
 60

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 10, No 2

Sofia • 2010

Source Code Analysis – An Overview

Radoslav Kirkov, Gennady Agre
Institute of Information Technologies, 1113 Sofia
E-mails: rg_kirkov@yahoo.com agre@iinf.bas.bg

Abstract: In recent years the need of automatically source-code analysis tools has
rapidly grown because of the significant increase of both the amount of the software
programs and the program complexity. The present paper describes the main
structure, algorithms and techniques implemented in some of the most popular tools
for source-code analysis as well as an experimental comparison of such tools. The
analysis process as well as a functionality of one of the tools is illustrated by an
example of analyzing a sample program Finally some trends for development on
modern source-code analysis systems are discussed.

Keywords: Source code analysis, code representation, software patterns, testing
tools.

1. Introduction

In the last few decades the amount of the software programs has rapidly increased -
around 350 billion line of code existed in year 2000 in the global code base (60%
are written in Cobol) [5]. In the year 2015 this value will gain approximately 500
billion and ten years later the global code base should top 1 trillion lines of code [2].
The huge number of software products leads to a growing demand for software
developers and improvement of the developers’ effectiveness and productivity.
Besides the new product development, in many cases the existing programs have to
be reengineered in order, for example, to improve the program performance, to

 61

change the platform (operation system), to add new functionalities and
technologies, to unbundled a monolithic system to several independent parts, etc.

Before starting to reengineer a software product it is necessary to analyze the
source code in order to understand deeply the existing implementation.
Unfortunately the documentation is often uncompleted, too old or does not cover
the whole functionality and sometimes it is even missing. Moreover, the process of
the software analysis in the big systems is usually a time-consuming task, which
requires to be implemented by the most experienced programmers in the company.
Therefore the source-code analysis is an expensive task and every useful tool
automating (even partially) this process could decrease the time and price of the
product and improve the overall productivity.

The automatic source code analysis is based on information representing a
model (or models) of the program that can be constructed by means of automatic
tools. Such models can be designed from the source code (textual, human readable
code which is usually compiled to an executable program) or from its artefacts as
byte code or execution traces [2]. The source information is presented in an abstract
structure that allows further interpretations and manipulations. The analysis
algorithms are looking at the model for various kinds of patterns describing possible
problems and the final result is a list of warnings grouped by type and ordered by
the value of importance.

In the present paper we try present an overview of the existing methods for
automatic source code analysis. At the beginning we start with description of the
anatomy of the source code analysis by presenting a general structure of a source-
code analysis program. Then we illustrate such a structure by an example of source-
code analysis checking if the exception (try-catch) block is appropriately defined in
an illustrative program. Section 4 presents a brief comparison between the existing
tools for automatic source-code analysis. Finally we have pointed some trends for
development on modern source-code analysis systems.

2. Anatomy of a source code analysis

The structure of most of the existing automatic source code analysis programs
[2, 15, 29, 40] could be separated in 4 main composite parts (blocks) – model
construction, analysis and pattern recognition algorithms, patterns knowledge and
result representation (Fig. 1).

Initially, an abstract model of a program is constructed from the source code or
the binary file of the program under analysis. The analysis and pattern recognition
algorithms are looking at the model in order to find some probable problems in the
analyzed program − anti-patterns, bug patterns or digression from design patterns.
The patterns are stored in a separate block called Patterns Knowledge. Design
patterns describe some generic solutions and the best practices to recurring software
problems including both structural and behaviour aspects of the program. Anti-
patterns describe some recurring problems that are often solved in a wrong way. A
bug pattern is a concept describing an abstraction of a recurring bug. It is a
commonly occurring error in the implementation of the software design [12]. It

 62

should be mentioned that different problems (instances of known patterns) are
discovered by means of different code models (trees or graphs), most suitable for
each concrete type of patterns. All problems found are ordered by a priority score
and shown to the programmer by means of the result representation block.

Fig. 1. A general structure of a source code analysis program

2.1. Model construction

Construction of an abstract model of a program is the first step of the source code
dependent on a specific programming language can make such analysis easier and
faster by processing the model instead of working directly with the source code.
Several abstract models can be built from parsing the sources code of a program.
They describe different aspects of the program behaviour and are constructed
sequentially adding more and more complexity to the previous model.

