6 9.72 849 3.635 290 0.1 

10-8 16.54 1465 5.79 489 

The probability of detection for CA CFAR detector is shown on Fig. 7 for 
constant detection threshold achieved for non homogeneous interference with 
parameters − average power of the receiver noise λ0 = 1, average INR  rj = 30 dB, 
probability of appearance of impulse interference with average length in the range 
cells e0 = 0÷0.1.  

The results for EXC CFAR detector threshold analysis with probability of 
false alarm ( 4

FA 10−=P ), excision constant − 2E =B , for two values of number of 
observations in the reference window (N), an average interference-to-noise ratio 
(INR = 30 dB) and nine different values for probability of appearance of impulse 
interference with average length in the cells in range are presented in Table 2. 

The probability of detection for EXC CFAR detector is shown on Fig. 8. The 
study is analyzed for constant detection threshold achieved for non homogeneous 
interference with parameters − average power of the receiver noise λ0=1, average 
INR rj=30 dB, probability of appearance of impulse interference with average 
length in the range cells e0 = 0.1÷0.9.  
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Fig. 7. Probability of detection for CA CFAR detector 

Table 2 
e0 N=16 N=32 
0.1 12 750 11 602 
0.2 15 655 14 026 
0.3 18 185 15 820 
0.4 21 215 17 236 
0.5 28 265 18 562 
0.6 68 176 20 321 
0.7 293 988 25 673 
0.8 1 105 999 115 599 
0.9 2 745 555 1 266 299 

 
Fig. 8. Probability of detection for EXC CFAR detector 
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Table 3 presents the obtained threshold constants under equal experimental 
conditions for the different CFAR detection structure with two-dimensional binary 
integration procedure. The results are achieved for a value of probability of false 
alarm ( 4

FA 10−=P ), for two values of binary rules – 10/16 and 16/16, for nine values 
of probability of appearance of impulse interference and an average interference-to-
noise ratio (INR=30 dB).   

Table 3 

e0 M/L=10/16 M/L=16/16 
0.1 0.0458 0.000316 
0.2 0.1295 0.0002168 
0.3 0.1367 0.000294 
0.4 0.13147 0.0117 
0.5 0.1255 0.02228 
0.6 0.12088 0.02778 
0.7 0.11763 0.03098 
0.8 0.11547 0.03314 
0.9 0.1140 0.0349 

 
The probabilities of detection for CFAR BI detector with two different values 

of binary rules on next two figures – Fig. 9 ( 16/10/ =LM ) and Fig. 10 
( 16/16/ =LM ) are presented. The results are achieved for the following parameters - 
probability of false alarm 4

FA 10−=P , average power of the receiver noise λ0=1, 
average INR  rj=30 dB, probability of appearance of impulse interference with 
average length in the range cells e0 = 0.1÷0.9. 

 

 
 

Fig. 9. Probability of detection for CFAR BI detector 
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Fig. 10. Probability of detection for CFAR BI detector 

 
Table 4 presents  the obtained threshold constant values under equal 

experimental conditions for the two-dimensional EXC CFAR BI detector. The 
results are achieved for value of probability of false alarm ( 4

FA 10−=P ), for two 
values of binary rules – 10/16 and 16/16, for nine values of probability of 
appearance of impulse interference and an average interference-to-noise ratio 
(INR=30 dB).   

 
Table 4 

e0 M/L=10/16 M/L=16/16 
0.1 7.1162 1.8831 
0.2 142.7784 2.1544 
0.3 697.8724 2.5797 
0.4 1093.3 3.3448 
0.5 1415.9 5.2840 
0.6 1715.9 82.8785 
0.7 2038.0 279.3980 
0.8 2409.5 420.8292 
0.9 2566.7 304.9783 

 
The probabilities of detection for EXC CFAR BI detector with two different 

values of binary rules on next two figures – Fig. 11 ( 16/10/ =LM ) and Fig. 12 
( 16/16/ =LM ) are presented. The results are achieved for the following parameters 
− probability of false alarm 4

FA 10−=P , excision constant 2E =B , average power of 
the receiver noise λ0 = 1, average INR rj = 30 dB, probability of appearance of 
impulse interference with average length in the range cells e0 = 0.1÷0.9. 

The numerical results for the obtained threshold constants values in equal 
experimental conditions for the two-dimensional API CFAR detector are included 
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in Table 5. The results are achieved for three values of probability of false alarm 
(PFA), for two values of numbers of observations in the reference window (N, L), for 
two values of average INR and for five different values for a probability of 
appearance of impulse interference with average length in the cells in range.  

 

 
Fig. 11. Probability of detection for EXC CFAR BI detector 

 

 
Fig. 12. Probability of detection for EXC CFAR BI detector 
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 Table 5 

N=16 and L=16 N=16 and L=32 
e0

 
PFA

 
INR = 10  dB and 

INR = 30 dB 
INR = 10 dB and 

INR = 30 dB 
10-4 3.950 7.0878 
10-6 6.0233 10.6250 

0 

10-8 8.7413 15.2578 
10-4 4.0533 7.2873 
10-6 6.2484 11.0587 

0.01 

10-8 9.1995 16.1383 
10-4 4.309 7.7822 
10-6 6.8228 12.1659 

0.033 

10-8 10.4148 18.4768 
10-4 4.7278 8.5935 
10-6 7.8151 14.0819 

0.066 

10-8 12.6774 22.8404 
10-4 5.2377 9.5826 
10-6 9.1142 16.5961 

0.1 

10-8 15.9710 29.2174 
 
The probabilities characteristics of detection for API CFAR detector are 

shown on Fig. 13 for constant detection threshold achieved for non homogeneous 
interference with parameters − probability of false alarm ( 4

FA 10−=P ), for values of 
number of observations in the reference window (N = 16, L = 16), an average 
interference-to-noise ratio (INR=30 dB) and five different values for probability of 
appearance of impulse interference with average length in the cells in the range 
e0  = 0÷0.1. 

 

 
Fig. 13. Probability of detection for API CFAR detector 
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5. Conclusions 
The experimental results reveal the influence of the interference on the detection 
process, when having constant false alarm rate in noise environment conditions. 
The  paper presentedconsiders the results obtained by the proposed adaptive 
threshold determination procedure and the analysis of different CFAR detector 
structures in intensive randomly arriving impulse interference environment. The 
need for an adequate threshold analysis procedure, enabling better detection results 
for low values of SNR, is considered.  

The value of the test resolution cell and the probability of false alarm over the 
average detection threshold are studied. The application of censoring techniques in 
the detection algorithm improves the CFAR detectors effectiveness. 

The results obtained may have significant practical application for CFAR 
detectors working under noise environment conditions. The obtained results show, 
that the API CFAR (Adaptive censoring Post detection Integration  CFAR) 
processor is the most effective in these conditions.  

As a final conclusion the results achieved in the presented paper confirm once 
again the necessity for synthesis of new algorithms for moving targets detection, 
assuring robustness and higher efficiency of the radar systems. The results obtained 
in this paper could practically be used in radar and communication networks.    

R e f e r e n c e s 
1. F i n n, H., R. J o h n s o n. Adaptive Detection Mode with Threshold Control as a Function of 

Spatially Sampled Clutter Estimation. – RCA Review, Vol. 29, 1968, No 3, 412-464. 
2. H o u, X., N. M o r i n a g a, T. N a m e k a w a, Direct Evaluation of Radar Detection Probabilities. – 

IEEE Trans., Vol. AES-23, 1987, No 4, 418-423. 
3. G o l d m a n, H., I. B a r-D a v i d. Analysis and Application of the Excision CFAR Detector. – In: 

IEE Proc., Vol. 135, Pt.F, 1988, No 6, 563-575. 
4. K a b a k c h i e v, C., L. D o u k o v s k a, I. G a r v a n o v. Hough Radar Detectors in Conditions of 

Intensive Pulse Jamming. – Sensors & Transducers Magazine, Special Issue “Multisensor 
Data and Information Processing”, 2005, 381-389. 

5. K a b a k c h i e v, C., I. G a r v a n o v, L. D o u k o v s k a. Adaptive Censoring CFAR PI Detector 
with Hough Transform in Randomly Arriving Impulse Interference. –  Cybernetics and 
Information Technologies, Vol. 5, 2005, No 1, 115-125. 

6. K a b a k c h i e v, C., I. G a r v a n o v, L. D o u k o v s k a. Excision CFAR BI Detector with Hough 
Transform in Presence of Randomly Arriving Impulse Interference. – In: Proc. of the 
International Radar Symposium – IRS’05, Berlin, Germany, 2005, 259-264. 

8. D o u k o v s k a, L., C. K a b a k c h i e v. Performance of Hough Detectors in Presence of Randomly 
Arriving Impulse Interference. – In: Proc. of the International Radar Symposium – IRS’06, 
Krakow, Poland, 2006, 473-476. 

8. K a b a k c h i e v, C., L. D o u k o v s k a, I. G a r v a n o v. Cell Averaging Constant False Alarm 
Rate Detector with Hough Transform in Randomly Arriving Impulse Interference. – 
Cybernetics and Information Technologies, Vol. 6, 2006, No 1, 83-89. 

9. D o u k o v s k a, L. Hough Detector with Binary Integration Signal Processor. Compt. Rend. Acad. 
Bulg. Sci., Vol. 60, 2007, No 5, 525-533. 

10. D o u k o v s k a, L., V. B e h a r, C. K a b a k c h i e v. Hough Detector Analysis by means of 
Monte Carlo Simulation Approach. – In: Proc. of the International Radar Symposium – 
IRS’08, Wroclaw, Poland, 2008, 103-106. 



 48

11. D o u k o v s k a, L. Moving Target Hough Detector in Pulse Jamming. – Cybernetics and 
Information Technologies, Vol. 7, 2007, No 1, 67-76.  

12. D o u k o v s k a, L. Hough Detector with One-dimensional CFAR Processors in Randomly 
Arriving Impulse Interference. – In: Proc. of Distributed Computer and Communication 
Networks, International Workshop, Sofia, Bulgaria, 2006, 241-254. 

13. B e h a r, V., C. K a b a k c h i e v, L. D o u k o v s k a. Adaptive CA CFAR Processor for Radar 
Target Detection in Pulse Jamming. – Journal of VLSI Signal Processing, Vol. 26, 2000, 
383-396. 

14. R o h l i n g, H. Radar CFAR Thresholding in Clutter and Multiple Target Situation. – IEEE 
Transaction, Vol. AES-19, 1983, No 4, 608-621. 

15. D o u k o v s k a, L., I. G a r v a n o v. Hough Detector Threshold Analysis in Presence of 
Randomly Arriving Impulse Interference. – Cybernetics and Information Technologies,    
Vol. 10, 2010, No 1, 37-48. 

 