In many cases [2, 6, 19, 20, 24] the first model created is an Abstract Syntax
Tree (AST) – a tree where each node is a construct in the source code In contrast to

 63

the parse tree (built by the parser during the compiling process), AST is insensitive
to the grammar that produces it since its structure and elements do not reflect so
concretely the syntax of the input language (e.g. some program elements like
spacing, brackets, parentheses and comments are removed).

AST is usually used as a base for creating more complex graph structures
(models) representing various aspects of the source code and therefore different
models are used by different source code analysis algorithms [2]. For example,
Control-Flow Graph (CFG) model represents all parts that might be traversed
through a program during its execution [24]. Each node in the graph denotes a basic
block and the directed edges are jumps in the control flow. Trace Flow Graph [2] is
used for concurrent programs representation. It is based on CFG model extended
with additional vertices and edges for inter-task control flow. Static Single-
Assignment (SSA) model [2] simplifies and improves the precision of CFG − the
source code variables (e.g. int, double, etc.) are assigned only once making the def-
use chains explicit. Value Dependence Graph (VDG) [2, 27] improves some of the
results achieved by SSA and simplifies analysis by representation of the control
flow as data flow. In addition to the conventional direct-dependence edges System
Dependence Graph model [11] contains some data-dependence edges representing
transitive dependences due to the effects of procedure calls. The edges are
constructed with the aid of an auxiliary structure that represents calling and
parameter-linkage relationships. Points-to Graph model [28] serves as an
abstraction of the run-time memory states of the analyzed program. Abstract
Semantic Graph (ASG) [10] is a data structure that derives the semantic of an
expression in a programming language.

2.2. Patterns knowledge

Patterns knowledge is used to represent and store the information about the
potential problems in a program source code. Such problems could vary from very
simple bugs to sophisticated problems difficult to be found. Some of these problems
can be represented by templates or descriptions called patterns that show a problem,
or a solution that could be used to overcome the problem. A pattern is a recurring
motif, event or structure that occurs over and over again [4]. For source code
analysis the most frequently used types of patterns are design patterns, anti-patterns
and bug patterns.

2.2.1. Design patterns

A design pattern is a generic solution for recurring design problems [26]. The usage
of the design patterns improves the effectiveness software development process.
The design patterns could be classified into 3 main groups – Creational, Structural
and Behavioral [6, 13].

• Creational design patterns are related to the creation of classes and objects.
Among the most frequently used creational design patterns are Abstract Factory
(creates an instance of several families of classes), Builder (separates object
construction from its representation), Factory Method (creates an instance of
several derived classes), Object Pool (avoids expensive acquisition and release of

 64

resources by recycling objects that are no longer in use), Prototype (different kinds
of objects are specified by a prototypical instance, and the new objects are created
by copying this prototype) and Singleton (allows only one object of a class to be
created).

• Structural design patterns describe the composition of classes and objects.
Examples of such patterns are Adapter (matches interfaces of different classes),
Bridge (separates an object’s interface from its implementation), Composite (a tree
structure of simple and composite objects), Decorator (adds dynamically
responsibilities to objects), Facade (a single class that represents an entire
subsystem), Flyweight (a fine-grained instance used for efficient sharing), Private
Class Data (restricts accessor/mutator access), and Proxy (an object representing
another object).

• Behavioral design patterns are connected with communication between
objects. Among them are: Chain of responsibility (a way of passing a request
between a chain of objects), Command (encapsulates a command request as an
object), Interpreter (a way to include language elements in a program), Iterator
(sequentially accesses the elements of a collection), Mediator (defines a simplified
communication between classes), Memento (captures and restores an object's
internal state), Null Object (designed to act as a default value of an object),
Observer (a way of notifying change to a number of classes), State (alters an
object's behavior when its state changes), Strategy (encapsulates an algorithm inside
a class), Template method (defers the exact steps of an algorithm to a subclass) and
Visitor (defines a new operation to a class without change).

2.2.2. Anti-patterns

While a pattern represents the “best practice”, an anti-pattern represents the “lesson
learned.” The notion of “anti-patterns” has two meanings [13]: a) those that
describe a bad solution to a problem, which can lead to a bad situation, and b) those
that describe how to get out of a bad situation and how to proceed from there to a
good solution. Anti-patterns can be valuable because it is often just as important to
see and understand bad solutions, as to see and understand the good ones.
Sometimes a particular solution seems reasonable at the beginning and it is difficult
for the developers to see the problems that can occur. Some of the software anti-
patterns are:

• Software design anti-patternsq e.g.. Gas factory − an unnecessarily complex
design.

• Object-oriented design anti-patterns, e.g. God object – concentrating too
many functions in a single part of the design (class).

• Programming anti-patterns, e.g. Magic numbers – including unexplained
numbers in algorithms.

• Methodological anti-patterns, e.g. Copy and paste programming – copying
(and modifying) existing code rather than creating generic solutions

 65

2.2.3. Bug patterns

Bug patterns are recurring correlations between signalled errors and underlying
bugs in a program that describe a commonly occurring error in the implementation
of the software design [12]. In contrast to anti-patterns, bug patterns are patterns of
erroneous program behaviour correlated with programming mistakes. Some
examples of bug patterns are Dereferencing a null pointer; An impossible checked
cast; Methods, whose return value should not be ignored and Infinite recursive
loop [7].

Source Code Analysis programs could automatically find some of the above
listed patterns describing unsecured parts of the code, bugs and bad practices [20].
The representation of the patterns can vary depending of the pattern recognition
methods chosen. For example, the patterns could be represented as logical
conditions grouped into rules or structured into classes for object-oriented
programming.

2.3. Analysis and pattern recognition algorithms

The general goal of pattern recognition is the classification of objects into a number
of categories. In the software analysis the process is based on matching the patterns
against an abstract model, which represents the source code. The more appropriate
model could be different for the different kinds of patterns. For example, we could
use AST model for finding a problem related to a localized structural security flow.
By the help of CFG model we can find a buffer overflow occurrence and the SDG
model can be used for searching an inappropriate user input.

Software analysis methods can be classified along different dimensions [2].
One of them splits the methods on static versus dynamic. Static analysis does not
account for program input; thus the result must be applicable to all executions of the
program [1]. It is suitable for the structural recognition, but, in most of the cases, is
not appropriate for behaviour aspects. For example, the static analysis can show if a
given method could be called, but it cannot provide information how often or even
if it will be called at runtime. In contrast, dynamic analysis takes into account the
program input (typically a single input). This allows greater precision; however, the
results are only guaranteed to be correct for the particular input. Another
disadvantage of the dynamic approach is the big amount of resources required by
the system.

Some techniques lie between the above mentioned. They take into
consideration the collection of initial states that, for example, satisfy a predicate. In
such situations the static analysis could identify the design pattern candidates and
the dynamic approach could then be used to limit the amount of candidates.

Bellow we will give more information about three different kinds of static
analysis algorithms – logical queries, relational queries and algorithm based on
graph-rewrite rules.

Logical queries algorithms perform logical queries (usually written in a
Prolog-like logical language) over the AST model. The descriptions of
implementation patterns are expressed as logical conditions grouped into reusable
logic rules. The search for solutions is initiated by launching a logic query.

 66

Examples of such Prolog based design patterns detection tools are Pat [45], Pattern-
Lint [44] and Goose [43]. In order to increase the flexibility and to be able to search
not only for strictly matched patterns, some of the programs use “fuzzy” rules [36]
(each rule has a certainty degree). Another language suitable for static analysis is
SOUL (Smalltalk Open Unification Language) [30, 36, 37], which is similar to
Prolog, but includes some specialized features for meta-programming. The main
advantages of this language are: expressiveness of logical languages by nature,
built-in pattern matching abilities, backtracking, recursion, flexibility and reuse
[36]. As a main shortcoming of SOUL it could be mentioned that for the case of
large systems execution of programmes it becomes too slow and the queries
become too complex and therefore too difficult for maintenance.

Relational queries algorithms transform the project source code into relations
between the elements, for example inheritance, caller/callee, delegations and so on.
The “facts” are extracted from the code and then could be queried with relational
queries [25]. The analyses algorithms are formalized as relational queries, which are
used for detection of design patterns, patterns of problematic design, code clones
etc. The approach resembles the logical queries method, but the relations that could
be extracted from the source code are more restricted in the sense that not
everything contained in the AST could be represented as a relation. The approach
could be easily implemented by SQL, has insufficient performance over large
graphs (among other inconveniences is the lack of a transitive closure operator
[25]).

Algorithms based on graph-rewrite rules use transformational rules over the
ASG model. There are different approaches for this method, but we will explain
shortly one of them. The first step in it is the source code parsing and the creation of
ASG. After that the algorithm searches for the defined design patterns in the graph.
Once a pattern is found, the graph is annotated by adding additional nodes and
edges that indicate which sub-graph of an ASG corresponds to the specific pattern
[40]. As an example of a program that uses this approach, we could point FUJABA
[41]. It is a tool providing developers with support for model-based software
engineering and re-engineering.

2.4. Results representation

All discovered bugs and anti-patterns are stored as a list ordered according to two
parameters – a value of the probability for presence of each issue and its importance
reflecting the level of danger of the examined problem.

This list of all issues sorted by the values of probability and importance are the
actual output of the system, which presented to the user (developer) via an
appropriate user interface (see, as an example, Fig. 2). Usually, at the top of the
screen the most danger warnings with the highest probability are displayed. Each of
these warnings could contain information about the file name, a line in a file, the
class name, the function name where the problem occurs and a user-friendly
description of the bug with information what is the best solution for the specific
problem.

 67

Fig. 2. Screen shot of FindBugs program, which looks for bugs in Java code

The correctness of the software analysis is usually measured by means of false
positive and false negative rates calculating according the following formulas [3]:

False Positive Rate (FPR) =
InstancesPattern DetectedAllofNumber

InstancesPattern Incorect ofNumber
×100%,

False Negative Rate (FNR) =

InstancesPattern Correct ofNumber
Number InstancesPattern Correct Undetected

×100%.

Unfortunately, the only way to evaluate the number of false negatives or false
positives is manual analysis of the source code done by an experienced developer.

3. An example of source code analysis

In order to illustrate the above described model of the process of static source code
analysis let’s consider the following sample problem – there is a small peace of
code (Fig. 3), which should be analyzed if the exception (try-catch) block is
appropriately defined. More precisely, we will try to find a type of the anti-pattern
(Catch for Generic Exception, 2009) that shows if the exception cached is too
general.

 68

The try-catch block in Java documentation is described as: A try statement
executes a block. If a value is thrown and the try statement has one or more catch
clauses that can catch it, then control will be transferred to the first such catch
clause. If the try statement has a finally clause, then another block of the code is
executed, no matter whether the try block completes normally or abruptly, and no
matter whether a catch clause is first given control [14].

The process of finding the solution of this sample problem is based on using
the source code analysis system Smart Source Analyzer (SSA) [42] developed by
Musala Soft Ltd. http://www.musala.com/ and its main features include reports
generation for software metrics, problem detection and test data set generation.

1 import java.io.*;
2 public class Foo
3 {

private byte[] b;
private int length;

Foo()
{
 length = 40;
 b = new byte[length];
}

public void openFile()
{
 int y;
 try
 {
 FileInputStream x = new FileInputStream(“z”);
 x.read(b,0,length);
 x.close();
 }
 catch(Exception e)
 {
 System.out.println(“Oopsie”);
 }

 for(int i = 1; i <= length; i++)
 {
 if (Integer.toString(50) == Byte.toString(b[i]))
 System.out.print(b[i] + “ ”);
 }
}

22 }

Fig. 3. The sample source describes a simple class that contains a Java function, which reads a text
from a file system and displays the text into a console

 69

3.1. Model construction

The first step of the analysis is to parse the code and to transform it onto AST
representation. Each element of the source file is represented as a subclass of AST
node providing specific information about the object it represents (Fig. 4).

Fig. 4. The root of the AST representation of the openFile function

The next step is conversion of the constructed AST to ASG model. In recent
years OMG consortium [10], has designed modeling specifications for ASG called
Knowledge Discovery Metamodel (KDM) [10] that is used for generating the ASG
model in SSA tool [42]. One of the benefits of KDM is that it standardizes existing
approaches to knowledge discovery in software engineering artefacts and allows
interchange between different tools. The standard XML format called XML
Metadata Interchange (XMI) implements this program interchange possibility.

In ASG each code element is represented by a node (vertice). The try-catch
block has nodes in the graph for the following blocks – a try block, every catch
block and a final block. The nodes are connected by arcs (edges) that represent the
relations between them. In KDM standard each exception block has several
relations called Flows:

• EntryFlow – from the try action element to the try block.
• ExceptionFlow – from the try block to each catch block.
• ExitFlow – from the try block to the final block.
• Flow – from the try block and each catch block to the final block.
• Reads – from the try action element to the result data element of the variable

declaration.

Once the ASG model or the example Java function has been built it can be
used for further manipulations analysis – in our tool we have implemented a
functionality, which allows creation of a Control Flow Graph (CFG). The CFG
model of our Java function is presented in Fig. 5.

 70

Fig. 5. CFG model of the function used in the example. Each of the nodes represents an element in the
source code and the edges are jumps in the control flow (in our case, there are different types of edges

– Flow, Exception Flow, True Flow, etc.)

3.2. Patterns knowledge

In our example we are looking for one type of anti-pattern – declaration of catch for
Generic Exception. Exceptions are used in a program to notify that an error or
exceptional situation has occurred and that it doesn't make sense to continue the
program flow until the exception has been handled. For example, if we try in Java
to open a file that doesn’t exist, an exception of the type FileNotFoundException
will be thrown.

Many different kinds of Exceptions can be ordered in a hierarchal structure
(Fig. 6).

 71

Fig. 6. Part of Java exception tree

In general, the exception definition contains try, catch and final blocks (catch
and final are not obligatory, but at least one of them must exist) (Fig. 7).

try
{
 FileInputStream x = new FileInputStream(“c:\test.txt”);
 x.read(b,0,length);
 x.close();
}
catch (Exception e) {…}

Fig. 7. An example of an exception block

The catch block handles the exceptions thrown in the try block. It could handle
the exact type of the thrown exception (e.g. FileNotFoundException) or an
exception from its parent types (IOException, Exception, etc.). Catching a too
general exception is a bad practice since it can obscure exceptions that deserve
special treatment or that should not be caught at this point in the program. In order
to avoid handling the exception in the function, one should set throwing statement
in the function definition for the specific exception.

The source code analysis tool used (SSA) stores all kinds of Patterns in a
specific format, in which each Pattern definition has four elements – set of
characteristics, algorithms used for finding the places of the bad practices; filters for
omitting all elements that are not in the scope of interest for the specific Pattern;
and aggregator, combining results of different algorithms used for finding the
Pattern.

In the example analyzed the try-catch pattern has the following characteristics:
• try – describes specific information of the try block;
• catch – catches the exception, but it is not interested in the specific

exception type;

 72

• throwing – defines exceptions that will be skipped and will not be
processed.

• exception – defines generic type of the caught exception.

The applied filter will help us to find all the elements in the source code
corresponding to the characteristics of the type “try”. All such elements will be
stored in a list and the rest of the code will be ignored.

3.3. Analysis and Pattern Recognition algorithms

The algorithm used in SSA system searches the ASG or CFG model for specific
elements of a specified type. In our case, with the assistance of the concrete filter
element specifying the Pattern definition, it returns a list of all try-catch blocks
providing us with all elements that can catch an Exception and are included in the
try element. As it can be seen from the source code of the example, it contains one
constructor and two functions in the try block (see Fig. 6). Based on Java
documentation these elements can throw only FileNotFoundException and
IOException:

public FileInputStream(String name) throws FileNotFoundException

public int read(byte[] b, int off, int len) throws IOException

public void close() throws IOException

Since FileNotFoundException is a kind of IOException, which is a successor
of Exception in the exception tree (Fig. 5), and taking into account that the most
general exception in our example is the IOException, the algorithm proposed has
found out that the Exception used in the catch block is too generic. In other words,
we have found an instance of the anti-pattern for inappropriate try-catch definition.

3.3. Results representation

At the end of our cycle of the program, we receive a warning for the presence of
anti-pattern of the type “Catch for Generic Exception”. In the dialog of the form
detailed information is shown about the problem and the exact place where it is
found in the code. If we have more than one issue they will be grouped and sorted
by the value of importance and probability.

4. Existing programs and tools

An experimental evaluation of several publicly available bug-finding tools is
presented in [7]. For their evaluation the authors have selected five well-known
tools – PMD [8], FindBugs [38], JLint [9], ESC/Java [39] and Bandera [40], that
have been tested on several tests. Among them is the Java code example (shown in

 73

Fig. 3) used as an illustration in this paper. The warnings found by the tools are
shown in Fig. 7:

PMD

Warning (line 15): “Avoid unused local variables” for variable y.

FindBugs

Warning (line 19): “Method ignores results of InputStream.read()”. This
function returns the number of bytes read, which could be less than the expected
number

Warning (line 20): “Method may fail to close stream on exception”

Warning (line 29): Wrong usage of “==” for String objects comparison

ESC/Java

Warning (line 29): “Array index possibly too large” for array “b” with
index i

Warning (line 29): Possible null dereference for array “b”.

JLint

Warning (line 29): Wrong usage of “==” for String objects comparison
Fig. 7. The list of warning issued after analyzing the example [7]

As one can see, different tools have found different types of problems. For
example, PMD found the unused variable y on line 15, which is an instance of false
negative while FindBugs, which was oriented for searching such type of bugs,
missed it. On the other side the second warning of ESC/Java is the false positive −
there is nothing wrong in the code since b is initialized in the constructor and it can
not be null on line 29. “Wrong string comparison” is the only issue found by more
than one tool (FindBugs and JLint) − other warnings are not overlapped.

The types of problems found by the systems used in the experimental
comparison are presented in Table 1.

One of the explanations of these results is that the tools used in the
experiments explore different methods for analyzing the source code. FindBugs,
JLint and PMD apply the syntactic bug pattern detection. JLint and FindBugs also
use a dataflow component. ESC/Java applies the theorem proving method, while
Bandera implements the model checking.

The tools have been also compared by the number of generated warnings and
running time over 5 open-source projects (Azureus [31], Art of Illusion [32],
Tomcat [33], Jboss [34], and Megamek [35]) (Table 2). It can be seen that
ESC/Java is the slowest program while JLint is the fastest one.

 74

Table 1. Types of bugs found by the tools (V – tool checked for bugs in this category
*− tool checked for this specific example) [7]

Table 2. Running times and warnings generated by each tool [7]
Time (min:sec.csec) Warning Count

Name NCSS
(Lines)

Class
Files ESC/

Java FindBugs JLint PMD ESC/
Java

Find
Bugs JLint PMD

Azureus 2.0.7 35,549 1053 211:09.00 01:26.14 00:06.87 19:39.00 5474 360 1584 1371
Art of Illusion 1.7 55,249 676 361:56.00 02:55.02 00:06.32 20:03.00 12813 481 1637 1992

Tomcat 5.019 34,425 290 90:25.00 01:03.62 00:08.71 14:28.00 1241 245 3247 1236
JBoss 3.2.3 8,354 274 84:01.00 00:17.56 00:03.12 09:11.00 1539 79 317 153

Megamek 0.29 37,255 270 23:39.00 02:27.21 00:06.25 11:12.00 6402 223 4353 536

5. Future work

The modern tendencies for improving the existing automatic source code analysis
system can be searched in application of algorithms and techniques from such areas
of Computer Science as Information Retrieval, Machine Learning and Data Mining.

 75

Existing applications of Information Retrieval (IR) techniques to source-code
analysis include automatic link extraction, concept location, software and website
modularization, reverse engineering, software reuse impact analysis, quality
assessment, and software measurement [2]. In such applications the code is treated
as text instead of considering its structure. For example, the source code could be
divided into two documents: one includes the comments and another − the
executable source code. The cosine similarity between the two documents is
measured and used as a proxy for evaluating the program quality. Some empirical
evidence supports this technique [2] in cases where automated techniques have been
found lacking and where direct human assessment is too expensive.

At the moment the application of IR has concentrated on processing the text
constructed from the source and non-source software artifacts (which can be just as
important as the source) using only a few well-developed IR techniques. Having in
mind the growing importance of non-source documents, in the near future the
source-code analysis should develop new IR-based algorithms specifically designed
for dealing with the source code.

Application of Data Mining (DM) algorithms promises to improve the overall
process of source code analysis. DM techniques, such as neural networks,
association rules and decision trees have advanced dramatically in recent years and
can be used for mining of software related data [2]. For example, decision trees can
be used to discover classification rules for chosen attributes of a data set by
systematically subdividing the information contained in this set. At the present
moment some researchers try to reuse simple data mining techniques, such as
association mining and clustering from the source code analysis [2], but more
advanced data mining methods could also be useful for solving this specific task.

Machine Learning algorithms can be used for improving the values of
importance and probability of the issues found by the source code analysis
tools. For example, the developers’ feedback on inferred warnings can be
used to adjust automatically the priority of the warnings. Another possibility
for priority evaluation of the warnings is to store statistical information every
time when the tool is executed over a specific source code [18]. The
information can be used to check which issue has been resolved so far by the
developer and which one still exists assuming that such an issue is probably
not a real issue or is not so important and therefore its priority could be
decreased.

Acknowledgements. We would like to thank members of NIF project in Musala Soft Ltd. for
providing useful articles for our research. Special thanks to Haralambi Haralambiev, Bojidar Penchev
and Svilen Marchev for explaining the details of Smart Source Analyzer structure and functionality.
This work is partially supported by the European Social Fund and Bulgarian Ministry of Education,
Youth and Science under Operative Program “Human Resources Development”, Grant BG051PO001-
3.3.04/40, and by the project IIT-010096 “Methods and Tools for Knowledge Processing”.

R e f e r e n c e s

1. C h e s s, B., J. W e s t. Secure Programming With Static Analysis. Indiana, USA, Addison-
Wesley, 2008.

2. B i n k l e y, D. Source Code Analysis: A Road Map. Future of Software Engineering. L. Briand
and A. Wolf, Eds. IEEE-CS Press, 2007.

 76

3. L e e, H., H. Y o u n, E. L e e. A Design Pattern Detection Technique that Aids Reverse
Engineering. – International Journal of Security and its Applications, Vol. 2, January 2008,
No 1, 1-12.

4. D e m e y e r, S., S. D u c a s s e, O. N e i r s t r a s z. Object Oriented Reengineering Patterns.
Switzerland, Square Bracket Associates, 2008.

5. W i l k i n s o n, S. From the Dustbin, Cobol Rises. – eWeek, Vol. 18, May 28, 2001, No 21, p. 58.
6. G a m m a, E., R. H e l m, R. J o h n s o n, J. V l i s s i d e s. Design Patterns. Elements of Reusable

Object-Oriented Software. J. C. Escher / Cordon Art – Baarn – Holland, 1994.
7. R u t a r, N., C. B. A l m a z a n, J. S. F o s t e r. A Comparison of Bug Finding Tools for Java. – In:

Proc. of the 15th International Symposium on Software Reliability Engineering (ISSRE'04),
2004, 245-256.

8. C o p e l a n d, T. PMD/Java, 2005.
http://pmd.sourceforge.net

9. A r t h o, C. JLint, 2001.
http://artho.com/jlint

10. KDM 1.0 specification
http://www.omg.org/technology/documents/modernization_spec_catalog.htm

11. H o r w i t z, S., T. R e p s, D. B i n k l e y. Interprocedural Slicing Using Dependence Graphs. –
ACM Transactions on Programming Languages and Systems (TOPLAS), Vol. 12, January
1990, Issue 1, 26-60.

12. F a r c h i, E., Y. N i r, S. U r. Concurrent Bug Patterns and How to Test Them. – In: Proc. of the
International Parallel and Distributed Processing Symposium (IPDPS'03), 2003, p. 286b.

13. A p p l e t o n, B. Patterns and Software: Essential Concepts and Terminology, 2000.
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

14. The Java Language Specification. Third Edition. Sun Microsystems, Inc., 2004.
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

15. L a r s o n, E. SUDS: An Infrastructure for Dynamic Software Bug Detection Using Static
Analysis. – ACM SIGSOFT Software Engineering Notes, Vol. 31, November 2006, Issue 6,
1-2.

16. O k u n, V., W. G u t h r i e, R. G a u c h e r, P. B l a c k. Effect of Static Analysis Tools on
Software Security: Preliminary Investigation. Conference on Computer and Communications
Security. – In: Proc. of the 2007 ACM workshop on Quality of protection, ACM New York,
2007, 1-5.

17. W a r e, M., C. F o x. Securing Java Code: Heuristics and An Evaluation of Static Analysis Tools.
Conference on Programming Language Design and Implementation. – In: Proc. of the 2008
Workshop on Static analysis, 2008, 12-21.

18. K i m, S., M. E r n s t. Which Warnings Should I Fix First? – In: Proc. of the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Dubrovnik, Croatia, 2007, 45-54.

19. H o v e m e y e r, D., W P u g h. Finding Bugs is Easy. – ACM SIGPLAN Notices, Vol. 39,
December 2004, Issue 12, 92-106.

20. Q u i n l a n, D., R. V u d u c, G. M i s h e r g h i. Techniques for Specifying Bug Patterns. – In:
Proc. of the 2007 ACM Workshop on Parallel and Distributed Systems: Testing and
Debugging, London, United Kingdom, 2007, 27-35.

21. K i m, S., K. P a n, J. W h i t e h e a d. Memories of Bug Fixes. – In: Proc. of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, Portland,
Oregon, USA, 2006, 35-45.

22. F o s t e r, J., M. H i c k s, W. P u g h. Improving Software Quality with Static Analysis. – In: Proc.
of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, San Diego, California, USA, 2007, 83-84.

23. C h e n g, H., D. L o, Y. Z h o u, X. W a n g, X Y a n. Identifying Bug Signatures Using
Discriminative Graph Mining. – In: Proc. of the Eighteenth International Symposium on
Software Testing And Analysis, Chicago, IL, USA, 2009, 141-152.

24. H o w a r t h, N. 1995. Abstract Syntax Tree Design, Cambridge CB3 0RD, United Kingdom,
August 1995.

 77

25. B e y e r, D., A. N o a c k, C. L e w e r e n t z. Simple and Efficient Relational Querying of
Software Structures. – In: Proc. of the 10th Working Conference on Reverse Engineerin,
IEEE Computer Society Washington, DC, USA, 2003, p. 216.

26. D u d a, R., P. H a r t, D. S t o r k. Pattern Classification. 2nd Edition. Wiley, New York, 2001.
27. H a r r o l d, M., G. R o t h e r m e l. Notes on Representation and Analysis of Software. Georgia

Institute of Technology, Oregon State University. December 2002.
28. M i l a n o v a, A., A. R o u n t e v, B. R y d e r. Parameterized Object Sensitivity for Points-to

Analysis for Java. – ACM Transactions on Software Engineering and Methodology
(TOSEM), Vol. 14, January 2005, Issue 1, 1-41.

29. N i e r e, J., M. M e y e r, L. W e n d e h a l s. User-Driven Adaption in Rule-Based Pattern
Recognition. Technical Report tr-ri-04-249, University of Paderborn, Paderborn, Germany,
June 2004.

30. Smalltalk Open Unification Language (SOUL).
http://soft.vub.ac.be/SOUL/

31. Azureus.
http://azureus.sourceforge.net/

32. Art of Illusion.
http://www.artofillusion.org/

33. Tomcat.
http://tomcat.apache.org/

34. Jboss.
http://www.jboss.org/jbossas

35. Megamek.
http://megamek.sourceforge.net/

36. R o o v e r, C., J. B r i c h a u, T. D ’ H o n d t. Combining Fuzzy Logic and Behavioral Similarity
for Non-Strict Program Validation. – In: Proc. of the 8th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, Venice, Italy, 2006,
15-26.

37. D e R o o v e r, C., T. D’H o n d t, J. B r i c h a u, C. N o g u e r a, L. D u c h i e n. Behavioral
Similarity Matching using Concrete Source Templates in Logic Queries. – In: Proc. of the
2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, Nice, France, 92-101.

38. FindBugs.
http://findbugs.sourceforge.net/

39. ESC/Java.
http://secure.ucd.ie/products/opensource/ESCJava2/

40. J. N i e r e, W. S c h ä f e r, J. W a d s a c k, L. W e n d e h a l s 1, J. W e l s h 1. Towards Pattern-
Based Design Recovery. – In: Proc. of the 24th International Conference on Software
Engineering, Orlando, Florida, 2002, 338-348.

41. FUJABA.
http://www.fujaba.de/

42. Smart Source Analyzer (SSA).
http://www.musala.com/ssa/

43. GOOSE.
http://esche.fzi.de/PROSTextern/software/goose/

44. S e f i k a, M., A. S a n e, R. H. C a m p b e l l. Monitoring Compliance of a Software System with
its High-Level Design Models. – In: Proc. of the 18th International Conference on Software
Engineering (ICSE 1996), 1996, 387-396.

45. K r ä m e r, C., L. P r e c h e l t. Design Recovery by Automated Search for Structural Design
Patterns in Object-Oriented Software. – In: Proc. of the 3rd Working Conference on Reverse
Engineering (WCRE 1996), 1996, 208-215.

